The Haskins Laboratories' Pulse Code Modulation (PCM) System

Total Page:16

File Type:pdf, Size:1020Kb

The Haskins Laboratories' Pulse Code Modulation (PCM) System Behavior Research Methods, Instruments. & Computers 1990. 22 (6), 550.559 The Haskins Laboratories' pulse code modulation (PCM) system D. H. WHALEN, E. R. WILEY, PHILIP E. RUBIN, and FRANKLIN S. COOPER Haskins Laboratories, New Haven, Connecticut The pulse code modulation (PCM) method of digitizing analog signals has become a standard both in digital audio and in speech research, the focus ofthis paper. The solutions to some problems encountered in earlier systems at Haskins Laboratories are outlined, along with general proper­ ties of AID conversion. Specialized features of the current Haskins Laboratories system, which has also been installed at more than a dozen other laboratories, are also detailed: the Nyquist filter response, the high-frequency preemphasis filter characteristics, the dynamic range, the tim­ ing resolution for single- and (synchronized) dual-channel signals, and the form of the digitized speech files (header information, data, and label structure). While the solutions adopted in this system are not intended to be considered a standard, the design principles involved are of in­ terest to users and creators of other PCM systems. The pulse code modulation (PCM) system of digitiz­ Hence, the design objective was to store all the stimulus ing analog waveforms, in which amplitude samples are words in the computer, then convert them back to analog taken at frequent, regular intervals, can accurately repre­ form and bring them out in real time to a listener or, in sent continuously varying signals as binary digital num­ the usual case, to a dual-track recorder in whatever com­ bers (see Goodall, 1947). In the years since its introduc­ bination of stimuli, offsets, and levels the experimenter tion, PCM has become the standard technique for the might choose. digital sampling of analog signals for research purposes The system that resulted is still in use, but its very sin­ (in preference to such alternatives as delta modulation or gularity makes it mostly of historical interest. Certain predictive coding of various sorts; see Heute, 1988). PCM aspects of that system, however, are incorporated into systems are now available for almost any computer, and newer systems based on current, commercially available the recording industry's digital CDs have surpassed ana­ hardware. These newer systems are in place at Haskins log formats in sales. Laboratories and at more than a dozen other sites in the Although PCM systems are now commonplace, this has United States and abroad. These will be described in de­ not always been the case. When Haskins Laboratories tail so that current and future users of Haskins-based sys­ needed an interactive, multichannel system in the mid­ tems can have easy reference to them and so that designers 1960s, such systems simply were not available. A design of other systems can see the reasoning that went into the was devised, and implemented in an unconventional way, choices made. The basic principles of AID conversion will to meet the needs of our researchers. Much of our speech be outlined along the way. research at that time was concerned with perceptual responses to different words or syllables arriving at the EARLY PROBLEMS AND SOLUTIONS two ears simultaneously or with small temporal offsets. Stimulus tapes for such experiments could be made by In 1964, when the earliest PCM system at Haskins tape splicing (a separate tape for each ear) and rerecord­ Laboratories was begun, the challenge for our designers ing the signals onto a dual-track tape, but the method was was simply to create a system where none could be both error-prone and laborious. Moreover, each change bought. Although PCM was common in telephony, there in stimulus condition-different pairings of the overlap­ were no commercial systems available for programma­ ping words, differences in relative onset time or in rela­ ble computers. We therefore designed a system to be in­ tive level-required doing the whole job over again. terfaced with a Honeywell DDP24 computer (and later on a DDP224) with 8K of memory. Although only brief stretches of speech could be digitized directly into core The writing of this article was supported by NIH Contract NOl-HD­ memory, double buffering allowed the system to deal with 5-2910 to Haskins Laboratories. We thank Michael D'Angelo, Vincent continuous speech input; that is, the incoming digital Gulisano, Mark Tiede, Ignatius G. Mattingly. Patrick W. Nye, Tom stream was stored alternately in one of two buffer areas Carrell. David B. Pisoni, and two anonymous reviewers for helpful com­ of memory while earlier samples were being read out from ments. We also thank Leonard Szubowicz for the time and care spent the other buffer and written to digital tape. For output, designing and implementing the original version of the Haskins PCM software. Correspondence should beaddressed to D. H. Whalen, Haskins 2.8 sec of speech could be called up at will directly from Laboratories, 270 Crown St., New Haven. CT 06511. core memory. Longer sequences could be compiled onto Copyright 1990 Psychonomic Society, Inc. 550 HASKINS PCM SYSTEM 551 digital tape and then read off from the tape in near-real not access it. However, the DMAs could, and the pro­ time. For two-channelsynchronized output, the samples gram was capable of telling them how to do so. In this storedon the tape alternated betweenthe two speechchan­ way, an adequateamountof memorywas available to sus­ nels. Later, faster disks became available, so that long, tain a throughput of about 40,000 data samples per sec­ one-channel sequences could be output without going to ond, divided among up to four channels. tape. The same might have happenedfor the two-ehannel A continuing concern was the synchronization of any output, except that technologypassed this system by, and two PCM channels. This wasaccomplished by settingany it disappeared when the DDP 224 was liquidated for its two channels to wait for the same clock. When the clock gold content in 1982. is started, the two channels beginat exactlythe sametime. The nextchallenge was to meetthe growingdemands of The primary goal of this feature was the easy creation an increasing research field by adding more channels that of stimulus tapesfor dichotic listening procedures (Cooper could access a set of commondisks, avoiding both the re­ & Mattingly, 1969). It also allowed the simultaneous in­ cording on digital tape and the limitation to one user at put of two analog channels (e.g., speech and laryngo­ a time. The result was a multichannel PCM system, which graph). Furthermore, an output and input channel could was designedby Leonard Szubowicz, Rod McGuire, and also be synchronized, allowing for such features as re­ E. R. Wiley and implemented with the collaboration of sampling a file with different characteristics (e.g., sam­ Richard Sharkany. It consists (it is still in use) of four pling rate). outputchannelsand two input channels, controllingdirect Sometimes, it is convenient to have an arbitrary audio memory access (DMA) boards and ftlled continuouslyin signal that marks the passage of a certain portion of the first inffirst out (FIFO) circuits. Memory is dynamically main signal. An example is the use of a tone to start a allocated to each active channel; the amount is trimmed clock for a timed response from a subject. Althoughthis back as other requests come in or is expanded as other could be accomplished by havinga second, synchronized channels becomeinactive. The advantageof this memory channel outputtingsuch a ••mark tone," the lack of vari­ management is that large memory areas make the rare ation in the signal allows for a simpler solution-and one FIFO shutdown (i.e., data did not arrive in time) even that would allow mark tones to accompany two-ehannel rarer. The advantageof FIFO organizationis that buffers output. Each output channel is thus associated with a can be ftlled with less concern for time-critical disk ac­ mark-tonechannel, whichallowsthe outputof an unvary­ cesses. A drawback is that the system does not know ex­ ing audio signal (a I-kHz tone, in this case) without any actly where in the output it is, since only the DMA has increase in processing load. Whenever a sample is out­ that information, so that the controlling computer cannot put that has the second highest bit set, a I-kHz tone, receivean exactreadingof how far the sequence has gone. 4 msec in duration, is simultaneously outputon the mark­ Although the speech waveform is the primary signal tone channel. This tone can be recorded along with the of interest at this laboratory, other analog signals, such main signal, allowing (for example) the synchronization as the output of transducers measuring the speech articu­ of the main signal with other devices (e.g., a reaction lators and muscles (electromyographic [EMG] signals), timer). Since the mark tone is essentially part of the data are also used. Many such signals are more restricted in stream, it does not impose any further load on the sys­ the frequency domain and, thus, can be represented ade­ tem: The secondhighestbit is part of the 16-bitword that quately at slower sampling rates. The lower the rate, the is stored in the computer, but not part of the 12 bits of less disk space is used. Even for speech, some purposes data. Thus, mark tones can be freely intermixed with are well served by the 1O-kHz rate, whereas others need either or both channels of synchronized output. the information between5 and 10 kHz, whichis preserved While the PCM system just described is still in use at at the 20-kHz rate. Each of the six channels can be used Haskins Laboratories, it is no longer the only system in at a 10-or 20-kHz sampling rate.
Recommended publications
  • Discrete Cosine Transform Based Image Fusion Techniques VPS Naidu MSDF Lab, FMCD, National Aerospace Laboratories, Bangalore, INDIA E.Mail: [email protected]
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NAL-IR Journal of Communication, Navigation and Signal Processing (January 2012) Vol. 1, No. 1, pp. 35-45 Discrete Cosine Transform based Image Fusion Techniques VPS Naidu MSDF Lab, FMCD, National Aerospace Laboratories, Bangalore, INDIA E.mail: [email protected] Abstract: Six different types of image fusion algorithms based on 1 discrete cosine transform (DCT) were developed and their , k 1 0 performance was evaluated. Fusion performance is not good while N Where (k ) 1 and using the algorithms with block size less than 8x8 and also the block 1 2 size equivalent to the image size itself. DCTe and DCTmx based , 1 k 1 N 1 1 image fusion algorithms performed well. These algorithms are very N 1 simple and might be suitable for real time applications. 1 , k 0 Keywords: DCT, Contrast measure, Image fusion 2 N 2 (k 1 ) I. INTRODUCTION 2 , 1 k 2 N 2 1 Off late, different image fusion algorithms have been developed N 2 to merge the multiple images into a single image that contain all useful information. Pixel averaging of the source images k 1 & k 2 discrete frequency variables (n1 , n 2 ) pixel index (the images to be fused) is the simplest image fusion technique and it often produces undesirable side effects in the fused image Similarly, the 2D inverse discrete cosine transform is defined including reduced contrast. To overcome this side effects many as: researchers have developed multi resolution [1-3], multi scale [4,5] and statistical signal processing [6,7] based image fusion x(n1 , n 2 ) (k 1 ) (k 2 ) N 1 N 1 techniques.
    [Show full text]
  • Digital Signals
    Technical Information Digital Signals 1 1 bit t Part 1 Fundamentals Technical Information Part 1: Fundamentals Part 2: Self-operated Regulators Part 3: Control Valves Part 4: Communication Part 5: Building Automation Part 6: Process Automation Should you have any further questions or suggestions, please do not hesitate to contact us: SAMSON AG Phone (+49 69) 4 00 94 67 V74 / Schulung Telefax (+49 69) 4 00 97 16 Weismüllerstraße 3 E-Mail: [email protected] D-60314 Frankfurt Internet: http://www.samson.de Part 1 ⋅ L150EN Digital Signals Range of values and discretization . 5 Bits and bytes in hexadecimal notation. 7 Digital encoding of information. 8 Advantages of digital signal processing . 10 High interference immunity. 10 Short-time and permanent storage . 11 Flexible processing . 11 Various transmission options . 11 Transmission of digital signals . 12 Bit-parallel transmission. 12 Bit-serial transmission . 12 Appendix A1: Additional Literature. 14 99/12 ⋅ SAMSON AG CONTENTS 3 Fundamentals ⋅ Digital Signals V74/ DKE ⋅ SAMSON AG 4 Part 1 ⋅ L150EN Digital Signals In electronic signal and information processing and transmission, digital technology is increasingly being used because, in various applications, digi- tal signal transmission has many advantages over analog signal transmis- sion. Numerous and very successful applications of digital technology include the continuously growing number of PCs, the communication net- work ISDN as well as the increasing use of digital control stations (Direct Di- gital Control: DDC). Unlike analog technology which uses continuous signals, digital technology continuous or encodes the information into discrete signal states (Fig. 1). When only two discrete signals states are assigned per digital signal, these signals are termed binary si- gnals.
    [Show full text]
  • Digital Television Systems
    This page intentionally left blank Digital Television Systems Digital television is a multibillion-dollar industry with commercial systems now being deployed worldwide. In this concise yet detailed guide, you will learn about the standards that apply to fixed-line and mobile digital television, as well as the underlying principles involved, such as signal analysis, modulation techniques, and source and channel coding. The digital television standards, including the MPEG family, ATSC, DVB, ISDTV, DTMB, and ISDB, are presented toaid understanding ofnew systems in the market and reveal the variations between different systems used throughout the world. Discussions of source and channel coding then provide the essential knowledge needed for designing reliable new systems.Throughout the book the theory is supported by over 200 figures and tables, whilst an extensive glossary defines practical terminology.Additional background features, including Fourier analysis, probability and stochastic processes, tables of Fourier and Hilbert transforms, and radiofrequency tables, are presented in the book’s useful appendices. This is an ideal reference for practitioners in the field of digital television. It will alsoappeal tograduate students and researchers in electrical engineering and computer science, and can be used as a textbook for graduate courses on digital television systems. Marcelo S. Alencar is Chair Professor in the Department of Electrical Engineering, Federal University of Campina Grande, Brazil. With over 29 years of teaching and research experience, he has published eight technical books and more than 200 scientific papers. He is Founder and President of the Institute for Advanced Studies in Communications (Iecom) and has consulted for several companies and R&D agencies.
    [Show full text]
  • How I Came up with the Discrete Cosine Transform Nasir Ahmed Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, New Mexico 87131
    mxT*L. BImL4L. PRocEsSlNG 1,4-5 (1991) How I Came Up with the Discrete Cosine Transform Nasir Ahmed Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, New Mexico 87131 During the late sixties and early seventies, there to study a “cosine transform” using Chebyshev poly- was a great deal of research activity related to digital nomials of the form orthogonal transforms and their use for image data compression. As such, there were a large number of T,(m) = (l/N)‘/“, m = 1, 2, . , N transforms being introduced with claims of better per- formance relative to others transforms. Such compari- em- lh) h = 1 2 N T,(m) = (2/N)‘%os 2N t ,...) . sons were typically made on a qualitative basis, by viewing a set of “standard” images that had been sub- jected to data compression using transform coding The motivation for looking into such “cosine func- techniques. At the same time, a number of researchers tions” was that they closely resembled KLT basis were doing some excellent work on making compari- functions for a range of values of the correlation coef- sons on a quantitative basis. In particular, researchers ficient p (in the covariance matrix). Further, this at the University of Southern California’s Image Pro- range of values for p was relevant to image data per- cessing Institute (Bill Pratt, Harry Andrews, Ali Ha- taining to a variety of applications. bibi, and others) and the University of California at Much to my disappointment, NSF did not fund the Los Angeles (Judea Pearl) played a key role.
    [Show full text]
  • Reception Performance Improvement of AM/FM Tuner by Digital Signal Processing Technology
    Reception performance improvement of AM/FM tuner by digital signal processing technology Akira Hatakeyama Osamu Keishima Kiyotaka Nakagawa Yoshiaki Inoue Takehiro Sakai Hirokazu Matsunaga Abstract With developments in digital technology, CDs, MDs, DVDs, HDDs and digital media have become the mainstream of car AV products. In terms of broadcasting media, various types of digital broadcasting have begun in countries all over the world. Thus, there is a demand for smaller and thinner products, in order to enhance radio performance and to achieve consolidation with the above-mentioned digital media in limited space. Due to these circumstances, we are attaining such performance enhancement through digital signal processing for AM/FM IF and beyond, and both tuner miniaturization and lighter products have been realized. The digital signal processing tuner which we will introduce was developed with Freescale Semiconductor, Inc. for the 2005 line model. In this paper, we explain regarding the function outline, characteristics, and main tech- nology involved. 22 Reception performance improvement of AM/FM tuner by digital signal processing technology Introduction1. Introduction from IF signals, interference and noise prevention perfor- 1 mance have surpassed those of analog systems. In recent years, CDs, MDs, DVDs, and digital media have become the mainstream in the car AV market. 2.2 Goals of digitalization In terms of broadcast media, with terrestrial digital The following items were the goals in the develop- TV and audio broadcasting, and satellite broadcasting ment of this digital processing platform for radio: having begun in Japan, while overseas DAB (digital audio ①Improvements in performance (differentiation with broadcasting) is used mainly in Europe and SDARS (satel- other companies through software algorithms) lite digital audio radio service) and IBOC (in band on ・Reduction in noise (improvements in AM/FM noise channel) are used in the United States, digital broadcast- reduction performance, and FM multi-pass perfor- ing is expected to increase in the future.
    [Show full text]
  • Next-Generation Photonic Transport Network Using Digital Signal Processing
    Next-Generation Photonic Transport Network Using Digital Signal Processing Yasuhiko Aoki Hisao Nakashima Shoichiro Oda Paparao Palacharla Coherent optical-fiber transmission technology using digital signal processing is being actively researched and developed for use in transmitting high-speed signals of the 100-Gb/s class over long distances. It is expected that network capacity can be further expanded by operating a flexible photonic network having high spectral efficiency achieved by applying an optimal modulation format and signal processing algorithm depending on the transmission distance and required bit rate between transmit and receive nodes. A system that uses such adaptive modulation technology should be able to assign in real time a transmission path between a transmitter and receiver. Furthermore, in the research and development stage, optical transmission characteristics for each modulation format and signal processing algorithm to be used by the system should be evaluated under emulated quasi-field conditions. We first discuss how the use of transmitters and receivers supporting multiple modulation formats can affect network capacity. We then introduce an evaluation platform consisting of a coherent receiver based on a field programmable gate array (FPGA) and polarization mode dispersion/polarization dependent loss (PMD/PDL) emulators with a recirculating-loop experimental system. Finally, we report the results of using this platform to evaluate the transmission characteristics of 112-Gb/s dual-polarization, quadrature phase shift keying (DP-QPSK) signals by emulating the factors that degrade signal transmission in a real environment. 1. Introduction amplifiers—which is becoming a limiting factor In the field of optical communications in system capacity—can be efficiently used.
    [Show full text]
  • Digital Signal Processing: Theory and Practice, Hardware and Software
    AC 2009-959: DIGITAL SIGNAL PROCESSING: THEORY AND PRACTICE, HARDWARE AND SOFTWARE Wei PAN, Idaho State University Wei Pan is Assistant Professor and Director of VLSI Laboratory, Electrical Engineering Department, Idaho State University. She has several years of industrial experience including Siemens (project engineering/management.) Dr. Pan is an active member of ASEE and IEEE and serves on the membership committee of the IEEE Education Society. S. Hossein Mousavinezhad, Idaho State University S. Hossein Mousavinezhad is Professor and Chair, Electrical Engineering Department, Idaho State University. Dr. Mousavinezhad is active in ASEE and IEEE and is an ABET program evaluator. Hossein is the founding general chair of the IEEE International Conferences on Electro Information Technology. Kenyon Hart, Idaho State University Kenyon Hart is Specialist Engineer and Associate Lecturer, Electrical Engineering Department, Idaho State University, Pocatello, Idaho. Page 14.491.1 Page © American Society for Engineering Education, 2009 Digital Signal Processing, Theory/Practice, HW/SW Abstract Digital Signal Processing (DSP) is a course offered by many Electrical and Computer Engineering (ECE) programs. In our school we offer a senior-level, first-year graduate course with both lecture and laboratory sections. Our experience has shown that some students consider the subject matter to be too theoretical, relying heavily on mathematical concepts and abstraction. There are several visible applications of DSP including: cellular communication systems, digital image processing and biomedical signal processing. Authors have incorporated many examples utilizing software packages including MATLAB/MATHCAD in the course and also used classroom demonstrations to help students visualize some difficult (but important) concepts such as digital filters and their design, various signal transformations, convolution, difference equations modeling, signals/systems classifications and power spectral estimation as well as optimal filters.
    [Show full text]
  • Analog Output Signal the Signal Saturation Can Be Controlled by Setting the Respective ▪ Introduction AO-LL and the AO-UL
    FieldGuide Enhance Operations Analog Output Signal The Signal Saturation can be controlled by setting the respective ▪ Introduction AO-LL and the AO-UL. The AO-LL and the AO-UL are programmable Yokogawa’s pressure transmitters with BRAIN or HART within the parameter limits of the transmitter via the FieldMate. communication have a 4 to 20 mA analog signal corresponding to the Primary Variable (PV). This output signal is generated from the digital signal supplied by the DPHarp sensor using a 15BitD/A signal converter with 0.004% resolution. The transmitters are designed to drive output slightly greater than the 4 to 20 mA “Base” signal. The intention is to set analog alarm thresholds recognizably beyond the normal operating 4 to 20 mA range, to indicate measurement our of range, and to set further alarm thresholds to indicate a fault condition. ▪ Applicable Models > EJA-E Series: All models with either BRAIN or HART communication > EJX-A Series: All models with either BRAIN or HART communication ▪ Process Measurement Out-of-Range Standard Analog Output Signal Yokogawa’s standard analog output transmitters are factory set to an Analog Output– Lower Limit (AO-LL) and Analog Output-Upper Limit The AO-LL and the AO-UL can be set to any value between 3.6 mA to (AO-UL) of 3.6 mA and 21.6 mA respectively. This allows for a small 21.6 mA. amount of linear over-range process readings. This over-range signal is referred to as Signal Saturation. During operation, if the AO-LL or Although FieldMate is highlighted here, any Hart Communicator has AO-UL limits are reached, the analog signal locks to the respective access to these functions.
    [Show full text]
  • The Big Picture: HDTV and High-Resolution Systems (Part 6 Of
    Chapter 4 TV and HRS Technologies INTRODUCTION picture on the TV screen by scanning electron beams (one for each primary color) across the picture tube As an entertainment medium, HDTV is not and varying their intensity in exact synchronism revolutionary. It is simply another step in the with the original picture signal. ongoing evolution of television that began with black and white (B&W) TV in the 1940s and will The 1950s technologies used today to bring color continue into the future with as yet undreamed of TV pictures to the home have a variety of shortcom- technologies. Each successive generation of TV ings and imperfections that modern systems can technology attempts to provide a more realistic correct. TV production formats, established in the picture and sound within the constraints of low-cost, 1930s and 40s, were originally based on 35-mm easy-to-use consumer technology. motion picture film. This gave today’s TV picture its Here we describe conventional NTSC1 television, nearly square shape (or aspect ratio) of 4 units wide Advanced Television (ATV) systems, and some of by 3 high (4:3). Research has found, however, a their underlying technologies (box 4-l). The conver- strong viewer preference for screens 5 to 6 units gence of ATVS, computer and telecommunications wide by 3 units high—as seen in today’s theatres— equipment toward High Resolution Systems (HRS) that correspond to the human field of vision.4 is discussed later. The original motion picture standard was 16 CONVENTIONAL TELEVISION: pictures per second—manually cranked cameras could go no faster.5 At that rate the viewer saw a PRODUCTION, TRANSMISSION, significant ‘flicker’ in the picture displayed (hence AND RECEPTION the term, the ‘flicks’ ‘).6 In developing TV transmis- Television systems involve three distinct activi- sion standards, engineers sought a system that sent ties: l)production, 2) transmission, and 3) display of pictures often enough that viewers did not see them the TV program.
    [Show full text]
  • Acquiring an Analog Signal: Bandwidth, Nyquist Sampling Theorem, and Aliasing
    Acquiring an Analog Signal: Bandwidth, Nyquist Sampling Theorem, and Aliasing Overview Learn about acquiring an analog signal, including topics such as bandwidth, amplitude error, rise time, sample rate, the Nyquist Sampling Theorem, aliasing, and resolution. This tutorial is part of the Instrument Fundamentals series. Contents wwWhat is a Digitizer? wwBandwidth a. Calculating Amplitude Error b. Calculating Rise Time wwSample Rate a. Nyquist Sampling Theorem b. Aliasing wwResolution wwSummary ni.com/instrument-fundamentals Next Acquiring an Analog Signal: Bandwidth, Nyquist Sampling Theorem, and Aliasing What Is a Digitizer? Scientists and engineers often use a digitizer to capture analog data in the real world and convert it into digital signals for analysis. A digitizer is any device used to convert analog signals into digital signals. One of the most common digitizers is a cell phone, which converts a voice, an analog signal, into a digital signal to send to another phone. However, in test and measurement applications, a digitizer most often refers to an oscilloscope or a digital multimeter (DMM). This article focuses on oscilloscopes, but most topics are also applicable to other digitizers. Regardless of the type, the digitizer is vital for the system to accurately reconstruct a waveform. To ensure you select the correct oscilloscope for your application, consider the bandwidth, sampling rate, and resolution of the oscilloscope. Bandwidth The front end of an oscilloscope consists of two components: an analog input path and an analog-to-digital converter (ADC). The analog input path attenuates, amplifies, filters, and/or couples the signal to optimize it in preparation for digitization by the ADC.
    [Show full text]
  • Fcc Written Response to the Gao Report on Dtv Table of Contents
    FCC WRITTEN RESPONSE TO THE GAO REPORT ON DTV TABLE OF CONTENTS I. TECHNICAL GOALS 1. Develop Technical Standard for Digital Broadcast Operations……………………… 1 2. Pre-Transition Channel Assignments/Allotments……………………………………. 5 3. Construction of Pre-Transition DTV Facilities……………………………………… 10 4. Transition Broadcast Stations to Final Digital Operations………………………….. 16 5. Facilitate the production of set top boxes and other devices that can receive digital broadcast signals in connection with subscription services………………….. 24 6. Facilitate the production of television sets and other devices that can receive digital broadcast signals……………………………………………………………… 29 II. POLICY GOALS 1. Protect MVPD Subscribers in their Ability to Continue Watching their Local Broadcast Stations After the Digital Transition……………………………….. 37 2. Maximize Consumer Benefits of the Digital Transition……………………………... 42 3. Educate consumers about the DTV transition……………………………………….. 48 4. Identify public interest opportunities afforded by digital transition…………………. 53 III. CONSUMER OUTREACH GOALS 1. Prepare and Distribute Publications to Consumers and News Media………………. 59 2. Participate in Events and Conferences……………………………………………… 60 3. Coordinate with Federal, State and local Entities and Community Stakeholders…… 62 4. Utilize the Commission’s Advisory Committees to Help Identify Effective Strategies for Promoting Consumer Awareness…………………………………….. 63 5. Maintain and Expand Information and Resources Available via the Internet………. 63 IV. OTHER CRITICAL ELEMENTS 1. Transition TV stations in the cross-border areas from analog to digital broadcasting by February 17, 2009………………………………………………………………… 70 2. Promote Consumer Awareness of NTIA’s Digital-to-Analog Converter Box Coupon Program………………………………………………………………………72 I. TECHNICAL GOALS General Overview of Technical Goals: One of the most important responsibilities of the Commission, with respect to the nation’s transition to digital television, has been to shepherd the transformation of television stations from analog broadcasting to digital broadcasting.
    [Show full text]
  • Minimum Signal Tests
    Federal Communications Commission FCC 05-199 0 Kepeat steps for other TVs Measure injected noise level 0 Set signal attenuator to 81 dB 0 Measure the “long average power” twice for use as described following I” measurements of inJected noise level. Because both the injected noise power measurement and the injected signal measurement were performed using the same vector signal analyzer on the same amplitude range, the CNR is expected to be quite accurate, since it doesn’t depend on thc absolute calibration accuracy of the measuring instrument. Additional information on the testing is included in the “Measurement Method section of Chapter 3 Minimum Signal Tests Note that all measurements are performed using the vector signal analyzer (VSA), and all attenuator settings and measurements are entered into a spreadsheet that performs the required computations. The tests are performed for TV channels 3, IO, and 30. Connect equipment as shown in Figure A-2. VSA setup 0 Run DTV measurement software* 0 Set number of averages to 1200 0 Set selected broadcast channel 0 Execute “single cal” 0 Set amplitude range to -50 dBm (most sensitive range) RF player setup 0 Load “HawaiiLReferenceA file 0 Set output channel to selected channel 0 Set output level to -30 dBm Measure VSA self noise three times by connecting a 50-ohm termination to the VSA input and performing a “long average power” measurements. (The average of these measurements will be subtracted-in linear power units-from all subsequent measurements.) TV tests. Repeat for each of TV to be tested (typically eight). Include receiver D3 in each test sequence as a consistency check.
    [Show full text]