<<

Acta Geochim (2018) 37(2):257–280 https://doi.org/10.1007/s11631-017-0211-1

ORIGINAL ARTICLE

Constraints on sedimentary ages of the Chuanlinggou Formation in the Ming Tombs, Beijing, : LA-ICP-MS and SHRIMP U–Pb dating of detrital zircons

1,2 1 1,3 4 Jing Ding • Yuruo Shi • Alfred Kro¨ner • J. Lawford Anderson

Received: 13 November 2016 / Revised: 10 February 2017 / Accepted: 16 August 2017 / Published online: 1 September 2017 Ó Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany 2017

Abstract Detrital zircons in five sedimentary samples, the Chuanlinggou Formation in the Ming Tombs District MC1 to MC5, from the bottom of the Chuanlinggou For- was deposited in a low-energy mud flat sedimentary mation in the Ming Tombs District, Beijing, were dated environment in the inter-supra tidal zone because it is with the LA-ICP-MS and SHRIMP U–Pb methods. Age mainly composed of silty mudstone and fine-grained spectra of the five samples show a major peak at 2500 Ma with relatively simple sedimentary structures. and a secondary peak at 2000 Ma, suggesting their provenances were mainly from the crystalline basement of Keywords Detrital zircon LA-ICP-MS U–Pb ages the North China Craton and the Trans-North China Orogen. SHRIMP Chuanlinggou Formation Ancient sedimentary The youngest zircon has an age of 1673 ± 44 Ma, indi- environment North China Craton cating that the Chuanlinggou Formation was deposited after this age. From sample MC4 to MC5, changed from a clastic rock (fine-grained sandstone) to a 1 Introduction rock (fine-grained ), suggesting that the depositional basin became progressively deeper. The age Zircon has stable physical and chemical properties, being spectrum of sample MC5 shows a major peak at 2500 Ma rich in U and Th, with low Pb and a low ion diffusion rate. and a secondary peak at 2000 Ma. Sample MC4, which is The zircon U–Pb isotopic system is ideally suited for U–Pb stratigraphically lower than sample MC5, only had one dating and generally records the time of zircon crystal- peak at 2500 Ma. We conclude that there was a trans- lization because of a high closure temperature for the U–Pb gressive event when sediments represented by MC5 was isotopic system and is minimally affected by later thermal deposited, and seawater carried ca. 2000 Ma clastic mate- events when compared with other isotopic systems (Lee rials to the basin where the Chuanlinggou Formation was et al. 1997; Cherniak et al. 1997; Cherniak and Watson deposited, leading to the addition of ca. 2000 Ma detritus. 2001; Poitrasson et al. 2002; Corfu et al. 2003). Our research indicates that the source area for the sedi- Clastic components in sedimentary rocks are products of ments became more extensive with time. We conclude that weathering, denudation, transportation, and sedimentation of rocks from their source region. Detrital zircons are resistant to weathering and abrasion, and they preserve an & Yuruo Shi age record of their original host rocks. Therefore, detrital [email protected] zircon chronology is a potentially powerful tool to con- 1 Beijing SHRIMP Center, Institute of Geology, Chinese strain sedimentary provenance, leading to a better under- Academy of Geological Sciences, Beijing 100037, China standing of the source area, the regional palaeogeography, 2 China University of Geosciences, Beijing 100083, China the depositional age, and the tectonic relationship between 3 Institut fu¨r Geowissenschaften, Universita¨t Mainz, different crustal terranes supplying detritus (Krogh et al. 55099 Mainz, Germany 1990; Sircombe and Freeman 1999; Yao et al. 2011; 4 Department of Earth and Environment, Boston University, Cawood and Nemchin 1999; Kositcin and Krapezˇ 2004; Boston, MA 02215, USA Wan et al. 2011; Hu et al. 2009, 2013). 123 258 Acta Geochim (2018) 37(2):257–280

The North China Craton (NCC), which is located north occurred in the interior and along the margins of the NCC. of the Qinling-Dabie Orogenic Belt and south of the In the north, such rifting formed the Yanliao aulacogen Central Asian Orogenic Belt, is the largest craton in eastern which reaches into the central region of the craton in a NE- Asia and one of the oldest cratons on Earth. The NCC SW direction. The thickness of the aulacogen is largest at experienced multi-stage cratonization processes and even- Jixian, China (its depocenter within the aulacogen) and tually formed a stable craton in the Late Neoarchean becomes thinner towards the margin. The Ming Tombs (Cheng 1994; Bai et al. 1993; Zhao 1993; Shen et al. 1992; area is located in the middle of the aulacogen and its Lu et al. 1996; Li et al. 2000; Zhai 2011; Wan et al. 2015). sedimentary fill include Meso-Neoproterozoic strata which Vertically, the NCC has a typical double-layer structure rest unconformably on Archean gneisses. Of these, the consisting of an older crystalline basement and younger strata of the Mesoproterozoic Changcheng Group consist of sedimentary cover deposited unconformably after 1.8 Ga the Changzhougou, Chuanlinggou, Tuanshanzi, and (Li et al. 2006). The Changcheng Group, the first sedi- Dahongyu Formations, in ascending order. mentary cover, is considered the beginning of the Meso- Samples MC1 to MC5, in ascending order, were col- proterozoic in the regional stratigraphic chart in China. The lected from the Chuanlinggou Formation in the Ming boundary age between the Paleoproterozoic and the Tombs District, Beijing (Fig. 2). The Chuanlinggou For- Mesoproterozoic is ca. 1800 Ma in China (All China mation is in conformable contact with the underlying Commission of Stratigraphy 2001), but 1600 Ma in the Changzhougou Formation (Hebei Bureau of Geology and International Geological Time Scale. Thus, many Mineral Resources 1982). Sample MC1 was collected researchers have studied the depositional time of the 44 cm above the contact between the Changzhougou and Changcheng Group (Wan et al. 2003, 2011; Li et al. Chuanlinggou formations, with alatitude and longitude of 2011, 2013a, b; Gao et al. 2008, 2009; Peng et al. 2012; N40°17056.800,E116°10055.800; the lithology is a silty Zhang et al. 2013). Past studies on the depositional time of mudstone, composed of 75% clay minerals, 15% quartz, the Chuanlinggou Formation of the Changcheng Group 7% mica and 3% feldspar (Fig. 3). Siltstone sample MC2 is included dating of intrusives (Gao et al. 2009; Zhang et al. composed of quartz (70%), feldspar (20%), and mica 2013), detrital minerals (Wan et al. 2011; Zhang et al. (10%). Sample MC3 is composed of laminated siltstone 2015; Duan et al. 2014), interbedded volcanic tuffs (Sun and fine-grained sandstone with unequal thickness between et al. 2013) and authigenic minerals (Zhang et al. 2015). 0.05 and 0.5 mm. Sample MC4 is a fine-grained sandstone However, the deposition time of the Chuanlinggou For- with siliceous cement and a grain-supported structure and mation and its sedimentary environment are still its clastic components are mainly quartz (about 90%). controversial. Sample MC5 is a fine-grained dolomite, composed of 90% This paper reports LA-ICP-MS and SHRIMP U–Pb data dolomite, 6% quartz, 2% and 2% feldspar, with derived from detrital zircons of five sedimentary samples particle sizes of most grains about 0.08 mm and is fairly that were collected from the bottom of the Chuanlinggou well sorted. Formation of the Changcheng Group in the Ming Tombs area and Beijing. These data provide new evidence for study of the sedimentary age, provenance of the Chuan- 3 Analytical techniques linggou Formation, and the Precambrian geological evo- lution of the NCC. The sediment samples were crushed mechanically and heavy mineral concentrates were prepared using standard heavy liquid and magnetic separation techniques. Zircons 2 Geological setting and sample description were extracted from the heavy mineral concentrate by hand-picking under a binocular microscope, mounted in The Precambrian units of the NCC consist of the Archean- epoxy, and polished to expose the cores of individual Paleoproterozoic crystalline basement and the overlying grains. The grain mount was then photographed in reflected Meso-Neoproterozoic sedimentary strata (Fig. 1). Consol- light, cleaned, and gold-coated. Cathodoluminescence (CL) idation of the basement marks the end of the Paleopro- imaging was done using a scanning electron microscope terozoic Era and deposition of the cover marks the (HITACHI S3000-N) fitted with a GATAN Chroma at the beginning of the Mesoproterozoic Era. The Lu¨liang Beijing SHRIMP Center, Institute of Geology, Chinese Movement (1900–1800 Ma) has been considered the ulti- Academy of Geological Sciences. mate consolidation of the NCC basement. Afterwards, the The LA-ICP-MS analytical work was performed at the stabilized NCC entered a platform phase, which is also the Institute of Mineral Resources, Chinese Academy of named stage of the development and evolution of a rift Geological Sciences, Beijing. The laser ablation system system (Zhai et al. 2014). This is because such rifting analyses were conducted on a Newwave UP213 and the 123 Acta Geochim (2018) 37(2):257–280 259

Fig. 1 Distribution of Archean-Paleoproterozoic crystalline basement and Meso-Neoproterozoic cover in the North China Craton. Modified from Peng et al. (2011)

ICP-MS analyses were done on a Bruker M90 model. The age spectra for detrital zircons and calculation of weighted laser ablation spot diameter was 25 lm, the output fre- mean ages were performed using the Isoplot program quency was 10 Hz and energy densities were about 2.5 J/ (Ludwig 2003). Errors for single data points are at the 1r cm2. Helium gas was used as a carrier gas and Ar was used level. as a compensation gas to adjust sensitivity. They were SHRIMP II zircon analyses were performed in the mixed together through a Y-connector before entering the Beijing SHRIMP Center, Institute of Geology, Chinese ICP during laser ablation analyses. The data were pro- Academy of Geological Sciences, and the analytical pro- cessed off-line using ICPMSDataCal (Liu et al. 2010; Hou cedures follow those of Williams (1998). Spot sizes were et al. 2009). Detailed instrument operating conditions and 25–30 lm and the surface of the analysis site was rastered data processing methods were similar to those described for 3 min prior to each analysis to remove the gold coating. 206 238 90 16 ? by Hou et al. (2009). The GJ-1 standard ( Pb/ U age of Data were determined by taking 3 scans on Zr2 O , 600 Ma, Jackson et al. 2004) was used to calibrate the 204Pb?, Background, 206Pb?, 207Pb?, 208Pb?, 238U?, instrument and to reach its optimal state prior to the 232Th16O?, 238U16O?. Standard zircon M257, with an age analysis. Trace elements in zircon were calculated quanti- of 561.3 ± 0.3 Ma and U content of 840 ppm (Nasdala tatively using SRM610 as the external standard and Si as et al. 2008), was used to calibrate U and Th content. the internal standard (Liu et al. 2010). Recommended Reference zircons Qinghu (159.5 ± 0.2 Ma, Li et al. element values of USGS reference glasses came from the 2013a, b) and TEMORA (417 Ma, Black et al. 2003a) were GeoReM database (http://georem.mpch-mainz.gwdg.de/). performed during the analytical session to calibrate the U– Isotope fractionation was corrected using the external s- Pb age of the unknown. Common Pb corrections were tandard GJ-1. GJ-1 was analyzed twice and the zircon made using the measured 204Pb. Uncertainties for each standard Plesovice (206Pb/238U age of 337.13 ± 0.37 Ma, analysis are at 1r. Data were processed using the Excel- Sla´ma et al. 2008) was analyzed once after every ten based Squid (Ludwig 2001) and Isoplot (Ludwig 2003) analyses of unknowns. The instrument was monitored programs. during the entire analytical process to ensure the accuracy We used 207Pb/206Pb to represent the diagenetic age of the test. Time-related drift in U–Th–Pb isotope ratios because it is believed to be more reliable as ancient zircons was corrected by applying a linear interpolation using ([1000 Ma) usually have some degree of lead loss (Black changes in GJ-1 (Liu et al. 2010). Construction of U–Pb et al. 2003b).

123 260 Acta Geochim (2018) 37(2):257–280

Fig. 2 Geological map of the ming tombs area of Beijing (Q Quaternary System; Jxt Tieling Formation; Jxh, Hongshuizhuang Formation; Jxw Wumishan Formation; Jxy Yangzhuang Formation; Qb Qingbaikou System; Chg Gaoyuzhuang Formation; Chd Dahongyu Formation; Cht Tuanshanzi Formation; Chch Chuanlinggou Formation; Chc, Changzhougou Formation; Ar Archean). a Modified from Zhang et al. (2002) and column of strata lithology of the Changcheng Group, b modified from Lan et al. (2014)

4 Results Figure 6 shows the LA-ICP-MS U–Pb concordia dia- grams and age spectra of detrital zircons of the five Zircons in samples MC1 to MC5 are mostly rounded or columnar samples MC1 to MC5 from the bottom of the Chuan- in shape, and their sizes are between 30 and 150 lm. Most zircon linggou Formation. The U–Pb concordia diagrams show grains show oscillatory zoning in CL images (Figs. 4, 5), indi- that most of the points deviate from concordia line, cating a magmatic origin. A few zircons have a dark core and a indicating the loss of radiogenic Pb. Most of the points in bright overgrowth, which indicates the sources of the sediments samples MC1, MC2 and MC4 also show a linear distri- have experienced multiple tectonic-thermal events. bution. In samples MC3 and MC5, the points are a little The number of analyses obtained from LA-ICP-MS U– scattered. It is evident that each sample has an age peak at Pb zircon dating are ninety-four, ninety-four, ninety-three, 2500 Ma in the age spectra. The youngest zircon in ninety-seven and ninety-two, respectively, from samples sample MC2 is MC2-grain 28 with an age of ca. 1677 Ma. MC1 to MC5. The analytical results are listed in Table 1. Sample MC3 exhibits a major age peak at 2000 Ma and a About eighty zircon grains from sample MC5 were also secondary age peak at about 2500 Ma. Sample MC5 has dated by the U–Pb SHRIMP method and seventy-four two small peaks at 2000 Ma and 2300 Ma, besides a analyses were obtained. The results are shown in Table 2. major peak at 2500 Ma. The youngest zircon (MC5-grain

123 Acta Geochim (2018) 37(2):257–280 261

Fig. 3 Photomicrographs of sedimentary rocks from the bottom of the Chuanlinggou Formation. a Sample MC5; b sample MC4; c sample MC3; d sample MC2; e sample MC1

72) in MC5 is 1673 ± 44 Ma, which is also the youngest 5 Disscussion age of the five samples. Figure 7 is the SHRIMP U–Pb concordia diagram and 5.1 Constraints on sedimentary age age spectrum for the zircons of sample MC5. Most of the of the Chuanlinggou Formation points distribute in the concordia curve. The age spectrum shows an age peak at about 2500 Ma. The sedimentary age of the Chuanlinggou Formation can The age spectrum for all the detrital zircons of the five indirectly constrain the upper age limit of the Changz- sediments show a major peak at 2500 Ma and a secondary hougou Formation as the latter is overlain by the former. peak at 2000 Ma (Fig. 8). Moreover, the Chuanlinggou Formation has the first black

123 262 Acta Geochim (2018) 37(2):257–280

Fig. 4 CL images of some detrital zircons (analyzed by LA-ICP-MS) from the Chuanlinggou Formation (the circles show the number of analysis spots and the age results are indicated below the zircons). a Sample MC5; b sample MC4; c sample MC3; d sample MC2; e sample MC1

deposition age of the Chuanlinggou Formation according to four younger ages of magmatic zircons from the Chuanlinggou Formation in Jiangjiazhai iron deposit, and the age range is reported as 1657.4 to 1694.4 Ma. Gao et al. (2009) reported that the age of the diabase of the Chuan- linggou Formation is 1638 ± 14 Ma. In this study, we find the youngest detrital zircon in the bottom sediments of the Chuanlinggou Formation is 1673 ± 44 Ma (Fig. 9), suggesting that the deposition of the Chuanlinggou Formation was after this age.This age provides new evidence for study of the sedimentary age of the Chuanlinggou Formation and is useful for optimizing Mesoproterozoic chronostratigraphic framework of China.

Fig. 5 CL images of some detrital zircons (analyzed by SHRIMP) 5.2 Provenance of detritus in the Chuanlinggou from sample MC5 Formation shale series of the entire Yanliao aulacogen. Therefore, the A huge age peak of 2500 Ma was shown in the age spectrum geochronology of the Chuanlinggou Formation has great (Fig. 8) and must reflect a major geological event in Late significance to both stratigraphic correlation and basin Neoarchean. Early Precambrian magmatism of the NCC analysis (Meng et al. 2011). occurred between 2500 and 2800 Ma, 2500 Ma was the peak Sun et al. (2013) reported that the age of the volcanic age of magmatic activity and crustal growth (Geng et al. 2002; tuff rock from the upper part of the Chuanlinggou For- Shi et al. 2012; Wan et al. 2015). Therefore, it is most likely that mation is 1621 ± 12 Ma. Zircons from a dioritic por- the sediments of the Chuanlinggou Formation were derived phyrite dyke emplaced into the Chuanlinggou Formation from the crystalline basement of the NCC which was mainly yield an age of 1634 ± 9 Ma (Zhang et al. 2013), indi- composed of Late Neoarchean granitoid crust (Fig. 10). cating sedimentation of the Chuanlinggou Formation prior A secondary age peak at 2000 Ma was shown in Fig. 8. to 1634 ± 9 Ma. Duan et al. (2014) limited the maximum To constrain provenance of the ca. 2000 Ma detrital 123 Acta Geochim (2018) 37(2):257–280 263

Table 1 LA-ICP-MS U–Pb analytical results of detrital zircons from the Chuanlinggou Formation in the Ming Tombs District, Beijing Spot Pb Th U Th/U Isotope ratios Isotopic ages(Ma) (910-6) 207Pb/206Pb 1sigma 207Pb/235U 1sigma 206Pb/238U 1sigma 207Pb/206Pb 1sigma

MC1-1 59 35 110 0.32 0.1678 0.0042 9.9941 0.2302 0.4330 0.0072 2535 41 MC1-2 83 100 165 0.61 0.1647 0.0033 9.0442 0.2342 0.3958 0.0063 2506 33 MC1-3 96 192 219 0.88 0.1645 0.0031 7.8715 0.2480 0.3413 0.0066 2502 65 MC1-4 79 79 129 0.61 0.1598 0.0028 9.9913 0.1996 0.4520 0.0054 2453 25 MC1-5 63 39 103 0.38 0.1641 0.0034 10.3791 0.2513 0.4568 0.0061 2498 34 MC1-6 111 105 191 0.55 0.1640 0.0030 9.6521 0.2294 0.4230 0.0039 2498 25 MC1-7 114 108 326 0.33 0.1501 0.0026 5.5980 0.1260 0.2690 0.0036 2347 29 MC1-8 108 192 283 0.68 0.1509 0.0023 5.9814 0.1747 0.2853 0.0066 2367 26 MC1-9 53 84 88 0.95 0.1630 0.0075 8.5212 0.4090 0.3789 0.0072 2487 77 MC1-10 86 70 131 0.54 0.1595 0.0028 10.0805 0.2150 0.4578 0.0066 2450 30 MC1-11 57 39 86 0.45 0.1671 0.0032 11.0582 0.2636 0.4827 0.0097 2529 33 MC1-12 99 64 164 0.39 0.1600 0.0026 9.9896 0.2139 0.4523 0.0069 2455 28 MC1-13 45 27 63 0.43 0.1983 0.0052 14.7205 0.5826 0.5306 0.0135 2813 43 MC1-14 114 359 278 1.29 0.1519 0.0022 5.4760 0.1126 0.2616 0.0045 2369 25 MC1-15 96 136 179 0.76 0.1674 0.0026 8.5246 0.2015 0.3682 0.0066 2532 26 MC1-16 126 120 188 0.64 0.1652 0.0024 10.5640 0.2013 0.4632 0.0062 2510 24 MC1-17 98 112 141 0.79 0.1616 0.0023 10.1970 0.1580 0.4571 0.0041 2472 24 MC1-18 127 241 309 0.78 0.1658 0.0038 6.2606 0.1811 0.2718 0.0034 2516 38 MC1-19 104 151 196 0.77 0.1665 0.0031 8.1678 0.1626 0.3561 0.0048 2524 31 MC1-20 45 39 78 0.50 0.1624 0.0064 8.8328 0.4314 0.3894 0.0070 2481 66 MC1-21 118 194 258 0.75 0.1665 0.0028 7.2874 0.1825 0.3149 0.0051 2524 28 MC1-22 95 42 248 0.17 0.1185 0.0034 4.8300 0.1465 0.2950 0.0040 1944 52 MC1-23 49 65 84 0.77 0.1649 0.0032 9.1216 0.1804 0.4017 0.0048 2507 33 MC1-24 131 116 367 0.32 0.1504 0.0022 5.6097 0.1835 0.2665 0.0067 2350 25 MC1-26 50 97 71 1.36 0.1637 0.0034 9.3706 0.2251 0.4136 0.0054 2495 35 MC1-27 139 122 222 0.55 0.1665 0.0024 10.1138 0.1547 0.4397 0.0040 2524 24 MC1-28 101 137 226 0.60 0.1639 0.0032 7.3496 0.1872 0.3237 0.0053 2498 32 MC1-29 99 73 156 0.47 0.1667 0.0034 10.6181 0.2419 0.4615 0.0065 2524 34 MC1-30 131 367 366 1.00 0.1499 0.0033 5.3123 0.1483 0.2565 0.0048 2344 37 MC1-31 95 159 140 1.14 0.1622 0.0031 10.1553 0.2281 0.4543 0.0082 2480 32 MC1-32 128 146 268 0.55 0.1624 0.0027 7.6872 0.1328 0.3421 0.0029 2481 28 MC1-33 69 100 152 0.66 0.1627 0.0047 7.2612 0.2137 0.3238 0.0058 2484 49 MC1-34 132 114 211 0.54 0.1642 0.0024 10.4539 0.1666 0.4599 0.0045 2500 24 MC1-36 86 182 175 1.04 0.1644 0.0036 7.7746 0.2349 0.3401 0.0055 2501 37 MC1-37 42 62 61 1.02 0.1618 0.0032 10.3596 0.2356 0.4623 0.0060 2476 33 MC1-38 229 299 472 0.63 0.1562 0.0022 7.7363 0.1290 0.3576 0.0041 2417 24 MC1-39 109 152 196 0.77 0.1641 0.0025 9.4855 0.2069 0.4170 0.0069 2498 25 MC1-40 92 114 150 0.76 0.1650 0.0030 10.2007 0.1951 0.4473 0.0054 2509 31 MC1-41 72 141 118 1.19 0.1593 0.0033 9.7694 0.2079 0.4428 0.0054 2448 35 MC1-42 90 115 145 0.79 0.1707 0.0029 11.2805 0.1989 0.4784 0.0071 2565 29 MC1-43 24 14 44 0.31 0.1700 0.0049 11.1034 0.3384 0.4744 0.0079 2557 49 MC1-44 47 162 70 2.33 0.1628 0.0058 9.3960 0.3607 0.4168 0.0074 2485 60 MC1-45 25 44 43 1.03 0.1653 0.0051 9.9133 0.2660 0.4427 0.0118 2511 52 MC1-46 22 28 39 0.70 0.1673 0.0038 10.7504 0.2734 0.4636 0.0062 2531 38 MC1-47 108 294 289 1.02 0.1548 0.0021 6.3013 0.0863 0.2942 0.0024 2400 29 MC1-48 37 92 75 1.23 0.1517 0.0036 7.8777 0.2384 0.3765 0.0088 2366 40 MC1-50 19 12 42 0.29 0.1622 0.0056 9.9727 0.4739 0.4376 0.0113 2479 58

123 264 Acta Geochim (2018) 37(2):257–280

Table 1 continued Spot Pb Th U Th/U Isotope ratios Isotopic ages(Ma) (910-6) 207Pb/206Pb 1sigma 207Pb/235U 1sigma 206Pb/238U 1sigma 207Pb/206Pb 1sigma

MC1-51 77 71 148 0.48 0.1670 0.0027 10.2776 0.1731 0.4458 0.0049 2528 26 MC1-52 59 76 122 0.62 0.1672 0.0034 9.2202 0.2128 0.3981 0.0047 2531 35 MC1-53 55 14 114 0.13 0.1781 0.0037 10.2680 0.2346 0.4180 0.0070 2636 29 MC1-54 85 74 149 0.49 0.1677 0.0030 10.5260 0.2043 0.4547 0.0061 2535 29 MC1-55 154 231 240 0.96 0.1643 0.0022 10.5136 0.1593 0.4630 0.0049 2500 24 MC1-56 107 247 193 1.28 0.1630 0.0027 8.6059 0.1824 0.3800 0.0040 2487 29 MC1-57 51 38 101 0.37 0.1494 0.0029 7.7005 0.1550 0.3733 0.0046 2339 33 MC1-58 16 54 17 3.16 0.1674 0.0078 9.6433 0.4070 0.4287 0.0141 2532 78 MC1-59 137 126 264 0.48 0.1623 0.0025 8.2685 0.1401 0.3677 0.0037 2481 26 MC1-60 82 302 81 3.74 0.1681 0.0037 10.3447 0.2455 0.4447 0.0061 2539 37 MC1-61 117 202 196 1.03 0.1693 0.0033 8.6114 0.1683 0.3680 0.0042 2550 32 MC1-62 64 161 131 1.23 0.1601 0.0047 6.1302 0.1545 0.2819 0.0046 2457 50 MC1-63 94 65 211 0.31 0.1650 0.0028 7.4795 0.1822 0.3259 0.0050 2507 28 MC1-64 85 55 144 0.38 0.1623 0.0029 9.3316 0.1951 0.4159 0.0057 2480 30 MC1-65 113 102 180 0.56 0.1687 0.0028 9.6594 0.1858 0.4142 0.0057 2546 28 MC1-66 98 139 177 0.78 0.1630 0.0029 8.5761 0.2222 0.3787 0.0061 2487 30 MC1-67 97 44 295 0.15 0.1631 0.0039 5.0743 0.1268 0.2268 0.0048 2488 40 MC1-68 16 40 28 1.44 0.1308 0.0042 6.1717 0.2003 0.3444 0.0073 2110 56 MC1-69 112 247 225 1.10 0.1522 0.0024 6.7754 0.1563 0.3200 0.0040 2372 28 MC1-70 95 154 180 0.86 0.1646 0.0033 7.7366 0.1595 0.3407 0.0043 2503 34 MC1-71 133 269 295 0.91 0.1650 0.0034 7.0895 0.1725 0.3111 0.0049 2509 35 MC1-72 127 380 410 0.93 0.1486 0.0031 4.3826 0.1147 0.2137 0.0037 2331 35 MC1-73 73 80 168 0.48 0.1538 0.0029 6.6558 0.1775 0.3121 0.0052 2391 27 MC1-74 56 40 85 0.47 0.1650 0.0026 10.6875 0.2314 0.4667 0.0056 2509 27 MC1-76 56 47 110 0.43 0.1509 0.0035 7.5884 0.1868 0.3639 0.0042 2367 39 MC1-77 115 247 274 0.90 0.1535 0.0021 5.8931 0.0892 0.2776 0.0023 2387 24 MC1-78 37 69 63 1.10 0.1504 0.0040 7.5191 0.2360 0.3606 0.0058 2350 45 MC1-80 127 161 243 0.66 0.1671 0.0029 8.3309 0.1938 0.3587 0.0045 2529 30 MC1-81 1013 564 52 10.76 0.1645 0.0051 9.0793 0.2646 0.4028 0.0076 2503 52 MC1-82 2578 2004 179 11.17 0.1524 0.0027 7.2644 0.1306 0.3452 0.0038 2373 30 MC1-83 5549 5466 312 17.51 0.1628 0.0040 5.0596 0.1444 0.2243 0.0026 2484 42 MC1-84 1673 1129 85 13.26 0.1535 0.0046 7.2052 0.2436 0.3380 0.0052 2387 51 MC1-85 11,438 6742 178 37.91 0.1616 0.0024 9.0875 0.1326 0.4072 0.0035 2473 24 MC1-86 270 92 13 6.91 0.1692 0.0069 11.0753 0.4393 0.4824 0.0124 2549 68 MC1-87 2008 738 41 18.12 0.1889 0.0067 10.7348 0.4174 0.4210 0.0117 2732 59 MC1-88 2196 1449 66 22.01 0.1559 0.0048 4.8187 0.2093 0.2227 0.0063 2413 54 MC1-89 7977 4291 91 47.29 0.1670 0.0027 10.2868 0.1956 0.4456 0.0050 2528 26 MC1-90 9056 7384 158 46.62 0.1435 0.0038 5.1181 0.1256 0.2596 0.0023 2269 40 MC1-91 6507 3969 101 39.43 0.1657 0.0038 7.5366 0.2199 0.3313 0.0079 2517 39 MC1-93 282 95 25 3.83 0.1628 0.0047 8.2469 0.2556 0.3683 0.0060 2485 49 MC1-94 1784 1053 183 5.76 0.1590 0.0030 8.0323 0.1957 0.3685 0.0093 2456 32 MC1-95 3373 2803 239 11.75 0.1558 0.0025 6.9878 0.1653 0.3241 0.0057 2411 28 MC1-96 3310 2721 153 17.82 0.1609 0.0026 8.4031 0.1919 0.3761 0.0055 2465 26 MC1-97 1795 1422 307 4.64 0.1544 0.0031 4.5264 0.1488 0.2101 0.0045 2396 34 MC1-98 1162 653 177 3.68 0.1636 0.0037 8.6363 0.2356 0.3804 0.0050 2494 38 MC1-99 1246 1256 237 5.31 0.1538 0.0026 5.8745 0.1049 0.2762 0.0027 2391 28 MC1-100 91 55 14 3.95 0.1705 0.0078 9.9314 0.4335 0.4305 0.0104 2563 77

123 Acta Geochim (2018) 37(2):257–280 265

Table 1 continued Spot Pb Th U Th/U Isotope ratios Isotopic ages(Ma) (910-6) 207Pb/206Pb 1sigma 207Pb/235U 1sigma 206Pb/238U 1sigma 207Pb/206Pb 1sigma

MC2-1 73 74 191 0.39 0.1630 0.0058 6.0277 0.2661 0.2625 0.0041 2487 60 MC2-2 60 258 327 0.79 0.1622 0.0050 2.7036 0.0945 0.1208 0.0019 2480 52 MC2-3 88 166 295 0.56 0.1657 0.0036 4.7184 0.1168 0.2073 0.0040 2517 36 MC2-4 69 85 102 0.83 0.1621 0.0030 10.3497 0.2035 0.4631 0.0057 2480 31 MC2-5 84 56 178 0.32 0.1672 0.0032 8.1196 0.1796 0.3518 0.0058 2531 32 MC2-6 84 63 130 0.49 0.1653 0.0026 10.4046 0.1899 0.4557 0.0054 2511 26 MC2-7 133 341 671 0.51 0.1425 0.0020 2.9974 0.0716 0.1518 0.0028 2258 25 MC2-8 90 62 261 0.24 0.1606 0.0041 5.9955 0.1762 0.2716 0.0054 2462 43 MC2-9 53 15 138 0.11 0.1108 0.0022 4.9420 0.1027 0.3231 0.0032 1813 36 MC2-10 120 139 369 0.38 0.1527 0.0030 4.9577 0.0968 0.2356 0.0030 2376 33 MC2-11 70 69 105 0.66 0.1645 0.0031 10.4502 0.2212 0.4599 0.0060 2502 65 MC2-12 119 214 432 0.50 0.1631 0.0029 4.7542 0.1047 0.2108 0.0031 2487 30 MC2-13 103 145 217 0.67 0.1593 0.0035 7.5941 0.3466 0.3413 0.0128 2448 37 MC2-14 75 69 124 0.55 0.1670 0.0030 10.0504 0.1995 0.4355 0.0061 2527 29 MC2-15 65 105 156 0.68 0.1697 0.0070 6.5492 0.3602 0.2769 0.0057 2555 69 MC2-16 65 146 131 1.12 0.1293 0.0063 5.9760 0.3164 0.3343 0.0077 2088 86 MC2-17 117 108 216 0.50 0.1664 0.0026 8.9922 0.1376 0.3903 0.0033 2521 27 MC2-18 125 90 490 0.18 0.1540 0.0024 4.3351 0.0857 0.2031 0.0028 2390 26 MC2-19 94 119 174 0.68 0.1678 0.0037 8.7181 0.2124 0.3749 0.0051 2536 37 MC2-20 122 402 566 0.71 0.1483 0.0030 3.1321 0.0679 0.1525 0.0020 2328 34 MC2-21 96 230 210 1.10 0.1517 0.0029 5.9233 0.1108 0.2822 0.0031 2365 33 MC2-22 16 51 33 1.57 0.2099 0.0091 7.4316 0.3769 0.2719 0.0136 2905 70 MC2-23 92 92 162 0.57 0.1669 0.0029 9.5127 0.1774 0.4115 0.0048 2527 35 MC2-24 40 32 71 0.44 0.1680 0.0046 9.5332 0.3005 0.4086 0.0065 2539 46 MC2-25 139 297 518 0.57 0.1626 0.0023 4.8516 0.1153 0.2150 0.0042 2482 24 MC2-26 84 102 208 0.49 0.1555 0.0029 6.3007 0.1214 0.2935 0.0033 2407 31 MC2-27 112 140 313 0.45 0.1572 0.0025 6.1770 0.2464 0.2809 0.0096 2428 27 MC2-28 125 278 313 0.89 0.1595 0.0031 6.1706 0.1859 0.2791 0.0065 2450 33 MC2-29 92 201 416 0.48 0.1253 0.0029 2.9361 0.0783 0.1688 0.0019 2033 41 MC2-31 41 116 90 1.30 0.1209 0.0046 4.9955 0.1670 0.3024 0.0077 1969 67 MC2-32 93 283 182 1.55 0.1721 0.0032 6.8820 0.1234 0.2903 0.0039 2589 31 MC2-33 108 181 381 0.48 0.1501 0.0025 4.6025 0.1391 0.2195 0.0049 2347 29 MC2-34 102 99 160 0.62 0.1674 0.0025 10.1132 0.1821 0.4369 0.0054 2531 30 MC2-35 62 332 339 0.98 0.1501 0.0038 2.1958 0.0515 0.1064 0.0015 2347 43 MC2-36 93 222 236 0.94 0.1463 0.0039 5.0468 0.1409 0.2498 0.0042 2303 46 MC2-37 80 125 192 0.65 0.1697 0.0058 6.4974 0.2445 0.2777 0.0063 2555 57 MC2-38 45 122 113 1.08 0.1961 0.0168 5.5066 0.3704 0.2285 0.0100 2794 141 MC2-39 98 79 144 0.55 0.1671 0.0028 10.5593 0.1914 0.4581 0.0055 2529 33 MC2-40 107 217 192 1.13 0.1650 0.0035 7.3717 0.2093 0.3250 0.0078 2509 35 MC2-42 116 179 372 0.48 0.1543 0.0036 4.6967 0.1212 0.2201 0.0029 2394 41 MC2-43 55 143 228 0.63 0.1658 0.0042 3.4996 0.0988 0.1533 0.0025 2517 43 MC2-44 113 700 637 1.10 0.1522 0.0033 2.2457 0.0599 0.1065 0.0015 2372 31 MC2-45 39 76 52 1.45 0.1603 0.0033 9.9220 0.2398 0.4477 0.0064 2459 35 MC2-46 65 59 112 0.53 0.1707 0.0064 9.3015 0.3218 0.3979 0.0083 2565 63 MC2-47 36 73 126 0.58 0.1639 0.0035 6.0559 0.3860 0.2651 0.0153 2496 36 MC2-48 4 60 109 0.55 0.1029 0.0116 0.3364 0.0338 0.0255 0.0008 1677 209 MC2-49 91 186 191 0.97 0.1597 0.0028 6.6265 0.1216 0.3004 0.0031 2454 25

123 266 Acta Geochim (2018) 37(2):257–280

Table 1 continued Spot Pb Th U Th/U Isotope ratios Isotopic ages(Ma) (910-6) 207Pb/206Pb 1sigma 207Pb/235U 1sigma 206Pb/238U 1sigma 207Pb/206Pb 1sigma

MC2-50 53 97 114 0.85 0.1638 0.0034 7.2804 0.2128 0.3212 0.0065 2495 34 MC2-51 42 35 64 0.56 0.1706 0.0033 10.8053 0.2223 0.4596 0.0063 2565 32 MC2-52 122 213 617 0.35 0.1401 0.0025 2.7175 0.0607 0.1398 0.0017 2229 31 MC2-54 107 315 415 0.76 0.1497 0.0026 3.8068 0.1301 0.1819 0.0043 2342 25 MC2-55 123 231 406 0.57 0.1684 0.0038 4.8597 0.1234 0.2091 0.0029 2542 38 MC2-57 125 367 580 0.63 0.1397 0.0029 2.7658 0.0630 0.1428 0.0015 2224 37 MC2-58 37 68 76 0.89 0.1549 0.0077 6.8256 0.5066 0.3186 0.0194 2800 85 MC2-59 133 492 479 1.03 0.1552 0.0026 4.5502 0.1807 0.2095 0.0074 2403 28 MC2-60 109 306 513 0.60 0.1411 0.0027 2.7910 0.0655 0.1424 0.0018 2243 32 MC2-61 93 145 263 0.55 0.1522 0.0027 5.3667 0.1120 0.2544 0.0034 2372 229 MC2-63 135 247 350 0.71 0.1469 0.0026 5.5033 0.1472 0.2697 0.0051 2310 30 MC2-64 120 102 228 0.44 0.1608 0.0030 8.3921 0.1643 0.3790 0.0050 2465 32 MC2-65 29 13 57 0.23 0.1521 0.0040 8.1627 0.2209 0.3883 0.0051 2369 45 MC2-66 15 25 34 0.73 0.1541 0.0073 6.0114 0.2895 0.2836 0.0057 2392 82 MC2-67 62 297 112 2.64 0.1532 0.0033 5.4862 0.2094 0.2567 0.0077 2383 36 MC2-68 91 193 345 0.56 0.1476 0.0028 3.8211 0.0848 0.1868 0.0025 2318 33 MC2-69 105 246 444 0.55 0.1546 0.0029 3.4855 0.0684 0.1628 0.0017 2398 32 MC2-70 112 149 215 0.69 0.1631 0.0033 8.5087 0.1934 0.3774 0.0061 2488 34 MC2-71 104 286 408 0.70 0.1518 0.0029 3.6561 0.0683 0.1745 0.0020 2369 27 MC2-72 97 418 487 0.86 0.1629 0.0034 2.9229 0.0704 0.1296 0.0018 2487 35 MC2-73 78 184 102 1.79 0.1632 0.0031 9.8733 0.2164 0.4372 0.0061 2489 31 MC2-74 40 67 109 0.61 0.1543 0.0042 5.6746 0.1604 0.2678 0.0058 2394 46 MC2-75 40 60 64 0.93 0.1589 0.0030 9.2978 0.2018 0.4227 0.0053 2444 31 MC2-76 19 42 29 1.45 0.1698 0.0062 8.7173 0.3524 0.3782 0.0090 2555 61 MC2-77 135 242 404 0.60 0.1515 0.0023 5.1434 0.1117 0.2445 0.0036 2363 26 MC2-78 22 48 32 1.50 0.1689 0.0058 9.9369 0.3537 0.4294 0.0097 2547 58 MC2-79 36 98 109 0.90 0.1634 0.0046 5.0774 0.2191 0.2259 0.0083 2492 48 MC2-80 112 181 299 0.61 0.1574 0.0035 5.6528 0.1373 0.2597 0.0027 2427 37 MC2-81 82 79 164 0.48 0.1683 0.0032 8.4380 0.1887 0.3624 0.0049 2540 31 MC2-82 74 285 570 0.50 0.1381 0.0032 1.8163 0.0389 0.0955 0.0012 2206 41 MC2-83 137 570 661 0.86 0.1394 0.0032 2.7752 0.0714 0.1442 0.0022 2220 35 MC2-84 71 153 299 0.51 0.1569 0.0029 4.1306 0.1775 0.1891 0.0070 2433 31 MC2-85 80 58 166 0.35 0.1680 0.0039 8.5610 0.2305 0.3696 0.0068 2539 39 MC2-86 39 75 100 0.75 0.1577 0.0033 6.0653 0.1531 0.2776 0.0043 2431 35 MC2-87 108 95 213 0.45 0.1682 0.0026 8.2803 0.1480 0.3571 0.0053 2540 26 MC2-88 69 64 111 0.58 0.1668 0.0056 9.7961 0.3588 0.4233 0.0074 2526 56 MC2-89 5 915 506 1.81 0.1501 0.0144 0.1002 0.0084 0.0052 0.0002 2347 164 MC2-90 26 46 45 1.01 0.1660 0.0042 8.5144 0.2238 0.3739 0.0067 2518 43 MC2-92 124 92 327 0.28 0.1522 0.0024 6.2960 0.1237 0.2989 0.0046 2372 27 MC2-93 114 203 271 0.75 0.1527 0.0023 6.1637 0.1096 0.2913 0.0033 2376 26 MC2-94 38 45 65 0.69 0.1729 0.0054 9.9172 0.4161 0.4144 0.0138 2586 53 MC2-95 140 666 650 1.02 0.1434 0.0041 3.1000 0.0932 0.1582 0.0032 2268 49 MC2-96 71 85 224 0.38 0.1612 0.0031 5.3045 0.1133 0.2380 0.0028 2469 33 MC2-97 83 254 302 0.84 0.1960 0.0043 5.0309 0.1041 0.1881 0.0028 2794 31 MC2-98 52 49 129 0.38 0.1388 0.0034 5.8147 0.1335 0.3059 0.0050 2213 43 MC2-99 38 42 58 0.72 0.1664 0.0034 10.8558 0.2227 0.4734 0.0051 2522 34 MC2-100 125 58 318 0.18 0.1528 0.0031 6.8145 0.1396 0.3231 0.0031 2377 34

123 Acta Geochim (2018) 37(2):257–280 267

Table 1 continued Spot Pb Th U Th/U Isotope ratios Isotopic ages(Ma) (910-6) 207Pb/206Pb 1sigma 207Pb/235U 1sigma 206Pb/238U 1sigma 207Pb/206Pb 1sigma

MC3-1 74 64 185 0.35 0.1131 0.0037 5.1429 0.1361 0.3318 0.0063 1850 59 MC3-2 88 76 270 0.28 0.1234 0.0046 4.7791 0.2038 0.2815 0.0056 2006 67 MC3-3 133 176 342 0.51 0.1569 0.0032 6.3181 0.1294 0.2915 0.0033 2433 34 MC3-4 66 66 145 0.45 0.1317 0.0042 6.4826 0.2060 0.3575 0.0053 2120 55 MC3-5 77 82 259 0.32 0.1245 0.0027 4.2173 0.0954 0.2451 0.0034 2022 39 MC3-6 104 37 370 0.10 0.1203 0.0027 4.1107 0.1018 0.2477 0.0035 1961 73 MC3-7 24 29 41 0.71 0.1652 0.0057 9.3437 0.3196 0.4124 0.0078 2510 58 MC3-8 47 135 93 1.45 0.1105 0.0034 4.9857 0.1836 0.3261 0.0062 1807 56 MC3-10 105 158 182 0.87 0.1619 0.0037 9.1321 0.2614 0.4074 0.0080 2476 39 MC3-11 39 38 99 0.39 0.1262 0.0073 5.3429 0.3185 0.3068 0.0100 2056 102 MC3-12 91 151 140 1.08 0.1633 0.0068 10.2700 0.3742 0.4643 0.0115 2490 69 MC3-13 82 62 154 0.40 0.1568 0.0036 8.9467 0.1867 0.4135 0.0080 2421 38 MC3-14 57 97 126 0.77 0.1243 0.0038 6.1692 0.2324 0.3561 0.0068 2018 55 MC3-15 56 56 137 0.41 0.1210 0.0032 5.4785 0.1614 0.3262 0.0043 1972 46 MC3-16 89 161 199 0.81 0.1237 0.0030 5.4953 0.1452 0.3203 0.0044 2010 43 MC3-17 78 65 144 0.45 0.1603 0.0037 9.1163 0.2404 0.4102 0.0064 2458 39 MC3-18 55 105 104 1.01 0.1296 0.0035 6.4411 0.1759 0.3599 0.0054 2094 48 MC3-20 109 146 618 0.24 0.1101 0.0022 2.2090 0.0536 0.1446 0.0021 1811 36 MC3-22 48 65 121 0.53 0.1220 0.0033 4.9807 0.1413 0.2959 0.0053 1987 48 MC3-23 54 125 76 1.64 0.1605 0.0049 9.0312 0.3038 0.4069 0.0087 2461 57 MC3-24 143 419 403 1.04 0.1616 0.0030 5.2496 0.1202 0.2343 0.0033 2473 30 MC3-25 108 155 163 0.95 0.1592 0.0031 10.1373 0.2290 0.4610 0.0073 2447 33 MC3-26 97 118 245 0.48 0.1158 0.0018 4.8786 0.0824 0.3047 0.0030 1894 28 MC3-27 64 131 130 1.01 0.1295 0.0036 6.2509 0.2011 0.3499 0.0067 2090 48 MC3-28 82 130 130 1.00 0.1651 0.0063 9.2556 0.3807 0.4067 0.0105 2509 65 MC3-29 29 29 45 0.65 0.1647 0.0045 10.4986 0.3136 0.4637 0.0080 2506 46 MC3-30 59 127 130 0.98 0.1192 0.0033 5.0846 0.1527 0.3098 0.0046 1946 50 MC3-31 112 247 324 0.76 0.1499 0.0038 4.8562 0.1196 0.2355 0.0037 2346 42 MC3-32 44 127 94 1.34 0.1237 0.0051 4.8281 0.1991 0.2849 0.0065 2010 74 MC3-33 75 99 116 0.85 0.1586 0.0050 9.9818 0.3221 0.4602 0.0076 2443 54 MC3-34 38 27 68 0.40 0.1659 0.0056 9.2994 0.2779 0.4086 0.0077 2517 57 MC3-35 98 116 339 0.34 0.1337 0.0033 4.0236 0.0988 0.2186 0.0030 2147 44 MC3-38 80 97 275 0.35 0.1199 0.0038 3.9344 0.1346 0.2385 0.0050 1955 56 MC3-39 82 56 204 0.27 0.1260 0.0036 5.6538 0.1671 0.3279 0.0052 2042 50 MC3-40 96 85 280 0.30 0.1302 0.0033 4.7573 0.1388 0.2649 0.0043 2102 44 MC3-41 75 153 167 0.91 0.1191 0.0050 5.2551 0.2426 0.3216 0.0079 1943 75 MC3-42 103 51 262 0.19 0.1304 0.0030 5.6294 0.1313 0.3135 0.0036 2103 40 MC3-43 88 74 223 0.33 0.1253 0.0040 6.1452 0.2576 0.3554 0.0080 2033 56 MC3-44 114 179 246 0.73 0.1601 0.0058 6.9824 0.2433 0.3182 0.0074 2457 61 MC3-45 90 62 162 0.38 0.1597 0.0048 9.0763 0.2209 0.4109 0.0062 2453 148 MC3-46 97 117 168 0.70 0.1602 0.0038 9.0183 0.2100 0.4089 0.0062 2458 40 MC3-47 78 299 477 0.63 0.1116 0.0036 1.7742 0.0630 0.1143 0.0015 1826 59 MC3-48 41 60 83 0.72 0.1546 0.0062 6.9939 0.2523 0.3277 0.0065 2398 68 MC3-49 76 94 205 0.46 0.1220 0.0042 4.8939 0.1868 0.2883 0.0055 1987 61 MC3-50 89 85 235 0.36 0.1128 0.0038 4.6377 0.1596 0.2970 0.0054 1856 61 MC3-51 92 88 320 0.28 0.1203 0.0050 3.7258 0.1582 0.2275 0.0055 1961 75 MC3-52 60 86 104 0.83 0.1596 0.0053 9.1558 0.3936 0.4108 0.0086 2452 56

123 268 Acta Geochim (2018) 37(2):257–280

Table 1 continued Spot Pb Th U Th/U Isotope ratios Isotopic ages(Ma) (910-6) 207Pb/206Pb 1sigma 207Pb/235U 1sigma 206Pb/238U 1sigma 207Pb/206Pb 1sigma

MC3-53 49 53 119 0.45 0.1188 0.0031 5.0499 0.1323 0.3067 0.0045 1939 47 MC3-54 41 42 90 0.47 0.1268 0.0046 5.8771 0.2139 0.3356 0.0081 2054 64 MC3-55 59 90 115 0.79 0.1280 0.0064 6.2984 0.3016 0.3562 0.0078 2070 89 MC3-56 67 91 153 0.60 0.1266 0.0055 5.5193 0.2303 0.3173 0.0062 2051 78 MC3-57 84 12 235 0.05 0.1099 0.0028 4.9065 0.1335 0.3240 0.0053 1798 46 MC3-58 70 193 127 1.52 0.1260 0.0035 6.0712 0.1842 0.3481 0.0052 2043 50 MC3-59 51 47 94 0.50 0.1558 0.0039 8.7808 0.2294 0.4074 0.0055 2410 43 MC3-60 114 170 270 0.63 0.1540 0.0030 6.8180 0.1464 0.3197 0.0041 2390 38 MC3-61 101 108 160 0.67 0.1637 0.0032 10.5496 0.2107 0.4672 0.0057 2494 34 MC3-62 77 95 276 0.35 0.1264 0.0038 4.0670 0.1310 0.2336 0.0038 2050 54 MC3-63 83 42 221 0.19 0.1196 0.0030 5.4557 0.1573 0.3304 0.0054 1950 44 MC3-64 29 75 92 0.81 0.1283 0.0052 3.6276 0.1348 0.2102 0.0049 2076 40 MC3-65 96 55 334 0.17 0.1226 0.0030 4.1612 0.1080 0.2469 0.0038 1995 44 MC3-66 68 116 251 0.46 0.1330 0.0058 3.7880 0.1758 0.2100 0.0053 2139 76 MC3-67 88 285 238 1.20 0.1186 0.0034 4.2477 0.1324 0.2611 0.0040 1935 52 MC3-68 147 279 437 0.64 0.1521 0.0064 5.1495 0.2373 0.2448 0.0050 2369 72 MC3-69 92 160 152 1.05 0.1646 0.0043 9.1752 0.2263 0.4044 0.0075 2503 44 MC3-70 111 94 211 0.45 0.1664 0.0051 9.4244 0.3342 0.4092 0.0076 2522 52 MC3-71 100 200 305 0.66 0.1181 0.0025 3.9748 0.0962 0.2435 0.0035 1927 38 MC3-72 105 67 391 0.17 0.1372 0.0051 4.0247 0.1617 0.2121 0.0043 2192 63 MC3-73 96 117 290 0.41 0.1213 0.0024 4.3779 0.0871 0.2615 0.0029 1976 35 MC3-74 71 128 173 0.74 0.1201 0.0034 4.8145 0.1268 0.2907 0.0042 1958 51 MC3-75 77 61 121 0.50 0.1632 0.0029 10.6207 0.2375 0.4701 0.0072 2500 30 MC3-76 116 414 250 1.65 0.1687 0.0084 6.5034 0.2724 0.2828 0.0098 2546 84 MC3-77 75 115 216 0.53 0.1518 0.0039 5.2603 0.1469 0.2503 0.0034 2366 44 MC3-78 100 147 247 0.60 0.1193 0.0049 4.9478 0.1795 0.3059 0.0068 1946 73 MC3-79 88 119 202 0.59 0.1346 0.0028 5.7847 0.1239 0.3117 0.0039 2159 37 MC3-81 73 50 186 0.27 0.1168 0.0031 5.0649 0.1224 0.3160 0.0051 1909 48 MC3-82 92 115 165 0.70 0.1666 0.0056 9.2364 0.3351 0.4025 0.0077 2524 57 MC3-83 90 94 222 0.42 0.1136 0.0021 4.8989 0.0921 0.3129 0.0036 1858 29 MC3-84 102 205 277 0.74 0.1142 0.0029 4.2595 0.1091 0.2704 0.0037 1933 46 MC3-85 105 89 348 0.26 0.1161 0.0025 3.9667 0.0891 0.2477 0.0030 1898 39 MC3-86 58 86 159 0.54 0.1343 0.0043 5.1947 0.1653 0.2837 0.0053 2155 56 MC3-87 87 70 139 0.50 0.1640 0.0032 10.5184 0.2549 0.4657 0.0086 2498 33 MC3-88 86 67 272 0.25 0.1245 0.0023 4.2624 0.1171 0.2490 0.0062 2022 33 MC3-89 88 67 157 0.43 0.1550 0.0052 8.7004 0.2943 0.4062 0.0083 2402 57 MC3-90 74 70 219 0.32 0.1250 0.0030 4.6060 0.1233 0.2663 0.0039 2029 42 MC3-91 62 34 146 0.23 0.1264 0.0035 6.1392 0.1876 0.3552 0.0075 2050 50 MC3-93 119 34 475 0.07 0.1270 0.0031 3.6729 0.0942 0.2134 0.0047 2057 43 MC3-94 91 38 509 0.07 0.1156 0.0034 2.3751 0.0700 0.1495 0.0028 1900 54 MC3-95 75 84 223 0.38 0.1238 0.0032 4.3501 0.1240 0.2541 0.0040 2013 46 MC3-96 109 90 312 0.29 0.1285 0.0025 4.7184 0.0885 0.2667 0.0030 2077 40 MC3-97 111 96 289 0.33 0.1241 0.0026 5.3584 0.1260 0.3131 0.0049 2017 31 MC3-98 90 84 238 0.35 0.1247 0.0035 5.0748 0.1544 0.2946 0.0040 2024 51 MC3-99 108 127 239 0.53 0.1290 0.0030 6.2322 0.1774 0.3496 0.0058 2084 41 MC3-100 107 42 365 0.11 0.1166 0.0028 3.9458 0.0987 0.2452 0.0033 1906 43 MC4-1 130 390 375 1.04 0.1549 0.0029 5.4223 0.1599 0.2507 0.0047 2800 31

123 Acta Geochim (2018) 37(2):257–280 269

Table 1 continued Spot Pb Th U Th/U Isotope ratios Isotopic ages(Ma) (910-6) 207Pb/206Pb 1sigma 207Pb/235U 1sigma 206Pb/238U 1sigma 207Pb/206Pb 1sigma

MC4-2 126 183 218 0.84 0.1627 0.0028 9.1698 0.1975 0.4063 0.0050 2484 34 MC4-3 44 188 38 4.91 0.1597 0.0041 9.7652 0.2688 0.4430 0.0064 2454 43 MC4-4 27 103 36 2.81 0.1737 0.0093 8.5893 0.5131 0.3542 0.0055 2594 90 MC4-5 29 18 62 0.29 0.1565 0.0073 6.9043 0.3762 0.3126 0.0053 2418 79 MC4-6 90 143 209 0.69 0.1481 0.0055 5.7415 0.2290 0.2821 0.0063 2324 63 MC4-7 128 119 202 0.59 0.1646 0.0031 9.9881 0.2269 0.4375 0.0053 2506 32 MC4-8 91 235 110 2.14 0.1734 0.0040 10.2762 0.2376 0.4286 0.0046 2590 38 MC4-9 71 87 108 0.81 0.1593 0.0042 9.8275 0.2783 0.4453 0.0056 2448 44 MC4-10 25 25 39 0.65 0.1625 0.0044 9.8344 0.2628 0.4394 0.0065 2483 46 MC4-11 89 111 176 0.63 0.1700 0.0034 8.1862 0.1773 0.3482 0.0044 2558 33 MC4-12 9 9 15 0.64 0.1707 0.0076 9.8694 0.4330 0.4258 0.0098 2565 75 MC4-13 53 49 91 0.54 0.1760 0.0037 9.9090 0.2148 0.4082 0.0056 2617 35 MC4-14 34 57 52 1.10 0.1607 0.0032 9.3998 0.1940 0.4242 0.0046 2465 34 MC4-15 77 200 587 0.34 0.1533 0.0058 1.8447 0.0649 0.0879 0.0017 2383 65 MC4-16 57 188 119 1.58 0.1613 0.0033 7.0995 0.1745 0.3181 0.0047 2469 34 MC4-17 31 53 47 1.13 0.1731 0.0065 9.5666 0.4401 0.3952 0.0056 2588 63 MC4-18 104 492 227 2.17 0.1666 0.0033 6.2630 0.1813 0.2732 0.0067 2523 33 MC4-19 107 256 186 1.38 0.1618 0.0027 8.2589 0.1326 0.3701 0.0034 2476 28 MC4-20 65 320 135 2.37 0.1672 0.0038 6.6556 0.1895 0.2874 0.0045 2531 38 MC4-21 19 38 36 1.05 0.1704 0.0087 7.6476 0.4120 0.3275 0.0071 2562 84 MC4-22 64 84 98 0.86 0.1698 0.0047 9.6293 0.3108 0.4094 0.0053 2555 51 MC4-23 77 152 300 0.51 0.1402 0.0037 3.8691 0.1210 0.1994 0.0028 2231 46 MC4-24 94 111 153 0.72 0.1658 0.0038 9.6169 0.2319 0.4211 0.0067 2516 39 MC4-25 62 43 104 0.41 0.1686 0.0040 9.6350 0.3148 0.4126 0.0072 2544 40 MC4-26 35 33 61 0.55 0.1699 0.0090 9.1228 0.4495 0.3928 0.0075 2557 89 MC4-27 56 48 97 0.50 0.1700 0.0043 9.4585 0.2495 0.4042 0.0055 2557 43 MC4-28 101 131 176 0.75 0.1856 0.0027 10.3285 0.1730 0.4033 0.0035 2703 24 MC4-29 79 85 123 0.69 0.1626 0.0027 9.8894 0.1827 0.4412 0.0047 2484 27 MC4-30 80 134 147 0.91 0.1735 0.0035 8.6855 0.1774 0.3637 0.0036 2592 34 MC4-31 67 309 169 1.83 0.1684 0.0039 6.4996 0.1499 0.2813 0.0042 2542 39 MC4-32 95 159 199 0.80 0.1540 0.0032 6.8689 0.1441 0.3234 0.0027 2391 29 MC4-33 80 107 127 0.84 0.1713 0.0028 9.8631 0.1865 0.4171 0.0042 2572 27 MC4-34 38 63 68 0.93 0.1709 0.0042 8.7081 0.2346 0.3698 0.0051 2566 41 MC4-35 107 124 193 0.64 0.1721 0.0032 8.9561 0.2048 0.3769 0.0058 2589 31 MC4-36 44 105 97 1.08 0.1638 0.0071 6.2546 0.3378 0.2775 0.0094 2495 74 MC4-37 41 58 65 0.90 0.1662 0.0037 9.6347 0.2224 0.4207 0.0046 2520 42 MC4-38 84 95 132 0.73 0.1638 0.0029 9.7705 0.1873 0.4327 0.0050 2495 30 MC4-39 127 79 224 0.35 0.1648 0.0027 9.6705 0.1927 0.4245 0.0050 2505 26 MC4-40 104 112 177 0.63 0.1614 0.0037 9.2127 0.2348 0.4132 0.0061 2472 39 MC4-41 16 16 26 0.61 0.1655 0.0065 9.2895 0.3715 0.4109 0.0076 2512 61 MC4-42 79 121 150 0.81 0.1727 0.0036 8.4985 0.2240 0.3551 0.0055 2584 35 MC4-43 69 112 101 1.10 0.1722 0.0035 9.6981 0.2911 0.4061 0.0076 2579 35 MC4-44 110 141 169 0.83 0.1636 0.0031 9.5088 0.2008 0.4209 0.0054 2494 31 MC4-45 43 54 69 0.77 0.1702 0.0051 9.6240 0.2946 0.4113 0.0077 2561 50 MC4-46 92 309 130 2.38 0.1621 0.0066 7.7103 0.2758 0.3477 0.0058 2477 70 MC4-47 74 139 110 1.27 0.1632 0.0032 9.2744 0.1963 0.4115 0.0045 2500 34 MC4-48 86 201 217 0.93 0.1648 0.0034 6.3834 0.2015 0.2785 0.0056 2506 34

123 270 Acta Geochim (2018) 37(2):257–280

Table 1 continued Spot Pb Th U Th/U Isotope ratios Isotopic ages(Ma) (910-6) 207Pb/206Pb 1sigma 207Pb/235U 1sigma 206Pb/238U 1sigma 207Pb/206Pb 1sigma

MC4-49 43 62 94 0.66 0.1620 0.0075 6.3142 0.3131 0.2808 0.0034 2477 77 MC4-50 94 168 129 1.30 0.1861 0.0058 10.2993 0.3161 0.4024 0.0081 2709 52 MC4-51 71 99 203 0.49 0.1861 0.0105 5.5591 0.3119 0.2176 0.0050 2709 93 MC4-52 114 83 223 0.37 0.1655 0.0028 8.3322 0.1542 0.3637 0.0038 2513 28 MC4-53 97 90 148 0.60 0.1640 0.0029 10.1567 0.1816 0.4482 0.0044 2498 25 MC4-54 52 235 174 1.35 0.1889 0.0107 5.0343 0.3363 0.1908 0.0024 2732 99 MC4-55 81 69 165 0.42 0.1629 0.0067 7.5587 0.3810 0.3317 0.0065 2487 69 MC4-56 77 152 148 1.02 0.1727 0.0063 7.9425 0.3007 0.3301 0.0051 2584 60 MC4-57 79 407 187 2.18 0.1617 0.0035 6.2502 0.1211 0.2806 0.0030 2473 36 MC4-58 94 177 223 0.80 0.1639 0.0042 6.7052 0.1848 0.2950 0.0037 2498 43 MC4-59 81 110 140 0.79 0.1658 0.0061 8.9230 0.3275 0.3901 0.0099 2516 61 MC4-60 34 28 55 0.51 0.1670 0.0045 9.8912 0.2894 0.4293 0.0075 2527 44 MC4-61 45 69 94 0.73 0.1571 0.0037 7.4042 0.2344 0.3386 0.0061 2424 40 MC4-62 20 35 33 1.06 0.1654 0.0170 8.5129 0.9936 0.3652 0.0186 2522 173 MC4-63 128 310 202 1.53 0.1732 0.0036 8.8347 0.1893 0.3690 0.0036 2589 35 MC4-64 12 11 19 0.55 0.1722 0.0091 10.1303 0.5170 0.4321 0.0111 2579 88 MC4-65 116 588 353 1.67 0.1593 0.0029 5.1321 0.1127 0.2333 0.0039 2448 31 MC4-66 70 109 107 1.02 0.1706 0.0042 10.0400 0.2246 0.4285 0.0061 2565 41 MC4-68 90 250 193 1.30 0.1711 0.0067 6.8431 0.2342 0.2904 0.0046 2568 65 MC4-69 66 118 130 0.91 0.1677 0.0033 8.0656 0.2002 0.3476 0.0058 2535 33 MC4-70 106 214 203 1.06 0.1696 0.0033 8.1260 0.1673 0.3469 0.0039 2554 33 MC4-71 129 388 285 1.36 0.1757 0.0037 7.1016 0.1884 0.2923 0.0048 2613 35 MC4-72 53 84 81 1.04 0.1590 0.0032 9.6840 0.2191 0.4413 0.0056 2456 35 MC4-73 35 68 52 1.31 0.1768 0.0054 10.3521 0.3114 0.4251 0.0057 2633 50 MC4-74 66 73 112 0.65 0.1699 0.0032 9.8758 0.1948 0.4212 0.0043 2567 31 MC4-75 17 60 19 3.13 0.1770 0.0129 9.9339 0.8095 0.4119 0.0206 2625 122 MC4-76 74 58 135 0.43 0.1743 0.0033 10.1118 0.1892 0.4209 0.0042 2600 32 MC4-77 26 80 48 1.67 0.1789 0.0057 8.6298 0.2835 0.3513 0.0073 2643 53 MC4-80 77 150 126 1.19 0.1751 0.0042 9.6796 0.2333 0.4008 0.0055 2607 39 MC4-81 67 123 121 1.02 0.1712 0.0042 9.1589 0.2557 0.3874 0.0058 2569 41 MC4-82 98 263 264 1.00 0.1577 0.0041 5.6624 0.1509 0.2610 0.0044 2432 45 MC4-83 91 260 217 1.20 0.1671 0.0042 6.7592 0.2208 0.2928 0.0073 2529 43 MC4-84 92 216 204 1.06 0.1652 0.0041 7.2035 0.2466 0.3138 0.0063 2510 36 MC4-85 93 144 191 0.75 0.1610 0.0029 7.8745 0.2514 0.3513 0.0086 2466 30 MC4-86 75 120 138 0.87 0.1809 0.0029 9.7772 0.2186 0.3905 0.0061 2661 26 MC4-87 72 304 197 1.54 0.1558 0.0048 5.3735 0.1793 0.2496 0.0046 2411 53 MC4-88 104 466 132 3.54 0.1650 0.0031 8.6468 0.1866 0.3788 0.0042 2507 31 MC4-89 90 75 125 0.60 0.2083 0.0042 15.4878 0.3683 0.5357 0.0060 2892 32 MC4-90 50 113 95 1.18 0.1709 0.0044 8.2459 0.2254 0.3493 0.0048 2569 43 MC4-91 48 66 92 0.71 0.1618 0.0033 8.5606 0.1786 0.3835 0.0035 2476 35 MC4-92 90 175 169 1.04 0.1652 0.0037 8.9247 0.2273 0.3897 0.0048 2510 38 MC4-93 98 192 207 0.93 0.1617 0.0033 7.8281 0.2077 0.3487 0.0053 2473 34 MC4-94 114 159 268 0.59 0.1708 0.0033 7.4594 0.1816 0.3151 0.0045 2565 33 MC4-95 21 16 37 0.43 0.1613 0.0049 9.3876 0.3716 0.4147 0.0076 2469 51 MC4-96 36 147 115 1.29 0.1646 0.0066 4.6117 0.2143 0.2024 0.0043 2506 68 MC4-97 26 11 47 0.22 0.1751 0.0061 10.6225 0.4274 0.4401 0.0102 2607 58 MC4-98 56 78 177 0.44 0.1606 0.0058 5.4771 0.1862 0.2485 0.0047 2461 61

123 Acta Geochim (2018) 37(2):257–280 271

Table 1 continued Spot Pb Th U Th/U Isotope ratios Isotopic ages(Ma) (910-6) 207Pb/206Pb 1sigma 207Pb/235U 1sigma 206Pb/238U 1sigma 207Pb/206Pb 1sigma

MC4-99 87 115 145 0.79 0.1710 0.0031 10.2140 0.1948 0.4333 0.0048 2569 31 MC4-100 84 185 176 1.05 0.1581 0.0026 7.7502 0.1777 0.3529 0.0046 2435 27 MC5-1 68 71 138 0.51 0.1664 0.0046 7.9392 0.3504 0.3446 0.0103 2522 46 MC5-2 87 105 174 0.6 0.1615 0.0044 8.5938 0.2746 0.3887 0.0079 2471 46 MC5-3 38 42 59 0.71 0.168 0.0041 9.9193 0.2562 0.4287 0.0064 2538 45 MC5-4 62 61 155 0.39 0.1237 0.0032 5.13 0.1403 0.3004 0.0039 2011 45 MC5-5 141 273 334 0.82 0.1605 0.003 6.2281 0.1242 0.2813 0.0037 2461 31 MC5-6 149 284 536 0.53 0.1646 0.0033 4.3576 0.1016 0.1917 0.0027 2503 35 MC5-7 89 169 167 1.01 0.1752 0.0038 8.9827 0.2004 0.3719 0.005 2609 36 MC5-8 148 261 489 0.54 0.1622 0.0032 4.7939 0.1197 0.2138 0.0032 2480 28 MC5-9 26 22 47 0.47 0.1618 0.0068 9.2958 0.4591 0.4129 0.0086 2476 71 MC5-10 23 45 43 1.04 0.1469 0.0054 6.6449 0.258 0.3285 0.0056 2310 58 MC5-11 118 204 466 0.44 0.1196 0.0034 3.1265 0.0841 0.1907 0.0028 1950 84 MC5-12 140 246 312 0.79 0.1623 0.0032 6.8477 0.1375 0.3055 0.0039 2480 34 MC5-13 102 129 475 0.27 0.1455 0.0045 3.3735 0.1287 0.167 0.0034 2294 53 MC5-14 113 169 204 0.83 0.167 0.0028 9.5424 0.2577 0.4099 0.0072 2528 32 MC5-15 64 49 102 0.48 0.1659 0.0028 10.4499 0.1997 0.4564 0.0057 2516 30 MC5-16 89 193 325 0.59 0.1236 0.0041 3.7011 0.1375 0.2166 0.0038 2009 64 MC5-17 41 88 52 1.68 0.1634 0.0042 10.4332 0.2616 0.4638 0.0073 2492 44 MC5-18 121 153 264 0.58 0.1625 0.0024 7.4929 0.1515 0.3337 0.005 2481 25 MC5-19 139 209 429 0.49 0.1439 0.0026 4.9177 0.1265 0.2469 0.0046 2276 32 MC5-21 2403 11,675 279 41.85 0.1225 0.0026 4.7021 0.1093 0.2778 0.0034 1994 38 MC5-23 1618 4301 58 74.06 0.19 0.0043 13.4658 0.3301 0.5142 0.0073 2742 37 MC5-24 5143 20,186 254 79.4 0.1609 0.0024 7.646 0.1232 0.3441 0.0035 2465 30 MC5-26 4907 17,914 194 92.34 0.1634 0.0065 8.4774 0.3789 0.3736 0.0077 2491 67 MC5-27 7030 16,621 336 49.52 0.1208 0.0016 4.8561 0.0717 0.2925 0.0038 1969 22 MC5-28 8935 76,263 487 156.64 0.1626 0.002 4.5763 0.0566 0.2036 0.0019 2483 22 MC5-29 7244 12,674 497 25.52 0.1436 0.0048 3.329 0.1106 0.169 0.0027 2272 57 MC5-30 11,345 80,502 439 183.51 0.162 0.0026 5.7716 0.124 0.2574 0.0034 2477 28 MC5-31 7995 28,035 252 111.11 0.1621 0.002 9.0163 0.2171 0.4022 0.0086 2478 20 MC5-32 5734 14,892 203 73.22 0.1671 0.0069 8.8026 0.4852 0.3686 0.0058 2529 71 MC5-33 3445 12,033 111 108.75 0.1665 0.0031 10.3722 0.231 0.4501 0.0059 2524 32 MC5-34 5359 17,325 297 58.26 0.1644 0.0026 7.2712 0.1959 0.3164 0.0052 2502 26 MC5-37 2312 6310 270 23.41 0.1191 0.0029 4.5142 0.1186 0.2745 0.0036 1943 44 MC5-38 2441 13,865 381 36.37 0.1461 0.0042 4.9391 0.1475 0.2443 0.003 2302 50 MC5-39 509 1695 72 23.44 0.1611 0.0039 8.2135 0.2312 0.3688 0.0059 2478 41 MC5-40 1108 1404 586 2.4 0.1641 0.0058 4.1725 0.2254 0.1767 0.0031 2499 64 MC5-41 96 143 153 0.94 0.168 0.0032 9.8107 0.2213 0.4211 0.0055 2539 32 MC5-42 82 280 417 0.67 0.1224 0.0037 2.4091 0.0838 0.1419 0.0022 1992 58 MC5-43 71 132 147 0.9 0.1187 0.0026 5.5018 0.1318 0.3347 0.0042 1937 39 MC5-44 137 361 309 1.17 0.1633 0.0029 6.7276 0.1987 0.2947 0.0061 2490 30 MC5-45 89 216 187 1.16 0.1479 0.0023 6.6184 0.1365 0.3227 0.0048 2324 28 MC5-46 105 177 276 0.64 0.1225 0.0033 4.7327 0.123 0.2806 0.0037 1994 49 MC5-47 100 203 315 0.64 0.1461 0.0031 4.5154 0.09 0.2237 0.0022 2302 36 MC5-48 60 88 120 0.73 0.1644 0.004 8.0503 0.2294 0.3528 0.0052 2502 41 MC5-49 148 296 525 0.56 0.1676 0.0043 5.1133 0.2317 0.2106 0.0052 2500 43 MC5-50 95 139 416 0.33 0.125 0.0026 2.9821 0.0689 0.1723 0.0032 2029 37

123 272 Acta Geochim (2018) 37(2):257–280

Table 1 continued Spot Pb Th U Th/U Isotope ratios Isotopic ages(Ma) (910-6) 207Pb/206Pb 1sigma 207Pb/235U 1sigma 206Pb/238U 1sigma 207Pb/206Pb 1sigma

MC5-51 113 36 483 0.07 0.1259 0.0027 3.4273 0.1145 0.1961 0.0054 2043 37 MC5-52 67 170 183 0.93 0.1256 0.0051 4.5647 0.2643 0.2483 0.0041 2039 72 MC5-54 84 45 201 0.22 0.122 0.0038 5.5492 0.1563 0.3287 0.0056 1987 56 MC5-55 123 191 473 0.4 0.1833 0.004 4.6049 0.116 0.1813 0.0026 2683 37 MC5-56 82 109 327 0.33 0.1214 0.0028 3.3022 0.111 0.1963 0.0051 1977 41 MC5-57 104 36 474 0.07 0.1035 0.0021 2.7095 0.0831 0.1884 0.0043 1689 37 MC5-58 142 155 297 0.52 0.1635 0.0029 7.6429 0.1814 0.3359 0.005 2492 30 MC5-59 137 245 759 0.32 0.1256 0.0023 2.4801 0.0551 0.1426 0.0021 2039 32 MC5-60 111 222 358 0.62 0.1582 0.0042 4.818 0.1236 0.2209 0.0037 2437 45 MC5-61 78 83 173 0.48 0.1184 0.0032 5.6537 0.1542 0.3455 0.0041 1932 49 MC5-62 105 115 361 0.32 0.1574 0.0046 4.7951 0.1302 0.221 0.0043 2428 49 MC5-63 107 95 384 0.25 0.1175 0.004 3.7158 0.1353 0.2285 0.0032 1920 66 MC5-64 87 35 336 0.1 0.1208 0.0033 3.7093 0.1079 0.2224 0.0034 1969 50 MC5-65 64 58 154 0.37 0.119 0.0024 5.6247 0.1465 0.34 0.0051 1943 36 MC5-66 92 99 315 0.32 0.1481 0.0041 4.5303 0.1668 0.2194 0.0035 2324 48 MC5-67 45 98 67 1.48 0.1651 0.0036 9.7453 0.2215 0.4297 0.0074 2509 37 MC5-68 102 214 211 1.02 0.1599 0.003 7.7866 0.1724 0.351 0.0047 2455 27 MC5-69 122 208 218 0.95 0.1674 0.003 9.1694 0.1597 0.3957 0.0042 2532 30 MC5-70 51 76 115 0.66 0.1229 0.0027 5.8863 0.1329 0.3468 0.0049 1999 39 MC5-71 57 53 89 0.59 0.1671 0.0035 11.106 0.2597 0.4792 0.0061 2528 36 MC5-72 104 526 735 0.72 0.1027 0.0028 1.6387 0.0485 0.1152 0.0018 1673 44 MC5-73 90 107 156 0.68 0.1805 0.0066 10.2497 0.3064 0.4111 0.0094 2657 61 MC5-74 96 99 266 0.37 0.1467 0.0042 6.0225 0.2245 0.295 0.0057 2309 55 MC5-75 111 94 210 0.44 0.1628 0.0027 9.3006 0.1684 0.413 0.0045 2485 28 MC5-76 107 213 366 0.58 0.126 0.0022 3.8129 0.0639 0.2192 0.0023 2044 30 MC5-78 91 106 275 0.38 0.1218 0.0025 4.4021 0.0998 0.2619 0.0037 1983 37 MC5-79 59 43 98 0.44 0.1639 0.0046 10.6326 0.3383 0.4695 0.0086 2496 46 MC5-80 107 25 332 0.07 0.1199 0.0028 4.6099 0.1149 0.2787 0.0035 1955 41 MC5-81 51 111 100 1.12 0.1213 0.0046 5.7526 0.2126 0.345 0.005 1976 67 MC5-82 92 45 406 0.11 0.1178 0.0033 3.0284 0.0946 0.1863 0.0034 1924 50 MC5-83 126 129 287 0.45 0.1197 0.0034 5.6606 0.1714 0.3435 0.0057 1952 50 MC5-84 129 259 286 0.91 0.1671 0.0027 7.7802 0.1931 0.3359 0.0064 2529 27 MC5-85 92 117 242 0.48 0.1377 0.0025 5.935 0.1676 0.3103 0.0061 2199 32 MC5-86 63 49 191 0.26 0.1232 0.0023 4.5113 0.1159 0.2643 0.0046 2003 33 MC5-87 100 113 284 0.4 0.1491 0.0029 5.7268 0.1257 0.2781 0.0039 2336 33 MC5-88 150 215 255 0.84 0.1811 0.0031 10.1046 0.182 0.404 0.0052 2663 28 MC5-89 117 105 395 0.27 0.1469 0.0028 5.2182 0.1753 0.2551 0.0067 2310 33 MC5-90 109 272 329 0.83 0.16 0.0034 5.3014 0.1335 0.2387 0.0032 2457 35 MC5-91 93 145 175 0.83 0.1593 0.0054 8.7614 0.3617 0.3958 0.0082 2450 57 MC5-92 106 182 469 0.39 0.1218 0.0028 3.1385 0.0903 0.1848 0.0027 1984 45 MC5-93 112 75 564 0.13 0.1216 0.0029 2.9802 0.0879 0.1765 0.003 1980 48 MC5-94 63 39 158 0.25 0.1212 0.003 5.8284 0.182 0.3456 0.0054 1974 42 MC5-95 53 140 111 1.27 0.1252 0.003 5.689 0.1619 0.3268 0.004 2032 44 MC5-97 119 122 564 0.22 0.1454 0.004 3.7413 0.1191 0.1867 0.0034 2292 48 MC5-98 133 209 265 0.79 0.1592 0.003 8.1247 0.1668 0.3682 0.0036 2447 33 MC5-99 29 26 45 0.58 0.1664 0.0046 10.9115 0.2894 0.4771 0.0069 2521 47 MC5-100 105 326 383 0.85 0.1172 0.0033 3.4949 0.1117 0.2156 0.0043 1913 52

123 Acta Geochim (2018) 37(2):257–280 273

Table 2 SHRIMP U–Pb analytical results of detrital zircons from sample MC5 in the Chuanlinggou Formation

206 * 207 * 206 * 207 * 235 206 * 238 207 * 206 * Spot Pbc %U Th Th/ Pb Pb / Pb In % Pb / UIn% Pb / U In % Err Pb / Pb ppm ppm U ppm corr. age (Ma)

MC5-1.1 0.30 46 49 1.11 18.8 0.1625 1.6 10.68 2.6 0.4760 2.1 0.804 2482 ± 26 MC5-2.1 0.73 44 24 0.55 19.5 0.1600 2.0 11.14 3.0 0.5050 2.2 0.739 2455 ± 34 MC5-3.1 0.29 135 87 0.67 57.7 0.1620 0.9 11.04 2.0 0.4941 1.8 0.885 2477 ± 16 MC5-5.1 0.63 541 457 0.87 97.5 0.1337 1.0 3.84 2.0 0.2083 1.7 0.850 2147 ± 18 MC5-6.1 0.74 152 73 0.50 58.7 0.1567 1.2 9.63 2.1 0.4461 1.8 0.819 2420 ± 21 MC5-7.1 0.38 135 97 0.74 53.8 0.1528 1.3 9.72 2.3 0.4617 1.9 0.837 2377 ± 22 MC5-8.1 0.72 101 71 0.72 43.3 0.1632 1.2 11.12 2.2 0.4940 1.8 0.831 2489 ± 21 MC5-9.1 0.28 151 56 0.38 65.7 0.1613 0.9 11.21 1.9 0.5041 1.7 0.891 2469 ± 15 MC5-10.1 2.79 239 93 0.40 56.1 0.1407 3.2 5.13 3.6 0.2644 1.8 0.508 2235 ± 54 MC5-11.1 0.74 112 11 0.10 33.4 0.1094 2.0 5.18 2.8 0.3433 2.0 0.713 1789 ± 36 MC5-12.1 0.48 67 63 0.97 26.0 0.1459 1.6 8.99 2.6 0.4469 2.0 0.780 2298 ± 28 MC5-13.1 0.19 181 131 0.75 66.8 0.1680 0.9 9.93 1.9 0.4288 1.7 0.889 2538 ± 15 MC5-14.1 0.67 68 50 0.76 23.3 0.1405 1.8 7.61 2.7 0.3928 2.0 0.732 2233 ± 32 MC5-15.1 0.71 80 46 0.59 31.1 0.1572 1.6 9.70 2.5 0.4474 1.9 0.779 2426 ± 27 MC5-16.1 2.62 110 78 0.74 38.7 0.1506 2.5 8.21 3.1 0.3956 1.9 0.606 2351 ± 42 MC5-17.1 0.48 89 52 0.60 34.1 0.1598 1.3 9.79 2.5 0.4443 2.1 0.849 2454 ± 23 MC5-18.1 0.85 70 26 0.39 29.0 0.1566 2.1 10.26 2.9 0.4752 2.0 0.683 2419 ± 36 MC5-20.1 1.16 44 41 0.96 14.9 0.1245 3.2 6.69 3.9 0.3899 2.2 0.576 2021 ± 56 MC5-21.1 0.42 210 1 0.01 59.3 0.1099 1.7 4.96 2.4 0.3274 1.7 0.705 1798 ± 31 MC5-22.1 0.22 447 406 0.94 90.6 0.1417 0.9 4.59 1.8 0.2350 1.6 0.872 2248 ± 15 MC5-23.1 0.79 98 66 0.70 26.1 0.1093 3.0 4.63 3.7 0.3072 2.2 0.592 1788 ± 55 MC5-24.1 0.23 106 81 0.78 37.9 0.1344 1.3 7.68 2.4 0.4145 2.1 0.840 2156 ± 23 MC5-25.1 0.97 30 59 2.03 11.0 0.1505 3.6 8.82 4.5 0.4250 2.7 0.599 2351 ± 61 MC5-26.1 0.74 172 56 0.34 52.0 0.1594 1.7 7.64 2.6 0.3477 1.9 0.738 2448 ± 30 MC5-27.1 0.23 87 102 1.22 36.8 0.1665 1.4 11.30 2.4 0.4924 1.9 0.802 2523 ± 24 MC5-28.1 0.65 63 57 0.93 21.8 0.1420 2.1 7.83 3.0 0.4000 2.1 0.700 2251 ± 37 MC5-29.1 0.78 49 7 0.15 19.0 0.1503 2.7 9.25 3.5 0.4463 2.2 0.634 2349 ± 46 MC5-30.1 0.14 212 108 0.53 85.4 0.1557 0.8 10.03 1.8 0.4672 1.7 0.903 2409 ± 13 MC5-31.1 0.30 108 27 0.26 36.5 0.1368 1.4 7.39 2.3 0.3919 1.8 0.807 2186 ± 24 MC5-32.1 0.44 64 112 1.82 25.1 0.1568 1.9 9.89 2.8 0.4574 2.1 0.744 2421 ± 32 MC5-33.1 0.54 117 43 0.38 48.3 0.1650 1.2 10.85 2.2 0.4770 1.8 0.834 2508 ± 20 MC5-34.1 0.23 144 101 0.72 55.7 0.1563 1.0 9.65 2.0 0.4479 1.8 0.867 2416 ± 17 MC5-35.1 0.92 208 122 0.61 60.0 0.1556 1.7 7.11 2.4 0.3315 1.7 0.704 2408 ± 29 MC5-36.1 0.56 123 51 0.43 42.5 0.1622 1.2 8.91 2.2 0.3987 1.8 0.825 2478 ± 21 MC5-37.1 1.57 29 10 0.36 12.9 0.1627 2.7 11.17 3.7 0.4980 2.5 0.680 2483 ± 46 MC5-38.1 0.93 52 15 0.30 20.2 0.1548 2.5 9.49 3.3 0.4449 2.1 0.643 2399 ± 43 MC5-40.1 0.30 101 58 0.59 41.3 0.1625 1.1 10.66 2.2 0.4759 1.9 0.855 2482 ± 19 MC5-41.1 0.56 99 43 0.44 43.0 0.1620 1.2 11.18 2.2 0.5009 1.8 0.843 2476 ± 20 MC5-42.1 0.30 144 70 0.50 59.7 0.1610 0.9 10.66 2.0 0.4803 1.7 0.882 2466 ± 16 MC5-43.1 0.34 91 69 0.78 39.1 0.1688 1.5 11.57 2.4 0.4971 1.9 0.791 2546 ± 25 MC5-44.1 0.98 29 68 2.45 12.3 0.1633 3.1 11.01 4.0 0.4890 2.6 0.639 2489 ± 52 MC5-45.1 0.63 47 96 2.10 20.0 0.1664 2.7 11.18 3.5 0.4870 2.2 0.640 2522 ± 45 MC5-46.1 0.36 103 55 0.55 44.2 0.1654 1.1 11.37 2.1 0.4986 1.8 0.862 2511 ± 18 MC5-47.1 0.89 62 36 0.60 26.7 0.1580 1.7 10.79 2.9 0.4960 2.3 0.794 2434 ± 30 MC5-48.1 0.65 82 37 0.47 35.1 0.1664 1.6 11.36 2.5 0.4951 1.9 0.763 2521 ± 28 MC5-49.1 0.68 78 8 0.11 25.8 0.1261 2.7 6.68 3.3 0.3843 2.0 0.593 2044 ± 47 MC5-50.1 0.28 205 17 0.08 58.4 0.1095 1.2 5.00 2.0 0.3312 1.6 0.806 1791 ± 22

123 274 Acta Geochim (2018) 37(2):257–280

Table 2 SHRIMP U–Pb analytical results of detrital zircons from sample MC5 in the Chuanlinggou Formation

206 * 207 * 206 * 207 * 235 206 * 238 207 * 206 * Spot Pbc %U Th Th/ Pb Pb / Pb In % Pb / UIn% Pb / U In % Err Pb / Pb ppm ppm U ppm corr. age (Ma)

MC5-51.1 0.56 139 96 0.71 50.3 0.1604 1.8 9.22 2.6 0.4170 1.9 0.711 2460 ± 31 MC5-52.1 0.81 310 91 0.30 68.0 0.1481 1.2 5.16 2.0 0.2526 1.6 0.794 2324 ± 21 MC5-53.1 0.50 68 35 0.53 28.8 0.1698 1.4 11.55 2.7 0.4940 2.3 0.858 2555 ± 23 MC5-54.1 0.59 382 293 0.79 78.0 0.1369 1.4 4.46 2.2 0.2360 1.7 0.781 2188 ± 24 MC5-55.1 0.65 61 42 0.72 24.8 0.1679 1.8 10.95 2.7 0.4732 2.1 0.756 2536 ± 30 MC5-56.1 0.37 235 165 0.72 80.2 0.1720 0.8 9.40 1.8 0.3962 1.6 0.893 2577 ± 14 MC5-57.1 0.45 134 99 0.77 51.6 0.1610 1.1 9.92 2.1 0.4470 1.8 0.848 2466 ± 19 MC5-58.1 0.87 108 38 0.37 37.7 0.1532 1.5 8.50 2.4 0.4027 1.8 0.780 2381 ± 25 MC5-59.1 0.43 108 67 0.64 46.1 0.1647 1.1 11.18 2.2 0.4926 1.8 0.850 2504 ± 19 MC5-60.1 0.20 377 95 0.26 125 0.1642 0.7 8.70 1.7 0.3843 1.6 0.921 2499 ± 11 MC5-61.1 0.43 208 174 0.86 73.8 0.1575 1.0 8.91 2.0 0.4103 1.7 0.850 2428 ± 18 MC5-63.1 0.71 65 33 0.52 26.2 0.1623 1.8 10.48 2.8 0.4684 2.1 0.768 2479 ± 30 MC5-64.1 0.42 37 37 1.02 16.4 0.1737 2.0 12.12 3.2 0.5060 2.5 0.784 2594 ± 33 MC5-65.1 0.46 110 49 0.47 43.6 0.1618 1.3 10.26 2.3 0.4599 1.9 0.821 2474 ± 22 MC5-66.1 0.37 97 149 1.59 36.7 0.1576 1.4 9.55 2.4 0.4397 2.0 0.816 2429 ± 24 MC5-67.1 0.24 78 32 0.43 30.8 0.1699 1.5 10.74 2.6 0.4582 2.1 0.824 2557 ± 25 MC5-68.1 0.41 53 52 1.01 21.3 0.1701 1.7 10.95 2.8 0.4670 2.2 0.800 2559 ± 28 MC5-69.1 0.53 350 143 0.42 95.5 0.1489 1.0 6.47 1.9 0.3155 1.7 0.847 2333 ± 18 MC5-71.1 0.53 450 128 0.29 79.0 0.1372 1.1 3.84 1.9 0.2032 1.6 0.818 2192 ± 19 MC5-72.1 0.15 235 117 0.52 94.3 0.1642 0.8 10.57 1.8 0.4667 1.7 0.911 2500 ± 13 MC5-73.1 1.24 164 118 0.74 54.8 0.1562 1.5 8.24 2.3 0.3825 1.8 0.760 2415 ± 26 MC5-74.1 0.63 250 81 0.33 81.9 0.1547 1.3 8.06 2.1 0.3778 1.7 0.795 2398 ± 22 MC5-75.1 0.63 96 105 1.13 39.2 0.1599 1.5 10.36 2.6 0.4700 2.2 0.827 2454 ± 25 MC5-76.1 1.18 310 261 0.87 86.9 0.1220 1.5 5.41 2.2 0.3217 1.6 0.745 1985 ± 26 MC5-77.1 0.32 128 77 0.62 47.7 0.1570 1.3 9.34 2.3 0.4316 1.8 0.815 2423 ± 22 MC5-78.1 0.14 298 172 0.60 105 0.1581 0.8 8.96 1.8 0.4109 1.6 0.909 2435 ± 13 MC5-79.1 0.68 30 22 0.76 11.9 0.1645 3.0 10.40 4.3 0.4590 3.1 0.723 2502 ± 50

materials, we collected and analyzed a large number of 5.3 Transgressive event and analysis previously published age data and found that the detritus of the sedimentary environment were most probably derived from the Trans-North China Orogen (TNCO) (Fig. 10), which is believed to represent a The age spectrum of sample MC5 shows a major peak at collision zone resulting from the amalgamation of the 2500 Ma and a secondary peak at 2000 Ma (Fig. 6). Eastern and Western Blocks (Zhao et al. 2002b, 2006; Sample MC4, which is stratigraphically lower than MC5, Kusky et al. 2007). The 2000 Ma age peak reflects a only has one peak at 2500 Ma. The of the geological event which was coincident with the global samples MC4 and MC5 changed from a clastic rock (fine- collision events at 2.0–1.8 Ga and is recognized as the grained sandstone) to a carbonate rock (fine-grained dolo- timing of the assembly of the Paleo-Mesoproterozoic mite), suggesting that the depositional basin became pro- supercontinent Columbia. gressively deeper. Combining with the zircon data, we The ca. 2000 Ma clastics from the TNCO were carried suggest that this documents a transgressive event when into the research area and then were firstly deposited in sample MC5 was deposited, and seawater carried ca. sample MC3. The age ranges of our detrital zircons show that 2000 Ma clastic materials from the TNCO to the basin in the source for the Chuanlinggou Formation became more which the Chuanlinggou Formation was deposited, leading extensive the younger the sediment, suggesting that larger to the addition of ca. 2000 Ma detritus. areas of Archean to Paleoproterozoic rocks were included as The Chuanlinggou Formation in the Yanshan area the deposition of the Chuanlinggou Formation progressed. and the northern Taihang Mountain, had its maximum

123 Acta Geochim (2018) 37(2):257–280 275

Fig. 6 LA-ICP-MS U–Pb age concordia diagrams and age spectra for the detrital zircons of the samples MC1 to MC5

123 276 Acta Geochim (2018) 37(2):257–280

Fig. 7 SHRIMP U–Pb age concordia diagram and age spectrum for the detrital zircons of the sample MC5

thickness at Jixian and Xinglong (Gao et al. 2009). Song and Gao (1987) reported that the lower part of the Chuanlinggou Formation in the Ming Tombs District was deposited in a lagoonal environment. If the Chuanlinggou Formation was a lagoonal system, then its provenance would probably have been limited. However, our data show that the provenance became wider with time, adding more ca. 2000 Ma clastic materials. Therefore, we do not think that the Chuan- linggou Formation in the Ming Tombs area reflects a lagoonal sedimentary environment. Instead, we suggest that the Chuanlinggou Formation reflects a low-energy mud flat sedimentary environment in the inter-supra tidal zone because the sediments mainly consist of silty mudstone and fine sandstone with relatively simple sedimentary structures (Fig. 11). Of course, it is only a Fig. 8 Age spectrum for all the detrital zircons of the Chuanlinggou preliminary conclusion based on the obtained data from Formation

Fig. 9 Previous age constraints on the Chuanlinggou Formation in the Yanliao area in the NCC

123 Acta Geochim (2018) 37(2):257–280 277

Fig. 10 Distributions of Archean rocks in the North China Craton. Modified from Santosh et al. (2013) (the red circles show the available zircon age data from Du et al. (2010, 2012, Geng et al. (2000), Guan et al. (2002), Kro¨ner et al. (2005), Sun et al. (1991), Wang et al. (2000, 2010), Wang and Wilde (2002)), Yang et al. (2011, Yu et al. (2004), Zhao et al. (2002a, b, 2008, 2011)

Fig. 11 Paleoenvironment and sedimentary facies of the Chuanlinggou Formation in the Ming Tombs District, Beijing. Modified from He et al. (1994) the present study. To draw a definite conclusion, further 6 Conclusions research on the lithology, lithologic composition, verti- cal distribution, spacial variation, etc. of the Chuan- The youngest zircon age in the bottom sediments of the linggou Formation in the Ming Tombs District should Chuanlinggou Formation is 1673 ± 44 Ma, which sug- be made. gests that the Chuanlinggou Formation was deposited after

123 278 Acta Geochim (2018) 37(2):257–280 this age. The sediments in the Chuanlinggou Formation Gao LZ, Zhang CH, Liu PJ, Ding XZ, Wang ZQ, Zhang YJ (2009) were derived from the crystalline basement of the NCC and Recognition of Meso- and Neoproterozoic stratigraphic frame- work in North and South China. Acta Geoscientica Sinica the TNCO. According to the detrital zircon age range and 30:433–446 (in Chinese with English abstract) rock types, we infer that transgressive event occurred when Geng YS, Wan YS, Shen QH, Li HM, Zhang RX (2000) Chrono- the Chuanlinggou Formation was deposited, which was in a logical framework of the Early Precambrian important events in low-energy mud flat sedimentary environment in the inter- the Lu¨liang Area, Shanxi Province. Acta Geol Sin 74:216–223 (in Chinese with English abstract) supra tidal zone. Geng YS, Wan YS, Shen QH (2002) Early Precambrian basic volcanism and crustal growth in the North China Craton. Acta Acknowledgments We thank Professors Tianrui Song and Jiashan Geol Sin 76:199–208 (in Chinese with English abstract) Wu for their comments and discussions, and thank Miss Weilin Gan Guan H, Sun M, Wilde SA, Zhou XH, Zhai MG (2002) SHRIMP U– and Qingmin Du for their help during mount making. This research Pb zircon geochronology of the fuping complex: implications for was financially supported by the Ministry of Land and Natural formation and assembly of the North China Craton. Precambr Resources (Grant No. 201311116), the National Natural Science Res 113:1–18 Foundation of China (Grant No. 41173065), Ministry of Science and He ZJ, Meng XH, Ge M (1994) Environmental evolutions and Technology (No. 2012FY120100), and the Basic Outlay of Scientific structural control of Changchengian of the Mid-Proterozoic in Research Work from the Ministry of Science and Technology (Grant the Yanshan basin, North China. Acta Sedimentol Sin 12:10–19 No. J1403). Hebei Bureau of Geology and Mineral Resources (HBBGMR) (1982) Regional geology of Hebei Province, Beijing Municipality and Tianjin Municipality. Geological Publishing House, Beijing, References pp 75–79 (in Chinese) Hou KJ, Li YH, Tian YR (2009) In situ U–Pb zircon dating using LA- All China Commission of Stratigraphy (2001) Guide book and MC-ICP-MS. Mineral Deposits 28:481–492 (in Chinese with explanation of china stratigraphy (revised). Geological Publish- English abstract) ing House, Beijing, pp 1–59 (in Chinese) Hu B, Zhai MG, Guo JH, Peng P, Liu F, Liu S (2009) LA-ICP-MS U– Bai J, Huang XG, Dai FY, Wu CH (1993) The Precambrian evolution Pb geochronology of detrital zircons from the Huade Group in of China. Geological Publishing House, Beijing, pp 36–38 (in the northern margin of the North China Craton and its tectonic Chinese) significance. Acta Petrologica Sinica 25:193–211 (in Chinese Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch with English abstract) RJ, Foudoulis C (2003a) TEMORA 1: a new zircon standard for Hu B, Zhai MG, Peng P, Liu F, Diwu CR, Wang HZ, Zhang HD phanerozoic U–Pb geochronology. Chem Geol 200:155–170 (2013) Late Paleoproterozoic to Neoproterozoic geological Black LP, Kamo SL, Williams IS, Mundil R, Davis DW, Korsch RJ, events of the North China Craton: evidences from LA-ICP-MS Foudoulis C (2003b) The application of SHRIMP to phanerozoic U–Pb geochronology of detrital zircons from the Cambrian and geochronology: a critical appraisal of four zircon standards. sedimentary rocks in Western Hills of Beijing. Acta Chem Geol 200:171–188 Petrologica Sinica 29:2508–2536 (in Chinese with English Cawood PA, Nemchin AA (1999) U/Pb dating of detrital zircons: abstract) implications for the provenance record of Gondwana margin Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The terranes. Geol Soc Am Bull 111:1107–1119 application of laser ablation-inductively coupled plasma-mass Cheng YQ (1994) Introduction to regional geology in China. spectrometry to in situ U–Pb zircon geochronology. Chem Geol Geological Publishing House, Beijing, pp 432–436 (in Chinese) 211:47–69 Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol Kositcin N, Krapezˇ B (2004) Relationship between detrital zircon 172:5–24 age-spectra and the tectonic evolution of the Late Archaean Cherniak DJ, Hanchar JM, Watson EB (1997) Diffusion of tetravalent Witwatersrand Basin, South Africa. Precambr Res 129:141–168 cations in zircon. Contrib Miner Petrol 127:383–390 Krogh TE, Keppie JD (1990) Age of detrital zircon and titanite in the Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon Meguma Group, southern Nova Scotia, Canada: clues to the textures. Rev Mineral Geochem 53:469–500 origin of the Meguma Terrane. Tectonophysics 177:307–323 Du LL, Yang CH, Guo JH, Wang W, Ren LD, Wan YS, Geng YS Kro¨ner A, Wilde SA, Li JH, Wang KY (2005) Age and evolution of a (2010) The age of the base of the Paleoproterozoic Hutuo Group Late Archean to Paleoproterozoic upper to lower crustal section in the Wutai Mountains area, North China Craton: SHRIMP in the Wutaishan/Hengshan/Fuping terrain of northern China. zircon U–Pb dating of basaltic andesite. Chin Sci Bull J Asian Earth Sci 24:577–595 55:1782–1789 Kusky TM, Li JH, Santosh M (2007) The Paleoproterozoic North Du LL, Yang CH, Ren LD, Song HX, Geng YS, Wan YS (2012) The Hebei Orogen: North China Craton’s collisional suture with the 2.2–2.1 Ga magmatic event and its tectonic implication in the Columbia supercontinent. Gondwana Res 12:4–28 Lu¨liang mountains. North China Craton. Acta Petrologica Sinica Lan ZW, Li XH, Chen ZQ, Li QL, Hofmann A, Zhang YB, Zhong Y, 28:2751–2769 (in Chinese with English abstract) Liu Y, Tang GQ, Ling XX, Li J (2014) Diagenetic xenotime age Duan C, Li YH, Wei MH, Yang Y, Hou KJ, Chen XD, Zou B (2014) constraints on the Sanjiaotang Formation, Luoyu Group, south- U–Pb dating study of detrital zircons from the Chuanlinggou ern margin of the North China Craton: implications for regional Formation in Jiangjiazhai iron deposit, North China Craton and stratigraphic correlation and early evolution of eukaryotes. its geological significances. Acta Petrologica Sinica 30:35–48 Precambr Res 251:21–32 (in Chinese with English abstract) Lee J, Williams I, Ellis D (1997) Pb, U and Th diffusion in nature Gao LZ, Zhang CH, Yin CY, Shi XY, Wang ZQ, Liu YM, Liu PJ, zircon. Nature 390:159–162 Tang F, Song B (2008) SHRIMP zircon ages: basis for refining Li JH, Qian XL, Huang CN, Liu SW (2000) Tectonic framework of the chronostratigraphic classification of the Meso- and Neopro- North China block and its cratonization in the Early Precam- terozoic strata in North China Old Land. Acta Geosci Sin brian. Acta Petrologica Sinica 16:1–10 (in Chinese with English 29:366–376 (in Chinese with English abstract) abstract)

123 Acta Geochim (2018) 37(2):257–280 279

Li JH, Niu XL, Cheng SH, Qian XL (2006) The Early Precambrian Sla´ma J, Kosˇler J, Condon DJ, Crowley JL, Cerdes A, Hanchar JM, tectonic evolution of continental craton: a case study from North Horstwood MSA, Morris GA, Nasdala L, Norberg N (2008) China. Earth Sci 31:285–293 Plesovice zircon: a new natural reference material for U–Pb and Li HK, Su WB, Zhou HY, Geng JZ, Xiang ZQ, Cui YR, Liu WC, Lu Hf isotopic microanalysis. Chem Geol 249:1–35 SN (2011) The base age of the Changchengian System at the Song TR, Gao J (1987) Precambrian sedimentary rocks of the Ming northern North China Craton should be younger than 1670 Ma: Tombs District, Beijing—a study of characteristics and facies constraints from zircon U–Pb LA-MC-ICPMS dating of a indicators of the sedimentary rocks. Geological Publishing granite-porphyry dike in Miyun County, Beijing. Earth Sci House, Beijing, pp 1–195 (in Chinese with English abstract) Front 18:108–120 (in Chinese with English abstract) Sun DZ, Li HM, Lin YX, Zhou HF, Zhao FQ, Tang M (1991) Li HK, Lu SN, Su WB, Xiang ZQ, Zhou HY, Zhang YQ (2013a) Precambrian geochronology, chronotectonic framework and Recent advances in the study of the mesoproterozoic model of chronocrustal structure of the Zhongtiao mountains. geochronology in the North China Craton. J Asian Earth Sci Acta Geol Sin 3:216–231 (in Chinese with English abstract) 72:216–227 Sun HY, Gao LZ, Bao C, Chen YL, Liu DY (2013) SHRIMP Zircon Li XH, Tang GQ, Gong B, Yang YH, Hou KJ, Hu ZC, Li QL, Liu Y, U–Pb of Mesoproterozoic Chuanlinggou Formation from Li WX (2013b) Qinghu zircon: a working reference for Kuancheng County in Hebei Province and its geological microbeam analysis of U–Pb age and Hf and O isotopes. Chin implications. Acta Geol Sin 87:591–596 (in Chinese with Sci Bull 58:4647–4654 English abstract) Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Wan YS, Zhang QD, Song TR (2003) Detrital zircon SHRIMP ages Continental and oceanic crust recycling-induced melt-peridotite of the Changzhougou Formation, Changcheng system in the interactions in the trans-North China Orogen: U–Pb dating, Hf Ming Tombs, Beijing: material source of covering strata in the isotopes and trace elements in zircons from mantle xenoliths. North China Craton and control onthe oldest sedimentary time. J Petrol 51:537–571 Chin Sci Bull 48:1970–1975 (in Chinese) Lu SN, Yang CL, Jiang MM, Li HK, Li HM (1996) Tracing of Wan YS, Liu DY, Wang W, Song TR, Kro¨ner A, Dong CY, Zhou Precambrian continental crust evolution. Geological Publishing HY, Yin XY (2011) Provenance of Meso-to Neoproterozoic House, Beijing, pp 137–140 (in Chinese) cover sediments at the Ming Tombs, Beijing, North China Ludwig KR (2001) Squid 102: a user’s manual. Berkeley Geochronol- Craton: an integrated study of U–Pb dating and Hf isotopic ogy Centre, Special Publication, Berkeley, pp 1–19 measurement of detrital zircons and whole-rock geochemistry. Ludwig KR (2003) User’s manual for isoplot 3.00, a geochronolog- Gondwana Res 20:219–242 ical toolkit for microsoft excel. Berkeley Geochronology Center, Wan YS, Liu DY, Dong CY, Xie HQ, Kro¨ner A, Ma MZ, Liu SJ, Xie Berkeley, pp 1–70 SW, Ren P (2015) Formation and evolution of Archean Meng QR, Wei HH, Qu YQ, Ma SX (2011) Stratigraphic and continental crust of the North China Craton. Precambrian sedimentary records of the rift to drift evolution of the northern geology of China. Springer, Berlin, pp 59–136 North China craton at the Paleo-to mesoproterozoic transition. Wang KY, Wilde S (2002) Precise SHRIMP U–Pb ages of dawaliang Gondwana Res 20:205–218 granite in Wutaishan area, Shanxi Province. Acta Petrol Mineral Nasdala L, Hofmeister W, Norberg N, Mattinson JM, Corfu F, Dor 21:407–420 (in Chinese with English abstract) W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Wang KY, Hao J, Wilde S, Cawood P (2000) Reconsideration of Kosler J, Wan YS, Goze J, Hoer T, Kro¨ner A, Valley JW (2008) some key geological problems of Late Archean-Early Protero- Zircon M257: a homogeneous natural reference material for the zoic in the Wutai-Hengshan area: constraints from SHRIMP U– ion microprobe U–Pb analysis of zircon. Geostand Geoanal Res Pb zircon data. Chin J Geol 35:175–184 (in Chinese with 32:247–265 English abstract) Peng P, Bleeker W, Ernst RE, So¨derlund U, McNicoll V (2011) U– Wang ZZ, Wilde SA, Wan JL (2010) Tectonic setting and significance Pbbaddeleyite ages, distribution and geochemistry of 925 Ma of 2.3-2.1 Ga magmatic events in the Trans-North China Orogen: mafic dykes and 900 Ma sills in the North China Craton: new constraints from the Yanmenguan mafic–ultramafic intrusion evidence for a Neoproterozoic mantle plume. Lithos in the Hengshan–Wutai–Fuping area. Precambr Res 178:27–42 127:210–221 Willians IS (1998) U-Th-Pb geochromology by ion microprobe, Peng P, Liu F, Zhai MG, Guo JH (2012) Age of the Miyun dyke applications of microanalytical techniques to understanding swarm: constraintson the maximum depositional age of the mineralizing processes (Eds. McKibben M. A., Shanks, W. C., changcheng system. Chin Sci Bull 57:105–110 Ridley W. I.). Rev Econ Geol 7:1–35 Poitrasson F, Hanchar JM, Schaltegger U (2002) The current state and Yang CH, Du LL, Ren LD, Song HX, Wan YS, Xie HQ, Liu ZX future of accessory mineral research. Chem Geol 191:3–24 (2011) The age and petrogenesis of the Xuting granite in the Santosh M, Liu DY, Shi YR, Liu SJ (2013) Paleoproterozoic Zanhuang Complex, Hebei Province: constraints on the struc- accretionary orogenesis in the North China Craton: a SHRIMP tural evolution of the Trans-North China Orogen, North China zircon study. Precambr Res 227:29–54 Craton. Acta Petrol Sin 27:1003–1016 (in Chinese with English Shen QH, Xu HF, Zhang ZQ, Gao JF, Wu JS, Ji CL (1992) Granulites abstract) of Early Precambrian in China. Geological Publishing House, Yao J, Shu L, Santosh M (2011) Detrital zircon U–Pb geochronology, Beijing, pp 389–400 (in Chinese) Hf-isotopes and geochemistry—new clues for the Precambrian Shi YR, Wilde SA, Zhao XT, Ma YS, Du LL, Liu DY (2012) Late crustal evolution of Cathaysia Block, South China. Gondwana Neoarchean magmatic and subsequent metamorphic events in Res 20:553–567 the northern North China Craton: SHRIMP zircon dating and Hf Yu JH, Wang DZ, Wang CY, Wang LJ (2004) Paleoproterozoic isotopes of Archean rocks from Yunmengshan geopark, Miyun, granitic magmatism and metamorphism in middle part of Beijing. Gondwana Res 21:785–800 Lu¨liang Range, Shanxi Province. Geol J China Univ Sircombe KN, Freeman MJ (1999) Provenance of detrital zircons on 10:500–513 (in Chinese with English abstract) the Western Australia coastline–Implications for the geologic Zhai MG (2011) Cratonization and the Ancient North China history of the Perth basin and denudation of the Yilgarn craton. continent: a summary and review. Sci China Earth Sci Geology 27:879–882 54:1110–1120 (in Chinese)

123 280 Acta Geochim (2018) 37(2):257–280

Zhai MG, Hu B, Peng P, Zhao TP (2014) Meso-Neoproterozoic Archean to Paleoproterozoic accretion and assembly of the magmatic events and multi-stage rifting in the NCC. Earth Sci North China Craton. J Sci 302:191–226 Front 1:100–119 (in Chinese with English abstract) Zhao GC, Cawood PA, Wilde SA, Sun M (2002b) Review of global Zhang QD, Song TR, He ZJ, Ding XZ (2002) Pb–Pb age determi- 2.1-1.8 Ga collisional orogens and accreted cratons: a pre- nation of Meso-to Neoproterozoic in the Ming Tombs Rodinia supercontinent? Earth-Sci Rev 59:125–162 District, Beijing. Geol Rev 48:416–423 (in Chinese with Zhao GC, Sun M, Wilde SA, Li SZ, Liu SW, Zhang J (2006) English abstract) Composite nature of the North China Granulite-Facies Belt: Zhang SH, Zhao Y, Ye H, Hu JM, Wu F (2013) New constraints on tectonothermal and geochronological constraints. Gondwana Res ages of the Chuanlinggou and Tuanshanzi formations of the 9:337–348 Changcheng System in the Yan-Liao area in the northern North Zhao GC, Wilde SA, Sun M, Li SZ, Li XP, Zhang J (2008) SHRIMP China. Acta Petrol Sin 29:2481–2490 (in Chinese with English U–Pb zircon ages of granitoid rocks in the Lu¨liang Complex: abstract) implications for the accretion and evolution of the Trans-North Zhang YB, Li QL, Lan ZW, Wu FY, Li XH, Yang JH, Zhai MG China Orogen. Precambr Res 160:213–226 (2015) Diagenetic xenotime dating to constrain the initial Zhao RF, Guo JH, Peng P, Liu F (2011) 2.1 Ga crustal remelting depositional time of the Yan-Liao Rift. Precambr Res 271:20–32 event in Hengshan complex: evidence from zircon U–Pb dating Zhao ZP (1993) Precambrian crustal evolution of the Sino-Korean and Hf-Nd isotopic study on potassic granites. Acta Petrol Sin Paraplatform. Science Press, Beijing, pp 389–390 (in Chinese) 27:1607–1623 (in Chinese with English abstract) Zhao GC, Wilde SA, Cawood PA, Sun M (2002a) SHRIMP U–Pb zircon ages of the fuping complex: implications for Late

123