Antiangiogenic and Antineuroinflammatory Effects of Kallistatin Through Interactions with the Canonical Wnt Pathway Xiaochen Liu,1,2 Bin Zhang,3 Jeffrey D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementary Information Changes in the Plasma Proteome At
Supplementary Information Changes in the plasma proteome at asymptomatic and symptomatic stages of autosomal dominant Alzheimer’s disease Julia Muenchhoff1, Anne Poljak1,2,3, Anbupalam Thalamuthu1, Veer B. Gupta4,5, Pratishtha Chatterjee4,5,6, Mark Raftery2, Colin L. Masters7, John C. Morris8,9,10, Randall J. Bateman8,9, Anne M. Fagan8,9, Ralph N. Martins4,5,6, Perminder S. Sachdev1,11,* Supplementary Figure S1. Ratios of proteins differentially abundant in asymptomatic carriers of PSEN1 and APP Dutch mutations. Mean ratios and standard deviations of plasma proteins from asymptomatic PSEN1 mutation carriers (PSEN1) and APP Dutch mutation carriers (APP) relative to reference masterpool as quantified by iTRAQ. Ratios that significantly differed are marked with asterisks (* p < 0.05; ** p < 0.01). C4A, complement C4-A; AZGP1, zinc-α-2-glycoprotein; HPX, hemopexin; PGLYPR2, N-acetylmuramoyl-L-alanine amidase isoform 2; α2AP, α-2-antiplasmin; APOL1, apolipoprotein L1; C1 inhibitor, plasma protease C1 inhibitor; ITIH2, inter-α-trypsin inhibitor heavy chain H2. 2 A) ADAD)CSF) ADAD)plasma) B) ADAD)CSF) ADAD)plasma) (Ringman)et)al)2015)) (current)study)) (Ringman)et)al)2015)) (current)study)) ATRN↓,%%AHSG↑% 32028% 49% %%%%%%%%HC2↑,%%ApoM↓% 24367% 31% 10083%% %%%%TBG↑,%%LUM↑% 24256% ApoC1↓↑% 16565% %%AMBP↑% 11738%%% SERPINA3↓↑% 24373% C6↓↑% ITIH2% 10574%% %%%%%%%CPN2↓%% ↓↑% %%%%%TTR↑% 11977% 10970% %SERPINF2↓↑% CFH↓% C5↑% CP↓↑% 16566% 11412%% 10127%% %%ITIH4↓↑% SerpinG1↓% 11967% %%ORM1↓↑% SerpinC1↓% 10612% %%%A1BG↑%%% %%%%FN1↓% 11461% %%%%ITIH1↑% C3↓↑% 11027% 19325% 10395%% %%%%%%HPR↓↑% HRG↓% %%% 13814%% 10338%% %%% %ApoA1 % %%%%%%%%%GSN↑% ↓↑ %%%%%%%%%%%%ApoD↓% 11385% C4BPA↓↑% 18976%% %%%%%%%%%%%%%%%%%ApoJ↓↑% 23266%%%% %%%%%%%%%%%%%%%%%%%%%%ApoA2↓↑% %%%%%%%%%%%%%%%%%%%%%%%%%%%%A2M↓↑% IGHM↑,%%GC↓↑,%%ApoB↓↑% 13769% % FGA↓↑,%%FGB↓↑,%%FGG↓↑% AFM↓↑,%%CFB↓↑,%% 19143%% ApoH↓↑,%%C4BPA↓↑% ApoA4↓↑%%% LOAD/MCI)plasma) LOAD/MCI)plasma) LOAD/MCI)plasma) LOAD/MCI)plasma) (Song)et)al)2014)) (Muenchhoff)et)al)2015)) (Song)et)al)2014)) (Muenchhoff)et)al)2015)) Supplementary Figure S2. -
Hud Binds to Three AU-Rich Sequences in the 3′-UTR of Neuroserpin Mrna and Promotes the Accumulation of Neuroserpin Mrna and Protein
2202–2211 Nucleic Acids Research, 2002, Vol. 30, No. 10 © 2002 Oxford University Press HuD binds to three AU-rich sequences in the 3′-UTR of neuroserpin mRNA and promotes the accumulation of neuroserpin mRNA and protein Ana Cuadrado, Cristina Navarro-Yubero, Henry Furneaux1,JochenKinter2, Peter Sonderegger2 and Alberto Muñoz* Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain, 1Department of Physiology, University of Connecticut Health Center, Farmington, CT, USA and 2Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland Received December 30, 2001; Revised and Accepted March 18, 2002 ABSTRACT the predominant serpins are nexin-1, which is expressed in neurons and glia (3), and neuroserpin, which is mainly found in Neuroserpin is an axonally secreted serine protease neurons (4,5). Neuroserpin is well conserved, and it was first inhibitor expressed in the nervous system that purified from the ocular vitreous fluid of chicken embryos protects neurons from ischemia-induced apoptosis. (4,6). It has the typical structure of serpin family members, as Mutant neuroserpin forms have been found polymerized recently demonstrated by X-ray crystallography (7). Neuroserpin in inclusion bodies in a familial autosomal encephalo- is secreted from the neurites of neurons cultured in a compart- pathy causing dementia, or associated with epilepsy. mental system (8). In embryonic and adult mice, the expression of Regulation of neuroserpin expression is mostly neuroserpin overlaps with that of tPA (5,9), which implicates it unknown. Here we demonstrate that neuroserpin in the regulation of neural tPA activity. -
Mechanism of Interleukin-1- and Tumor Necrosis Factor Α-Dependent Regulation of the Α1-Antichymotrypsin Gene in Human Astrocyt
The Journal of Neuroscience, October 15, 2000, 20(20):7510–7516 Mechanism of Interleukin-1- and Tumor Necrosis Factor ␣- ␣ Dependent Regulation of the 1-Antichymotrypsin Gene in Human Astrocytes Tomasz Kordula,1 Marcin Bugno,1 Russell E. Rydel,2 and James Travis3 1Institute of Molecular Biology, Jagiellonian University, 31-120 Krako´ w, Poland, 2Elan Pharmaceuticals, South San Francisco, California 94080, and 3Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602 ␣ The expression of 1-antichymotrypsin (ACT) is significantly en- which bind nuclear factor kB (NF-kB) and one that binds activat- hanced in affected brain regions in Alzheimer’s disease. This ing protein 1 (AP-1). All of these elements contribute to the full serine proteinase inhibitor specifically colocalizes with filamen- responsiveness of the ACT gene to both cytokines, as deter- tous -amyloid deposits and recently has been shown to influ- mined by deletion and mutational analysis. The 5Ј NF-kB high- ence both formation and destabilization of -amyloid fibrils. In affinity binding site and AP-1 element contribute most to the the brain, ACT is expressed in astrocytes, and interleukin-1 (IL-1), enhancement of gene transcription in response to TNF and IL-1. tumor necrosis factor ␣ (TNF), oncostatin M (OSM), and IL-6/ In addition, we demonstrate that the 5Ј untranslated region of the soluble IL-6 receptor complexes control synthesis of this inhibi- ACT mRNA does not contribute to cytokine-mediated activation. tor. Here, we characterize a molecular mechanism responsible Finally, we find that overexpression of the NF-kB inhibitor (IkB) for both IL-1 and TNF-induced expression of ACT gene in astro- totally inhibits any activation mediated by the newly identified cytes. -
Genetic Regulation of Pigment Epithelium-Derived Factor (PEDF): an Exome-Chip Association Analysis in Chinese Subjects with Type 2 Diabetes
198 Diabetes Volume 68, January 2019 Genetic Regulation of Pigment Epithelium-Derived Factor (PEDF): An Exome-Chip Association Analysis in Chinese Subjects With Type 2 Diabetes Chloe Y.Y. Cheung,1,2 Chi-Ho Lee,1 Clara S. Tang,3 Aimin Xu,1,2,4,5 Ka-Wing Au,1 Carol H.Y. Fong,1 Kelvin K.K. Ng,1 Kelvin H.M. Kwok,1 Wing-Sun Chow,1 Yu-Cho Woo,1 Michele M.A. Yuen,1 JoJo Hai,1 Kathryn C.B. Tan,1 Tai-Hing Lam,6 Hung-Fat Tse,1,7 Pak-Chung Sham,8,9,10 and Karen S.L. Lam1,2,4 Diabetes 2019;68:198–206 | https://doi.org/10.2337/db18-0500 Elevated circulating levels of pigment epithelium-derived (P = 0.085). Our study provided new insights into the factor (PEDF) have been reported in patients with type genetic regulation of PEDF and further support for its po- 2 diabetes (T2D) and its associated microvascular com- tential application as a biomarker for diabetic nephrop- plications. This study aimed to 1) identify the genetic athy and sight-threatening diabetic retinopathy. Further determinants influencing circulating PEDF levels in a studies to explore the causal relationship of PEDF with clinical setting of T2D, 2) examine the relationship be- diabetes complications are warranted. tween circulating PEDF and diabetes complications, and 3) explore the causal relationship between PEDF and di- abetes complications. An exome-chip association study Pigment epithelium-derived factor (PEDF) is a multifunc- on circulating PEDF levels was conducted in 5,385 Chi- tional glycoprotein that belongs to the serine protease nese subjects with T2D. -
Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use
Molecules 2015, 20, 6342-6388; doi:10.3390/molecules20046342 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use Paola Chiodelli, Antonella Bugatti, Chiara Urbinati and Marco Rusnati * Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy; E-Mails: [email protected] (P.C.); [email protected] (A.B.); [email protected] (C.U.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-030-371-7315; Fax: +39-030-371-7747. Academic Editor: Els Van Damme Received: 26 February 2015 / Accepted: 1 April 2015 / Published: 10 April 2015 Abstract: Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called “angiogenesis glycomic interactome”. -
Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................ -
Title: Effect of a 12-Month Exercise Intervention on Serum Biomarkers of Angiogenesis in Postmenopausal Women: a Randomized Controlled Trial
Author Manuscript Published OnlineFirst on February 5, 2014; DOI: 10.1158/1055-9965.EPI-13-1155 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Title: Effect of a 12-month Exercise Intervention on Serum Biomarkers of Angiogenesis in Postmenopausal Women: a randomized controlled trial. Catherine Duggan,1 Liren Xiao1 Ching-Yun Wang1 Anne McTiernan1 1Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Corresponding author Catherine Duggan Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Email: [email protected] Tel. 206 667 2323 Running title. Effect of exercise on serum markers of angiogenesis Keywords. Angiogenesis, exercise, VEGF, PAI-1, PEDF, osteopontin Funding: This work was supported by grants from the National Cancer Institute at the National Institutes of Health NIH R01 CA 69334 and 1R03CA152847 The authors declare that they have no conflicts of interest to report. Abstract 250 Manuscript 3107 Number of tables 5 Clinicaltrials.gov identifier NCT00668174 1 Downloaded from cebp.aacrjournals.org on September 26, 2021. © 2014 American Association for Cancer Research. Author Manuscript Published OnlineFirst on February 5, 2014; DOI: 10.1158/1055-9965.EPI-13-1155 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract. Background: Increased physical activity is associated with decreased risk of several types of cancer, but underlying mechanisms are poorly understood. Angiogenesis, where new blood vessels are formed, is common to adipose tissue formation/remodelling and tumor vascularization. Methods: We examined effects of a 12-month 45 minutes/day, 5 days/week moderate-intensity aerobic exercise intervention, on four serum markers of angiogenesis in 173 sedentary, overweight, postmenopausal women, 50-75 years, randomized to intervention vs. -
Alterations in Seminal Plasma Proteomic Profile in Men with Primary and Secondary Infertility
www.nature.com/scientificreports OPEN Alterations in seminal plasma proteomic profle in men with primary and secondary infertility Ana D. Martins1,2, Manesh Kumar Panner Selvam1, Ashok Agarwal1 ✉ , Marco G. Alves2 & Saradha Baskaran1 Proteome of seminal plasma provides profound information related to the male reproductive health. This pilot study was conducted to characterize proteomic profle of seminal plasma from men with primary, or secondary infertility and compare it with proven fertile men. Study participants (n = 59) were recruited at the Cleveland Clinic and divided according to their fertility status: proven fertile (n = 39); primary infertility (n = 11) and secondary infertility (n = 9). Proteomic shotgun analysis revealed a total of 515 peptides common to primary infertility and control group; whereas 523 peptides were common to secondary infertility and control group. Bioinformatic analysis revealed dysregulation of biological processes such as cell secretion and vesicle mediated transport in primary infertility, whereas immune system response, regulation of proteolysis and iron homeostasis were dysregulated in secondary infertility. Western blot validation showed overexpression of ANXA2 and CDC42, and underexpression of SEMG2 proteins in primary infertility; and overexpression of ANXA2 and APP proteins in secondary infertility. This study elucidates the potential role of diferentially expressed proteins in the seminal plasma as diagnostic biomarker for primary and secondary infertility. Furthermore, our results suggest maturation failure and immune reaction response as the main cause of infertility in men with primary and secondary infertility, respectively. Additional validation of the proteins involved in the above pathways is warranted. Infertility globally afects 15% of couples and is now classifed as a disease of the reproductive system by the World Health Organization (WHO)1. -
Protease Nexin-1 Deficiency Increases Mouse Hindlimb
www.nature.com/scientificreports OPEN Protease nexin‑1 defciency increases mouse hindlimb neovascularisation following ischemia and accelerates femoral artery perfusion Sonia Selbonne1,2, Celina Madjene1,2, Benjamin Salmon 3, Yacine Boulaftali 1,2, Marie‑Christine Bouton 1,2 & Véronique Arocas 1,2,4* We previously identifed the inhibitory serpin protease nexin‑1 (PN‑1) as an important player of the angiogenic balance with anti‑angiogenic activity in physiological conditions. In the present study, we aimed to determine the role of PN‑1 on pathological angiogenesis and particularly in response to ischemia, in the mouse model induced by femoral artery ligation. In wild‑type (WT) muscle, we observed an upregulation of PN‑1 mRNA and protein after ischemia. Angiography analysis showed that femoral artery perfusion was more rapidly restored in PN‑1−/− mice than in WT mice. Moreover, immunohistochemistry showed that capillary density increased following ischemia to a greater extent in PN‑1−/− than in WT muscles. Moreover, leukocyte recruitment and IL‑6 and MCP‑1 levels were also increased in PN‑1−/− mice compared to WT after ischemia. This increase was accompanied by a higher overexpression of the growth factor midkine, known to promote leukocyte trafcking and to modulate expression of proinfammatory cytokines. Our results thus suggest that the higher expression of midkine observed in PN‑1‑ defcient mice can increase leukocyte recruitment in response to higher levels of MCP‑1, fnally driving neoangiogenesis. Thus, PN‑1 can limit neovascularisation in pathological conditions, including post‑ischemic reperfusion of the lower limbs. Peripheral artery disease (PAD) is an atherosclerotic occlusive disease of the lower extremities associated with pain, limited mobility, and an elevated risk of amputation. -
Correlation of Serpin–Protease Expression by Comparative Analysis of Real-Time PCR Profiling Data
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 88 (2006) 173–184 www.elsevier.com/locate/ygeno Correlation of serpin–protease expression by comparative analysis of real-time PCR profiling data Sunita Badola a, Heidi Spurling a, Keith Robison a, Eric R. Fedyk a, Gary A. Silverman b, ⁎ Jochen Strayle c, Rosana Kapeller a,1, Christopher A. Tsu a, a Millennium Pharmaceuticals, Inc., 40 Landsdowne Street, Cambridge, MA 02139, USA b Department of Pediatrics, University of Pittsburgh School of Medicine, Magee-Women’s Hospital, 300 Halket Street, Pittsburgh, PA 15213, USA c Bayer HealthCare AG, 42096 Wuppertal, Germany Received 2 December 2005; accepted 27 March 2006 Available online 18 May 2006 Abstract Imbalanced protease activity has long been recognized in the progression of disease states such as cancer and inflammation. Serpins, the largest family of endogenous protease inhibitors, target a wide variety of serine and cysteine proteases and play a role in a number of physiological and pathological states. The expression profiles of 20 serpins and 105 serine and cysteine proteases were determined across a panel of normal and diseased human tissues. In general, expression of serpins was highly restricted in both normal and diseased tissues, suggesting defined physiological roles for these protease inhibitors. A high correlation in expression for a particular serpin–protease pair in healthy tissues was often predictive of a biological interaction. The most striking finding was the dramatic change observed in the regulation of expression between proteases and their cognate inhibitors in diseased tissues. -
The Role of Fibrinolytic Regulators in Vascular Dysfunction of Systemic Sclerosis
International Journal of Molecular Sciences Review The Role of Fibrinolytic Regulators in Vascular Dysfunction of Systemic Sclerosis Yosuke Kanno Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto 610-0395, Japan; [email protected]; Tel.: +81-0774-65-8629 Received: 19 November 2018; Accepted: 29 January 2019; Published: 31 January 2019 Abstract: Systemic sclerosis (SSc) is a connective tissue disease of autoimmune origin characterized by vascular dysfunction and extensive fibrosis of the skin and visceral organs. Vascular dysfunction is caused by endothelial cell (EC) apoptosis, defective angiogenesis, defective vasculogenesis, endothelial-to-mesenchymal transition (EndoMT), and coagulation abnormalities, and exacerbates the disease. Fibrinolytic regulators, such as plasminogen (Plg), plasmin, α2-antiplasmin (α2AP), tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plasminogen activator inhibitor 1 (PAI-1), and angiostatin, are considered to play an important role in the maintenance of endothelial homeostasis, and are associated with the endothelial dysfunction of SSc. This review considers the roles of fibrinolytic factors in vascular dysfunction of SSc. Keywords: Fibrinolytic regulators; SSc; vascular dysfunction 1. Introduction Systemic sclerosis (SSc) is an autoimmune rheumatic disease of unknown etiology that is characterized by vascular dysfunction and fibrosis of the skin and visceral organs as well as peripheral circulatory disturbance [1]. This process usually occurs over many months and years and can lead to organ dysfunction or death. In SSc, vascular disorders are observed from early onset to the appearance of late complications and affect various organs, including the lungs, kidneys, heart, and digital arteries, and exacerbate the disease [2]. -
Proteomic Profiling for the Identification of Serum Diagnostic Biomarkers for Abdominal and Thoracic Aortic Aneurysms
Satoh et al. Proteome Science 2013, 11:27 http://www.proteomesci.com/content/11/1/27 RESEARCH Open Access Proteomic profiling for the identification of serum diagnostic biomarkers for abdominal and thoracic aortic aneurysms Kazumi Satoh1, Tomoko Maniwa1, Teiji Oda2 and Ken-ichi Matsumoto1* Abstract Background: Aortic aneurysm is an increasingly common vascular disorder with fatal implication. However, there is no established diagnosis other than that based on aneurysmal size. For this purpose, serum protein biomarkers for aortic aneurysms are valuable. Although most of the studies on serum biomarker discovery have been based on comparison of serum proteins from the patient group with those from the healthy group, we considered that comparison of serial protein profiles such as those in presurgical and postsurgical sera within one patient would facilitate identification of biomarkers since the variability of serial protein profiles within one patient is smaller than that between groups. In this study, we examined serum proteins with differential levels in postsurgery compared with those in presurgery after the removal of aneurysmal tissues in abdominal aortic aneurysm (AAA) and thoracic aortic aneurysm (TAA) patients in order to identify potential serum biomarkers for AAAs and TAAs. Results: A proteomic approach with an isobaric tag for relative and absolute quantitation (iTRAQ) labeling followed by nano liquid chromatography (nanoLC)-matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF/ TOF)-tandem mass spectrometry (MS/MS) was used. In the sera of patients with AAAs and TAAs, a total of 63 and 71 proteins with differential levels were further narrowed down to 6 and 8 increased proteins (≧1.3 fold, postsurgical vs.