UNIVERSITY of CALIFORNIA Los Angeles Characterizing

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA Los Angeles Characterizing UNIVERSITY OF CALIFORNIA Los Angeles Characterizing Neurotrauma and Astroglial Injury Biomarkers by Proteomics and Mass Spectrometry A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biochemistry and Molecular Biology by Sean Shen 2016 © Copyright by Sean Shen 2016 ABSTRACT OF THE DISSERTATION Characterizing Neurotrauma and Astroglial Injury Biomarkers by Proteomics and Mass Spectrometry by Sean Shen Doctor of Philosophy in Biochemistry and Molecular Biology University of California, Los Angeles, 2016 Professor Joseph Ambrose Loo, Chair Neurotraumatic injury has long been a leading cause of death and disability worldwide. Recently, the debilitating long term effects of chronic, mild traumatic brain injuries (TBIs) have gained increased public attention. In order to protect individuals most at risk (e.g. military personnel and athletes) from such injuries, improved diagnostics in the form of a biomarker panel capable of rapidly and sensitively detecting mild TBIs are needed. Despite the large number of TBI biomarker studies in the literature, the development of a clinically relevant protein signature remains elusive. In contrast to diseases with singular mechanistic dysfunction, neurotrauma is characterized by the disruption to multiple cellular pathways that contribute to the sequelae of secondary pathophysiology that determines patient outcome and recovery. This complexity has been a confounding factor in the identification of effective biomarkers. In an effort to circumvent this hurdle, our group implemented a central nervous system ii (CNS) specific cell injury model to examine preferentially released injury related proteins as candidate diagnostics. Comparative analysis of a TBI CSF proteome and preferentially released proteins from our injury model revealed a panel of astroglial injury related candidate biomarkers including aldolase C (ALDOC), brain lipid binding protein (BLBP), glutamine synthetase (GS), astrocytic phosphoprotein PEA15 (PEA15), and glial fibrillary acidic protein (GFAP) and its trauma-generated breakdown products (BDPs). Immediate and robust release of ALDOC, BLBP, and PEA15 were associated more with acute cell wounding than cell death observed after biomechanical injury. In contrast, GFAP release correlated primarily with cell death. The sensitivity and selectivity of our biomarkers for neurotrauma were evaluated in human TBI and Yucatan swine spinal cord injury (SCI) CSF samples. Verification studies demonstrated the ability of our astroglial biomarker panel to differentiate injury from non-injury with elevated signals detectable an hour after injury. Additionally, differential CSF concentration kinetics were observed over a 1-week period post-injury indicative of a long diagnostic window. CSF concentration of biomarkers GFAP, ALDOC, and BLBP correlated strongly with the extent of tissue loss after SCI at 7 days. Taken together, our data demonstrates the successful application of proteomics to the identification and verification of new neurotrauma biomarkers that exhibit potential for not only detecting but defining injury severity. iii This dissertation of Sean Shen is approved. Gal Bitan Jorge Torres Joseph Ambrose Loo, Committee Chair University of California, Los Angeles 2016 iv TABLE OF CONTENTS CHAPTER 1: TRAUMATIC BRAIN INJURY – CLINICAL AND MOLECULAR PATHOLOGIES .............................................................................................................. 1 1.1 INTRODUCTION ................................................................................................... 1 1.2 CLASSIFICATON OF TRAUMATIC BRAIN INJURY ............................................. 3 1.3 CLINICAL PATHOLOGIES OF NEUROTRAUMA ................................................. 6 1.4 THE MOLECULAR PATHOPHYSIOLOGY OF NEUROTRAUMA ....................... 10 1.5 CONCLUSION ..................................................................................................... 18 1.6 REFERENCES .................................................................................................... 20 CHAPTER 2: ADDRESSING THE NEEDS OF TRAUMATIC BRAIN INJURY WITH CLINICAL PROTEOMICS ........................................................................................... 30 2.1 INTRODUCTION ................................................................................................ 30 2.2 DISCUSSION ....................................................................................................... 32 2.3 CONCLUSIONS ................................................................................................. 53 2.4 FIGURES ............................................................................................................. 54 2.5 TABLES ............................................................................................................... 55 2.6 REFERENCES ................................................................................................... 56 CHAPTER 3: NEW ASTROGLIAL INJURY DEFINED BIOMARKERS FOR NEUROTRAUMA ASSESSMENT ................................................................................. 78 3.1 INTRODUCTION ................................................................................................. 78 3.2 RESULTS ............................................................................................................ 81 2.3 DISCUSSION ....................................................................................................... 93 3.4 METHODS ......................................................................................................... 102 2.5 FIGURES ........................................................................................................... 112 3.6 TABLES ............................................................................................................. 129 3.7 SUPPLEMENTAL FIGURES ............................................................................. 158 3.8 REFERENCES .................................................................................................. 174 CHAPTER 4: ASSESSMENT OF ASTROGLIAL INJURY DEFINED BIOMARKERS IN SPINAL CORD INJURY .............................................................................................. 198 4.1 INTRODUCTION ............................................................................................... 198 4.2 RESULTS .......................................................................................................... 201 4.3 DISCUSSION ..................................................................................................... 207 v 4.4 METHODS ......................................................................................................... 209 4.5 FIGURES ........................................................................................................... 213 4.6 TABLES ............................................................................................................. 233 4.7 REFERENCES .................................................................................................. 239 CHAPTER 5: CHARACTERIZING THE PREFERENTIAL RELEASE OF PROTEIN SUBPOPULATIONS BY INJURED ASTROCYTES .................................................... 243 5.1 INTRODUCTION ............................................................................................... 243 5.2 RESULTS .......................................................................................................... 245 5.3 DISCUSSION ..................................................................................................... 250 5.4 METHODS ......................................................................................................... 255 5.5 FIGURES ........................................................................................................... 259 5.6 TABLES ............................................................................................................. 269 5.7 REFERENCES .................................................................................................. 312 CHAPTER 6: FUTURE DIRECTIONS FOR SPINAL CORD AND HEAD TRAUMA ... 320 6.1 INTRODUCTION ............................................................................................... 320 6.2 RESULTS .......................................................................................................... 321 6.3 DISCUSSION ..................................................................................................... 325 6.4 CONCLUDING REMARKS ................................................................................ 328 6.5 METHODS ......................................................................................................... 333 6.6 FIGURES ........................................................................................................... 335 6.7 TABLES ............................................................................................................. 337 6.8 REFERENCES .................................................................................................. 352 vi LIST OF FIGURES AND TABLES Figure 2.1: ..................................................................................................................... 54 Table 2.1: ...................................................................................................................... 55 Figure 3.1: ..................................................................................................................
Recommended publications
  • Supplementary Information Changes in the Plasma Proteome At
    Supplementary Information Changes in the plasma proteome at asymptomatic and symptomatic stages of autosomal dominant Alzheimer’s disease Julia Muenchhoff1, Anne Poljak1,2,3, Anbupalam Thalamuthu1, Veer B. Gupta4,5, Pratishtha Chatterjee4,5,6, Mark Raftery2, Colin L. Masters7, John C. Morris8,9,10, Randall J. Bateman8,9, Anne M. Fagan8,9, Ralph N. Martins4,5,6, Perminder S. Sachdev1,11,* Supplementary Figure S1. Ratios of proteins differentially abundant in asymptomatic carriers of PSEN1 and APP Dutch mutations. Mean ratios and standard deviations of plasma proteins from asymptomatic PSEN1 mutation carriers (PSEN1) and APP Dutch mutation carriers (APP) relative to reference masterpool as quantified by iTRAQ. Ratios that significantly differed are marked with asterisks (* p < 0.05; ** p < 0.01). C4A, complement C4-A; AZGP1, zinc-α-2-glycoprotein; HPX, hemopexin; PGLYPR2, N-acetylmuramoyl-L-alanine amidase isoform 2; α2AP, α-2-antiplasmin; APOL1, apolipoprotein L1; C1 inhibitor, plasma protease C1 inhibitor; ITIH2, inter-α-trypsin inhibitor heavy chain H2. 2 A) ADAD)CSF) ADAD)plasma) B) ADAD)CSF) ADAD)plasma) (Ringman)et)al)2015)) (current)study)) (Ringman)et)al)2015)) (current)study)) ATRN↓,%%AHSG↑% 32028% 49% %%%%%%%%HC2↑,%%ApoM↓% 24367% 31% 10083%% %%%%TBG↑,%%LUM↑% 24256% ApoC1↓↑% 16565% %%AMBP↑% 11738%%% SERPINA3↓↑% 24373% C6↓↑% ITIH2% 10574%% %%%%%%%CPN2↓%% ↓↑% %%%%%TTR↑% 11977% 10970% %SERPINF2↓↑% CFH↓% C5↑% CP↓↑% 16566% 11412%% 10127%% %%ITIH4↓↑% SerpinG1↓% 11967% %%ORM1↓↑% SerpinC1↓% 10612% %%%A1BG↑%%% %%%%FN1↓% 11461% %%%%ITIH1↑% C3↓↑% 11027% 19325% 10395%% %%%%%%HPR↓↑% HRG↓% %%% 13814%% 10338%% %%% %ApoA1 % %%%%%%%%%GSN↑% ↓↑ %%%%%%%%%%%%ApoD↓% 11385% C4BPA↓↑% 18976%% %%%%%%%%%%%%%%%%%ApoJ↓↑% 23266%%%% %%%%%%%%%%%%%%%%%%%%%%ApoA2↓↑% %%%%%%%%%%%%%%%%%%%%%%%%%%%%A2M↓↑% IGHM↑,%%GC↓↑,%%ApoB↓↑% 13769% % FGA↓↑,%%FGB↓↑,%%FGG↓↑% AFM↓↑,%%CFB↓↑,%% 19143%% ApoH↓↑,%%C4BPA↓↑% ApoA4↓↑%%% LOAD/MCI)plasma) LOAD/MCI)plasma) LOAD/MCI)plasma) LOAD/MCI)plasma) (Song)et)al)2014)) (Muenchhoff)et)al)2015)) (Song)et)al)2014)) (Muenchhoff)et)al)2015)) Supplementary Figure S2.
    [Show full text]
  • Mechanism of Interleukin-1- and Tumor Necrosis Factor Α-Dependent Regulation of the Α1-Antichymotrypsin Gene in Human Astrocyt
    The Journal of Neuroscience, October 15, 2000, 20(20):7510–7516 Mechanism of Interleukin-1- and Tumor Necrosis Factor ␣- ␣ Dependent Regulation of the 1-Antichymotrypsin Gene in Human Astrocytes Tomasz Kordula,1 Marcin Bugno,1 Russell E. Rydel,2 and James Travis3 1Institute of Molecular Biology, Jagiellonian University, 31-120 Krako´ w, Poland, 2Elan Pharmaceuticals, South San Francisco, California 94080, and 3Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602 ␣ The expression of 1-antichymotrypsin (ACT) is significantly en- which bind nuclear factor kB (NF-kB) and one that binds activat- hanced in affected brain regions in Alzheimer’s disease. This ing protein 1 (AP-1). All of these elements contribute to the full serine proteinase inhibitor specifically colocalizes with filamen- responsiveness of the ACT gene to both cytokines, as deter- tous ␤-amyloid deposits and recently has been shown to influ- mined by deletion and mutational analysis. The 5Ј NF-kB high- ence both formation and destabilization of ␤-amyloid fibrils. In affinity binding site and AP-1 element contribute most to the the brain, ACT is expressed in astrocytes, and interleukin-1 (IL-1), enhancement of gene transcription in response to TNF and IL-1. tumor necrosis factor ␣ (TNF), oncostatin M (OSM), and IL-6/ In addition, we demonstrate that the 5Ј untranslated region of the soluble IL-6 receptor complexes control synthesis of this inhibi- ACT mRNA does not contribute to cytokine-mediated activation. tor. Here, we characterize a molecular mechanism responsible Finally, we find that overexpression of the NF-kB inhibitor (IkB) for both IL-1 and TNF-induced expression of ACT gene in astro- totally inhibits any activation mediated by the newly identified cytes.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Alterations in Seminal Plasma Proteomic Profile in Men with Primary and Secondary Infertility
    www.nature.com/scientificreports OPEN Alterations in seminal plasma proteomic profle in men with primary and secondary infertility Ana D. Martins1,2, Manesh Kumar Panner Selvam1, Ashok Agarwal1 ✉ , Marco G. Alves2 & Saradha Baskaran1 Proteome of seminal plasma provides profound information related to the male reproductive health. This pilot study was conducted to characterize proteomic profle of seminal plasma from men with primary, or secondary infertility and compare it with proven fertile men. Study participants (n = 59) were recruited at the Cleveland Clinic and divided according to their fertility status: proven fertile (n = 39); primary infertility (n = 11) and secondary infertility (n = 9). Proteomic shotgun analysis revealed a total of 515 peptides common to primary infertility and control group; whereas 523 peptides were common to secondary infertility and control group. Bioinformatic analysis revealed dysregulation of biological processes such as cell secretion and vesicle mediated transport in primary infertility, whereas immune system response, regulation of proteolysis and iron homeostasis were dysregulated in secondary infertility. Western blot validation showed overexpression of ANXA2 and CDC42, and underexpression of SEMG2 proteins in primary infertility; and overexpression of ANXA2 and APP proteins in secondary infertility. This study elucidates the potential role of diferentially expressed proteins in the seminal plasma as diagnostic biomarker for primary and secondary infertility. Furthermore, our results suggest maturation failure and immune reaction response as the main cause of infertility in men with primary and secondary infertility, respectively. Additional validation of the proteins involved in the above pathways is warranted. Infertility globally afects 15% of couples and is now classifed as a disease of the reproductive system by the World Health Organization (WHO)1.
    [Show full text]
  • Protease Nexin-1 Deficiency Increases Mouse Hindlimb
    www.nature.com/scientificreports OPEN Protease nexin‑1 defciency increases mouse hindlimb neovascularisation following ischemia and accelerates femoral artery perfusion Sonia Selbonne1,2, Celina Madjene1,2, Benjamin Salmon 3, Yacine Boulaftali 1,2, Marie‑Christine Bouton 1,2 & Véronique Arocas 1,2,4* We previously identifed the inhibitory serpin protease nexin‑1 (PN‑1) as an important player of the angiogenic balance with anti‑angiogenic activity in physiological conditions. In the present study, we aimed to determine the role of PN‑1 on pathological angiogenesis and particularly in response to ischemia, in the mouse model induced by femoral artery ligation. In wild‑type (WT) muscle, we observed an upregulation of PN‑1 mRNA and protein after ischemia. Angiography analysis showed that femoral artery perfusion was more rapidly restored in PN‑1−/− mice than in WT mice. Moreover, immunohistochemistry showed that capillary density increased following ischemia to a greater extent in PN‑1−/− than in WT muscles. Moreover, leukocyte recruitment and IL‑6 and MCP‑1 levels were also increased in PN‑1−/− mice compared to WT after ischemia. This increase was accompanied by a higher overexpression of the growth factor midkine, known to promote leukocyte trafcking and to modulate expression of proinfammatory cytokines. Our results thus suggest that the higher expression of midkine observed in PN‑1‑ defcient mice can increase leukocyte recruitment in response to higher levels of MCP‑1, fnally driving neoangiogenesis. Thus, PN‑1 can limit neovascularisation in pathological conditions, including post‑ischemic reperfusion of the lower limbs. Peripheral artery disease (PAD) is an atherosclerotic occlusive disease of the lower extremities associated with pain, limited mobility, and an elevated risk of amputation.
    [Show full text]
  • Correlation of Serpin–Protease Expression by Comparative Analysis of Real-Time PCR Profiling Data
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 88 (2006) 173–184 www.elsevier.com/locate/ygeno Correlation of serpin–protease expression by comparative analysis of real-time PCR profiling data Sunita Badola a, Heidi Spurling a, Keith Robison a, Eric R. Fedyk a, Gary A. Silverman b, ⁎ Jochen Strayle c, Rosana Kapeller a,1, Christopher A. Tsu a, a Millennium Pharmaceuticals, Inc., 40 Landsdowne Street, Cambridge, MA 02139, USA b Department of Pediatrics, University of Pittsburgh School of Medicine, Magee-Women’s Hospital, 300 Halket Street, Pittsburgh, PA 15213, USA c Bayer HealthCare AG, 42096 Wuppertal, Germany Received 2 December 2005; accepted 27 March 2006 Available online 18 May 2006 Abstract Imbalanced protease activity has long been recognized in the progression of disease states such as cancer and inflammation. Serpins, the largest family of endogenous protease inhibitors, target a wide variety of serine and cysteine proteases and play a role in a number of physiological and pathological states. The expression profiles of 20 serpins and 105 serine and cysteine proteases were determined across a panel of normal and diseased human tissues. In general, expression of serpins was highly restricted in both normal and diseased tissues, suggesting defined physiological roles for these protease inhibitors. A high correlation in expression for a particular serpin–protease pair in healthy tissues was often predictive of a biological interaction. The most striking finding was the dramatic change observed in the regulation of expression between proteases and their cognate inhibitors in diseased tissues.
    [Show full text]
  • Proteomic Profiling for the Identification of Serum Diagnostic Biomarkers for Abdominal and Thoracic Aortic Aneurysms
    Satoh et al. Proteome Science 2013, 11:27 http://www.proteomesci.com/content/11/1/27 RESEARCH Open Access Proteomic profiling for the identification of serum diagnostic biomarkers for abdominal and thoracic aortic aneurysms Kazumi Satoh1, Tomoko Maniwa1, Teiji Oda2 and Ken-ichi Matsumoto1* Abstract Background: Aortic aneurysm is an increasingly common vascular disorder with fatal implication. However, there is no established diagnosis other than that based on aneurysmal size. For this purpose, serum protein biomarkers for aortic aneurysms are valuable. Although most of the studies on serum biomarker discovery have been based on comparison of serum proteins from the patient group with those from the healthy group, we considered that comparison of serial protein profiles such as those in presurgical and postsurgical sera within one patient would facilitate identification of biomarkers since the variability of serial protein profiles within one patient is smaller than that between groups. In this study, we examined serum proteins with differential levels in postsurgery compared with those in presurgery after the removal of aneurysmal tissues in abdominal aortic aneurysm (AAA) and thoracic aortic aneurysm (TAA) patients in order to identify potential serum biomarkers for AAAs and TAAs. Results: A proteomic approach with an isobaric tag for relative and absolute quantitation (iTRAQ) labeling followed by nano liquid chromatography (nanoLC)-matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF/ TOF)-tandem mass spectrometry (MS/MS) was used. In the sera of patients with AAAs and TAAs, a total of 63 and 71 proteins with differential levels were further narrowed down to 6 and 8 increased proteins (≧1.3 fold, postsurgical vs.
    [Show full text]
  • Alternative Transcripts of the SERPINA1 Gene in Alpha-1
    Matamala et al. J Transl Med (2015) 13:211 DOI 10.1186/s12967-015-0585-y RESEARCH Open Access Alternative transcripts of the SERPINA1 gene in alpha‑1 antitrypsin deficiency Nerea Matamala1, Maria Teresa Martínez2, Beatriz Lara3, Laura Pérez1, Irene Vázquez1, Azucena Jimenez1, Miguel Barquín1, Ilaria Ferrarotti4, Ignacio Blanco5, Sabina Janciauskiene6,7 and Beatriz Martinez‑Delgado1* Abstract Background: SERPINA1 is the gene for alpha-1 antitrypsin (AAT), an acute phase protein with anti-protease and immunoregulatory activities. Mutations in SERPINA1 gene cause AAT deficiency and predispose individuals to early- onset emphysema and liver diseases. Expression of the SERPINA1 gene is regulated by different promoters and alter‑ native splicing events among non-coding exons 1A, 1B and 1C. Methods: We have developed three quantitative PCR (QT-PCR) assays (1A, 1B and 1C). These assays were applied for the analysis of SERPINA1 alternative transcripts in: (1) 16 human tissues and (2) peripheral blood leukocytes from 33 subjects with AAT mutations and 7 controls. Results: Tissue-specific expression was found for the SERPINA1 transcripts. The 1A transcripts were mainly expressed in leukocytes and lung tissue while those detected with the 1B assay were highly restricted to leukocytes. Only 1B transcripts significantly correlated with serum AAT levels. The 1C transcripts were specifically found in lung, liver, kid‑ ney and pancreas. Furthermore, the expression of transcripts was related to AAT genotypes. While deficient variants of AAT had no pronounced effect on the transcript expression, null alleles were associated with significant reduction of different transcripts. Conclusions: The possibility to discriminate between SERPINA1 alternative splicing products will help us to under‑ stand better the regulation of SERPINA1 gene and its association with SERPINA1 mutations-related diseases.
    [Show full text]
  • A Genomic Analysis of Rat Proteases and Protease Inhibitors
    A genomic analysis of rat proteases and protease inhibitors Xose S. Puente and Carlos López-Otín Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain Send correspondence to: Carlos López-Otín Departamento de Bioquímica y Biología Molecular Facultad de Medicina, Universidad de Oviedo 33006 Oviedo-SPAIN Tel. 34-985-104201; Fax: 34-985-103564 E-mail: [email protected] Proteases perform fundamental roles in multiple biological processes and are associated with a growing number of pathological conditions that involve abnormal or deficient functions of these enzymes. The availability of the rat genome sequence has opened the possibility to perform a global analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into five catalytic classes: 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. Overall, this distribution is similar to that of the mouse degradome, but significatively more complex than that corresponding to the human degradome composed of 561 proteases and homologs. This increased complexity of the rat protease complement mainly derives from the expansion of several gene families including placental cathepsins, testases, kallikreins and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in the rat and mouse genomes and may contribute to explain some functional differences between these two closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with the mouse protease inhibitor complement and the marked expansion of families of cysteine and serine protease inhibitors in rat and mouse with respect to human.
    [Show full text]
  • Serpin Inhibition Mechanism: a Delicate Balance Between Native Metastable State and Polymerization
    SAGE-Hindawi Access to Research Journal of Amino Acids Volume 2011, Article ID 606797, 10 pages doi:10.4061/2011/606797 Review Article Serpin Inhibition Mechanism: A Delicate Balance between Native Metastable State and Polymerization Mohammad Sazzad Khan,1 Poonam Singh,1 Asim Azhar,1 Asma Naseem,1 Qudsia Rashid,1 Mohammad Anaul Kabir,2 and Mohamad Aman Jairajpuri1 1 Department of Biosciences, Jamia Millia Islamia University, Jamia Nagar, New Delhi 110025, India 2 Department of Biotechnology, National Institute of Technology Calicut (NITC), NIT Campus P.O., Calicut, Kerala 673601, India Correspondence should be addressed to Mohamad Aman Jairajpuri, m [email protected] Received 14 February 2011; Accepted 7 March 2011 Academic Editor: Zulfiqar Ahmad Copyright © 2011 Mohammad Sazzad Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The serpins (serine proteinase inhibitors) are structurally similar but functionally diverse proteins that fold into a conserved structure and employ a unique suicide substrate-like inhibitory mechanism. Serpins play absolutely critical role in the control of proteases involved in the inflammatory, complement, coagulation and fibrinolytic pathways and are associated with many conformational diseases. Serpin’s native state is a metastable state which transforms to a more stable state during its inhibitory mechanism. Serpin in the native form is in the stressed (S) conformation that undergoes a transition to a relaxed (R) conformation for the protease inhibition. During this transition the region called as reactive center loop which interacts with target proteases, inserts itself into the center of β-sheet A to form an extra strand.
    [Show full text]
  • View to Better Reveal Trends Within the Data
    Laborde et al. Proteome Science 2014, 12:43 http://www.proteomesci.com/content/12/1/43 RESEARCH Open Access The plasma proteomic signature as a strategic tool for early diagnosis of acute coronary syndrome Carlos M Laborde1, Sergio Alonso-Orgaz1, Laura Mourino-Alvarez1, José Moreu2, Fernando Vivanco3,4, Luis R Padial5 and María G Barderas1* Abstract Background: Acute coronary syndrome is the major cause of death in developed countries. Despite its high prevalence, there is still a strong need for new biomarkers which permit faster and more accurate diagnostics and new therapeutic drugs. The basis for this challenge lay in improving our understanding of the whole atherosclerotic process from atherogenesis to atherothrombosis. In this study, we conducted two different proteomic analyses of peripheral blood plasma from non-ST elevation acute coronary syndrome and ST elevation acute coronary syndrome patients vs healthy controls. Results: Two-dimensional Fluorescence Difference in Gel Electrophoresis and mass spectrometry permitted the identification of 31 proteins with statistical differences (p < 0.05) between experimental groups. Additionally, validation by Western blot and Selected Reaction Monitoring permitted us to confirm the identification of a different and characteristic plasma proteomic signature for NSTEACS and STEACS patients. Conclusions: We purpose the severity of hypoxia as the cornerstone for explaining the differences observed between both groups. Keywords: Acute coronary syndrome, Protein, Biomarker, Two-dimensional fluorescence difference in gel electrophoresis Background characteristics that distinguish them from the more in- Acute coronary syndromes (ACS) remains the leading active plaques. These include morphological and inflam- cause of death in developed countries and presents an matory features, which enhance a large infiltrate of increasing prevalence in developing countries [1].
    [Show full text]
  • WO 2017/176762 Al 12 October 2017 (12.10.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/176762 Al 12 October 2017 (12.10.2017) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 47/68 (2017.01) A61P 31/12 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 47/69 (2017.01) A61P 33/02 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61P 31/04 (2006.01) A61P 35/00 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, A61P 31/10 (2006.01) KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (21) International Application Number: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, PCT/US2017/025954 RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (22) International Filing Date: TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, 4 April 2017 (04.04.2017) ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/3 19,092 6 April 2016 (06.04.2016) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: NANOTICS, LLC [US/US]; 100 Shoreline LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Hwy, #100B, Mill Valley, CA 94941 (US).
    [Show full text]