The National Recreational and Indigenous Fishing Survey

Total Page:16

File Type:pdf, Size:1020Kb

The National Recreational and Indigenous Fishing Survey The National Recreational and Indigenous Fishing survey Edited by Gary W. Henry New South Wales Fisheries PO Box 21 Cronulla, NSW 2230 and Jeremy M. Lyle Tasmanian Aquaculture & Fisheries Institute University of Tasmania Private Bag 49 Hobart, TAS 7001 A Fisheries Action Program Project (Natural Heritage Trust) FRDC Project No. 99/158 July 2003 NSW Fisheries Final Report Series No. 48 ISSN 1440-3544 The National Recreational and Indigenous Fishing Survey July 2003 Editors: G.W. Henry and J.M. Lyle Published By: NSW Fisheries Postal Address: PO Box 21, Cronulla NSW 2230 Internet: www.fisheries.nsw.gov.au This work is copyright. Except as permitted under the Copyright Act (Cth), no part of this reproduction may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. DISCLAIMER The publishers do not warrant that the information in this report is free from errors or omissions. The publishers do not accept any form of liability, be it contractual, tortuous or otherwise, for the contents of this report for any consequences arising from its use or any reliance placed on it. The information, opinions and advice contained in this report may not relate to, or be relevant to, a reader’s particular circumstance. ISSN 1440-3544 Forward i FOREWORD I am pleased to introduce the National Recreational and Indigenous Fishing Survey, a work that has been several years and many millions of dollars in the making. It is a work commissioned by the Commonwealth Government that will be a central plank in the formulation of Government policy that relates to recreational, charter, indigenous, and commercial fishing now and in the future. This survey comes at a very important time in the management of Australia’s fisheries. I have recently enjoyed the privilege of developing and releasing on behalf of the Howard Government Looking to the Future: A Review of Commonwealth Fisheries Policy which, among other things, identifies as a priority issue resource sharing between various sectors that access publicly owned fisheries resources managed by the Commonwealth Government. I am pleased to record here that substantial progress has already been made on development of the resource-sharing framework. This survey will feed directly into that framework and we will see a fully transparent process to allocate rights and responsibilities to all users of Australia’s publicly owned fisheries resources. These rights will convey greater access security to users other than commercial operators who already operate under a statutory regime, and with those strengthened rights will come heightened responsibility. The 1994 A National Policy for Recreational Fishing in Australia stated that “Fisheries management decisions should be based on sound information, including fish biology, fishing activity, catches, and the economic and social values of recreational fishing.” This survey will now finally allow for this to occur for the good of Australia’s resources at both the State and Territories level as well as the Commonwealth level. I am exceptionally proud that the Howard Government has been the first Government of Australia in my memory that has tackled, and continues to tackle the difficult and often unpopular fisheries management issues that have for too long been thrown into the “too hard basket.” In my capacity as the Commonwealth Fisheries Minister, I am committed to pursuing this philosophy of making the right decisions early in the piece to minimise future angst and maximise conservation goals. I believe that a mature and cooperative approach will continue to develop between, and be adopted by, all fisheries stakeholders in fisheries management in this country, be they lovers of catching, eating or conserving fish. My vision is for future generations to enjoy the same opportunities as we of this generation currently enjoy. For many years it has only been the commercial sector of the fishing industry that has had to collect data used in the management of our nation’s fisheries. With this new data on recreational and indigenous fishing that this survey has provided I am confident we can further enhance Australia’s world leading fisheries management practices. The strong support that this survey received from the Australian community is an indicator of the importance of fishing of all types to our island continent, and this support will continue to be matched by the Howard Government in the pursuit of ecologically sustainable fisheries for all Australians now and in the future. Ian Macdonald Minister for Fisheries, Forestry and Conservation National Recreational and Indigenous Fishing Survey FAP Project FRDC Project No. 99/158 ii Acknowledgements ACKNOWLEDGEMENTS Many people in Australia contributed to the development and implementation of the national recreational and indigenous fishing survey. Senior research and management staff from Commonwealth and State government agencies, recreational and commercial fishing associations, environmental and indigenous groups were responsible for developing the concept, securing the funding, determining the outputs and progressing the concept to the implementation stage. The foresight, hard work and support of these people is gratefully acknowledged. Following agreement on the methodology, a smaller team of people was formed to conduct the survey. This team recruited and trained staff, supervised the collection, collation and editing of data and managed the survey on a daily basis as an independent project within their own States/ Territories. Members of the implementation team (listed below) undertook the substantial body of work required to complete the survey. Their persistence and dedication is greatly appreciated by everyone associated with the project. A number of people deserve special mention. Laurie West, the survey design consultant, Jeremy Lyle and David McGlennon provided intellectual rigour and attention to detail that was fundamental to the success of the project. Jeff Murphy managed the complex tasks associated with data manipulation. Their efforts are greatly appreciated by team members. Finally, the assistance of the interviewer staff and the cooperation of many thousands of recreational and indigenous fishers is gratefully acknowledged. New South Wales Tasmania Gary Henry Jeremy Lyle Jeff Murphy Jane Forward Dennis Reid John Matthews Northern Territory Anne Coleman Victoria Chris Uttley Simon Conron Garry Eckermann Jo Dixon Masaaki Machida Commonwealth Murray MacDonald Murray Johns Stan Jarzynski Queensland Phil Sahlqvist Kirrily McInnes Steve Kerr Emma Brewis Grant Johnson Jim Higgs ACT South Australia Mark Lintermans Val Boxall Sonia Venema Kewagama Research P/L David McGlennon Laurie West Western Australia David Campbell & Associates Neil Sumner David Campbell Ben Malseed National Recreational and Indigenous Fishing Survey FAP Project FRDC Project No. 99/158 Contents iii TABLE OF CONTENTS FOREWORD ............................................................................................................................................... I ACKNOWLEDGEMENTS ...........................................................................................................................II TABLE OF CONTENTS ............................................................................................................................. III LIST OF FIGURES...................................................................................................................................... VI LIST OF TABLES..................................................................................................................................... VIII LIST OF APPENDICES ................................................................................................................................X NON-TECHNICAL SUMMARY.................................................................................................................12 1. BACKGROUND ................................................................................................................................15 1.1. Introduction ...............................................................................................................................15 1.2. Origins of the Survey .................................................................................................................15 1.3. Development and Implementation..............................................................................................16 1.4. Fishing Survey Literature ..........................................................................................................16 1.5. Literature on Australian Recreational Fishing Surveys.............................................................18 1.6. Literature on Australian Indigenous Fishing.............................................................................18 2. NEED FOR THE SURVEY ...............................................................................................................20 2.1. Fisheries Management...............................................................................................................20 2.2. Potential Impact of Recreational Fishing ..................................................................................20 2.3. Assessment of Indigenous Fishing .............................................................................................20
Recommended publications
  • Published Estimates of Life History Traits for 84 Populations of Teleost
    Summary of data on fishing pressure group (G), age at maturity (Tm, years), length at maturity (Lm, cm), length-at-5%-survival (L.05, cm), time-to-5%-survival 3 (T.05, years), slope of the log-log fecundity-length relationship (Fb), fecundity the year of maturity (Fm), and egg volume (Egg, mm ) for the populations listed in the first three columns. Period is the period of field data collection. Species Zone Period G Tm Lm L.05 T.05 Fb Fm Egg Data sources (1) (1) (2) (3) (4) (4) (5) (1) (2) (3) (4) (5) Clupeiformes Engraulis capensis S. Africa 71-74 2 1 9.5 11.8 1.8 3.411 4.856E+04 0.988 118 119 137 118 138 Engraulis encrasicholus B. Biscay 87-92 2 1 11.5 14 1.4 3.997 9.100E+04 1.462 125 30, 188 170, 169 133, 23 145 Medit. S. 84-90 1 1 12.5 13.4 2.3 4.558 9.738E+04 0.668 161 161 160 161, 120 120 Sprattus sprattus Baltic S. 85-91 1 2 12 13.8 6.2 2.84 2.428E+05 1.122 15 19 26 184, 5 146 North S. 73-77 1 2 11.5 14.3 3 4.673 8.848E+03 0.393 8 107 106 33 169 Clupea harengus Baltic S. 75-82 1 3 16 24 4.9 3.206 4.168E+04 0.679 116 191 191 116 169 North S. 60-69 3 3 22 26.9 2.7 4.61 2.040E+04 0.679 52 53, 7 52 39 169 Baltic S.
    [Show full text]
  • Scenario Calculations of Mercury Exposure
    VKM Report 2019:3 Scenario calculations of mercury exposure from fish and overview of species with high mercury concentrations Opinion of the Panel on Contaminants of the Norwegian Scientific Committee for Food and Environment Report from the Norwegian Scientific Committee for Food and Environment (VKM) 2019:3 Scenario calculations of mercury exposure from fish and overview of species with high mercury concentrations Opinion of the Panel on Contaminants of the Norwegian Scientific Committee for Food and Environment 05.04.2019 ISBN: 978-82-8259-319-9 ISSN: 2535-4019 Norwegian Scientific Committee for Food and Environment (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] vkm.no vkm.no/english Cover photo: Colourbox Suggested citation: VKM, Heidi Amlund, Kirsten Eline Rakkestad, Anders Ruus, Jostein Starrfelt, Jonny Beyer, Anne Lise Brantsæter, Sara Bremer, Gunnar Sundstøl Eriksen, Espen Mariussen, Ingunn Anita Samdal, Cathrine Thomsen and Helle Katrine Knutsen (2019). Scenario calculations of mercury exposure from fish and overview of species with high mercury concentrations. Opinion of the Panel on Contaminants of the Norwegian Scientific Committee for Food and Environment. VKM report 2019:3, ISBN: 978-82-8259-319-9, ISSN: 2535-4019. Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway. Scenario calculations of mercury exposure from fish and overview of species with high mercury concentrations Preparation of the opinion The Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) appointed a project group to answer the request from the Norwegian Food Safety Authority. The project group consisted of three VKM-members, and three employees, including a project leader, from the VKM secretariat.
    [Show full text]
  • Age and Growth Rate Variation Influence the Functional Relationship Between Somatic and Otolith Size
    Canadian Journal of Fisheries and Aquatic Sciences Age and growth rate variation influence the functional relationship between somatic and otolith size Journal: Canadian Journal of Fisheries and Aquatic Sciences Manuscript ID cjfas-2015-0471.R2 Manuscript Type: Article Date Submitted by the Author: 20-Jul-2016 Complete List of Authors: Ashworth, Eloise; Murdoch University, School of Veterinary and Life Sciences Hall, Norman; Western Australian Fisheries and Marine Research Laboratories,Draft Department of Fisheries Hesp, Alex; Western Australian Fisheries and Marine Research Laboratories, Department of Fisheries Coulson, Peter; Murdoch University, School of Veterinary and Life Sciences Potter, Ian; Murdoch University, School of Veterinary and Life Sciences somatic and otolith growths, length-otolith size relationship, correlated Keyword: errors in variables, bivariate distribution, age and growth effects https://mc06.manuscriptcentral.com/cjfas-pubs Page 1 of 79 Canadian Journal of Fisheries and Aquatic Sciences 1 Age and growth rate variation influence the functional relationship 2 between somatic and otolith size 3 Eloïse C. Ashworth a, Norman G. Hall ab , S. Alex Hesp b, Peter G. Coulson a and Ian C. Potter a. 4 a 5 Centre for Fish and Fisheries Research, School of Veterinary and Life Sciences, Murdoch 6 University, 90 South Street, Western Australia 6150, Australia. b 7 Western Australian Fisheries and Marine Research Laboratories, Department of Fisheries, 8 Post Office Box 20, North Beach, Western Australia 6920, Australia. 9 10 Corresponding author: [email protected] 1 https://mc06.manuscriptcentral.com/cjfas-pubs Canadian Journal of Fisheries and Aquatic Sciences Page 2 of 79 11 Abstract 12 Curves describing the length-otolith size relationships for juveniles and adults of six fish 13 species with widely differing biological characteristics were fitted simultaneously to fish 14 length and otolith size at age, assuming that deviations from those curves are correlated rather 15 than independent.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Appendices Appendices
    APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J.
    [Show full text]
  • 9.2 Greater North Sea Ecoregion – Fisheries Overview
    ICES Fisheries Overviews Greater North Sea Ecoregion Published 4 July 2017 DOI: 10.17895/ices.pub.3116 9.2 Greater North Sea Ecoregion – Fisheries overview Executive summary Around 6600 fishing vessels are active in the Greater North Sea. Total landings peaked in the 1970s at 4 million tonnes and have since declined to about 2 million tonnes. Total fishing effort has declined substantially since 2003. Pelagic fish landings are greater than demersal fish landings. Herring and mackerel, caught using pelagic trawls and seines, account for the largest portion of the pelagic landings, while sandeel and haddock, caught using otter trawls/seines, account for the largest fraction of the demersal landings. Catches are taken from more than 100 stocks. Discards are highest in the demersal and benthic fisheries. The spatial distribution of fishing gear varies across the Greater North Sea. Static gear is used most frequently in the English Channel, the eastern part of the Southern Bight, the Danish banks, and in the waters east of Shetland. Bottom trawls are used throughout the North Sea, with lower use in the shallower southern North Sea where beam trawls are most commonly used. Pelagic gears are used throughout the North Sea. In terms of tonnage of catch, most of the fish stocks harvested from the North Sea are being fished at levels consistent with achieving good environmental status (GES) under the EU’s Marine Strategy Framework Directive; however, the reproductive capacity of the stocks has not generally reached this level. Almost all the fisheries in the North Sea catch more than one species; controlling fishing on one species therefore affects other species as well.
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]
  • Biology, Stock Status and Management Summaries for Selected Fish Species in South-Western Australia
    Fisheries Research Report No. 242, 2013 Biology, stock status and management summaries for selected fish species in south-western Australia Claire B. Smallwood, S. Alex Hesp and Lynnath E. Beckley Fisheries Research Division Western Australian Fisheries and Marine Research Laboratories PO Box 20 NORTH BEACH, Western Australia 6920 Correct citation: Smallwood, C. B.; Hesp, S. A.; and Beckley, L. E. 2013. Biology, stock status and management summaries for selected fish species in south-western Australia. Fisheries Research Report No. 242. Department of Fisheries, Western Australia. 180pp. Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Department of Fisheries Western Australia. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Department of Fisheries Western Australia does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. Fish illustrations Illustrations © R. Swainston / www.anima.net.au We dedicate this guide to the memory of our friend and colleague, Ben Chuwen Department of Fisheries 3rd floor SGIO Atrium 168 – 170 St Georges Terrace PERTH WA 6000 Telephone: (08) 9482 7333 Facsimile: (08) 9482 7389 Website: www.fish.wa.gov.au ABN: 55 689 794 771 Published by Department of Fisheries, Perth, Western Australia. Fisheries Research Report No. 242, March 2013. ISSN: 1035 - 4549 ISBN: 978-1-921845-56-7 ii Fisheries Research Report No.242, 2013 Contents ACKNOWLEDGEMENTS ...............................................................................................
    [Show full text]
  • European Trawlers Are Destroying the Oceans
    EUROPEAN TRAWLERS ARE DESTROYING THE OCEANS Introduction Nearly 100,000 vessels make up the European Union fishing fleet. This includes boats that fish both in EU waters (the domestic fleet), in the waters of other countries and in international waters (the deep-sea fleet). In addition, there is an unknown number of vessels belonging to other European countries that are not members of the EU which could approach a figure half that of the EU fleet. The majority of these vessels sail under the flag of a European country but there are also boats, particularly those fishing on the high seas, which despite being managed, chartered or part owned by European companies, use the flag of the country where they catch their fish or sail under flags of convenience (FOCs). The Fisheries Commission has called for a reform of the Common Fisheries Policy (CFP) to achieve a reduction of 40% in the EU fishing capacity, as forecasts show that by simply following the approved multi-annual plans, barely 8.5% of vessels and 18% of gross tonnage would be decommissioned1; an achievement very distant from scientific recommendations. Moreover, from among these almost 100,000 vessels, the EU is home to a particularly damaging fleet: the 15,000 trawlers that operate in European waters, as well as those of third countries or those fishing on the high seas. These trawlers are overexploiting marine resources and irreversibly damaging some of the most productive and biodiverse ecosystems on the planet. The 40% reduction called for by the Commission could be easily achieved if the primary objective of this proposal was focused both on eliminating the most destructive fishing techniques and reducing fishing overcapacity.
    [Show full text]
  • Recreational Fishing Guide 2021
    Department of Primary Industries and Regional Development Recreational fishing guide 2021 New rules apply from 1 July 2021 see page 3 for details Includes Statewide bag and size limits for Western Australia, and Recreational Fishing from Boat Licence information Published June 2021 Page i Important disclaimer The Director General of the Department of Primary Industries and Regional Development (DPIRD) and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. This publication is to provide assistance or information. It is only a guide and does not replace the Fish Resources Management Act 1994 or the Fish Resources Management Regulations 1995. It cannot be used as a defence in a court of law. The information provided is current at the date of printing but may be subject to change. For the most up-to-date information on fishing and full details of legislation contact select DPIRD offices or visit dpird.wa.gov.au Copyright © State of Western Australia (Department of Primary Industries and Regional Development) 2021 Front cover photo: Tourism WA Department of Primary Industries and Regional Development Gordon Stephenson House, 140 William Street, Perth WA 6000 +61 1300 374 731 [email protected] dpird.wa.gov.au Page ii Contents Fish for the future .............................................2 Using this guide .................................................2 Changes to the rules – 2021 .............................3
    [Show full text]
  • Appendix Iii -- Aquatic Herbicide Toxicological and Environmental Fate Profiles
    APPENDIX I WATER QUALITY PROGRAMS AND FUNDING SOURCES NOTE TO READER: Because of ongoing changes in programs and funding sources, the information in this Appendix has been omitted. The most up-to-date information on funding sources can be found at the web site of the Massachusetts Nonpoint Source Management Plan: http://www.state.ma.us/dep/brp/wm/nonpoint.htm and by contacting other agencies and entities or consulting their web sites. Appendix II 2 APPENDIX II TABLE OF CONTENTS LOCAL PERMITS AND REGULATIONS: II.1 SSC- STATE ENVIRONMENTAL CODE and TITLE 5 (BOH) II.2 Zoning-ZONING REGULATIONS (ZC) II.3 WPA-WETLANDS PROTECTION ACT (ConComm) II.4 RPA-RIVERS PROTECTION ACT (ConComm) STATE PERMITS AND REGULATIONS: DEM II.5 ACEC AREAS OF CRITICAL ENVIRONMENTAL CONCERN (DEM) II.6 ODS-OFFICE OF DAM SAFETY (DEM) DEP II.7 DRINKING WATER PROTECTION (DEP) II.8 GWDP-GROUND WATER DISCHARGE PERMIT (DEP) II.9 SECP-SEWER EXTENSION OR CONNECTION PERMIT (DEP) II.10 WMA-WATER MANAGEMENT ACT (DEP) II.11 NPDES -NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT (DEP) II.12 SWP-SOLID WASTE PERMIT (DSW) II.13 ORW- OUTSTANDING RESOURCES WATERS (DWM) II.14 LAC-LICENSE TO APPLY CHEMICALS (DWM) II.15 WPP-WETLAND PROTECTION PROGRAM (DWW) II.16 WRP-WETLAND RESTRICTION PROGRAM (DWW) II.17 C.91-WATERWAYS REGULATIONS CHAPTER 91 (DWW) II.18 401- 401 WATER QUALITY CERTIFICATION (DWW) DFA II.19 PESTICIDE BUREAU LICENSE (DFA) DFW II.20 DFW-DIVISION OF FISHERIES AND WILDLIFE (DFW) II.21 NHESP NATURAL HERITAGE ENDANGERED SPECIES ACT (DFW) EOEA II.22 CZM-MASSACHUSETTS COASTAL ZONE MANAGEMENT (EOEA) II.23 MEPA -MASSACHUSETTS ENVIRONMENTAL POLICY ACT (EOEA) MDC II.24 MDC-METROPOLITAN DISTRICT COMMISSION (MDC) MHC II.25 MHC-MASSACHUSETTS HISTORICAL COMMISSION (MHC) FEDERAL PERMITS AND REGULATIONS: II.26 NPDES - NATIONAL POLLUTANT DISCHARGE ELIMINATION PERMIT , U.S.
    [Show full text]
  • A Cyprinid Fish
    DFO - Library / MPO - Bibliotheque 01005886 c.i FISHERIES RESEARCH BOARD OF CANADA Biological Station, Nanaimo, B.C. Circular No. 65 RUSSIAN-ENGLISH GLOSSARY OF NAMES OF AQUATIC ORGANISMS AND OTHER BIOLOGICAL AND RELATED TERMS Compiled by W. E. Ricker Fisheries Research Board of Canada Nanaimo, B.C. August, 1962 FISHERIES RESEARCH BOARD OF CANADA Biological Station, Nanaimo, B0C. Circular No. 65 9^ RUSSIAN-ENGLISH GLOSSARY OF NAMES OF AQUATIC ORGANISMS AND OTHER BIOLOGICAL AND RELATED TERMS ^5, Compiled by W. E. Ricker Fisheries Research Board of Canada Nanaimo, B.C. August, 1962 FOREWORD This short Russian-English glossary is meant to be of assistance in translating scientific articles in the fields of aquatic biology and the study of fishes and fisheries. j^ Definitions have been obtained from a variety of sources. For the names of fishes, the text volume of "Commercial Fishes of the USSR" provided English equivalents of many Russian names. Others were found in Berg's "Freshwater Fishes", and in works by Nikolsky (1954), Galkin (1958), Borisov and Ovsiannikov (1958), Martinsen (1959), and others. The kinds of fishes most emphasized are the larger species, especially those which are of importance as food fishes in the USSR, hence likely to be encountered in routine translating. However, names of a number of important commercial species in other parts of the world have been taken from Martinsen's list. For species for which no recognized English name was discovered, I have usually given either a transliteration or a translation of the Russian name; these are put in quotation marks to distinguish them from recognized English names.
    [Show full text]