Biological Invasion Theories
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Priority Actions to Improve Provenance Decision-Making
Forum Priority Actions to Improve Provenance Decision-Making MARTIN F. BREED, PETER A. HARRISON, ARMIN BISCHOFF, PAULA DURRUTY, NICK J. C. GELLIE, EMILY K. GONZALES, KAYRI HAVENS, MARION KARMANN, FRANCIS F. KILKENNY, SIEGFRIED L. KRAUSS, ANDREW J. LOWE, PEDRO MARQUES, PAUL G. NEVILL, PATI L. VITT, AND ANNA BUCHAROVA Selecting the geographic origin—the provenance—of seed is a key decision in restoration. The last decade has seen a vigorous debate on whether to use local or nonlocal seed. The use of local seed has been the preferred approach because it is expected to maintain local adaptation and avoid deleterious population effects (e.g., maladaptation and outbreeding depression). However, the impacts of habitat fragmentation and climate change on plant populations have driven the debate on whether the local-is-best standard needs changing. This debate has largely been theoretical in nature, which hampers provenance decision-making. Here, we detail cross-sector priority actions to improve provenance decision-making, including embedding provenance trials into restoration projects; developing dynamic, evidence-based provenance policies; and establishing stronger research–practitioner collaborations to facilitate the adoption of research outcomes. We discuss how to tackle these priority actions in order to help satisfy the restoration sector’s requirement for appropriately provenanced seed. Keywords: assisted migration, ecological restoration, local adaptation, restoration genetics he restoration sector’s demand for seed is Williams et al. 2014, Havens et al. 2015, Prober et al. 2015, Tenormous and is rapidly increasing with the growth Breed et al. 2016b, Christmas et al. 2016b). in the global restoration effort (Verdone and Seidl 2017). -
What Characteristics Do All Invasive Species Share That Make Them So
Invasive Plants Facts and Figures Definition Invasive Plant: Plants that have, or are likely to spread into native or minimally managed plant systems and cause economic or environmental harm by developing self-sustaining populations and becoming dominant or disruptive to those systems. Where do most invasive species come from? How do they get here and get started? Most originate long distances from the point of introduction Horticulture is responsible for the introduction of approximately 60% of invasive species. Conservation uses are responsible for the introduction of approximately 30% of invasive species. Accidental introductions account for about 10%. Of all non-native species introduced only about 15% ever escape cultivation, and of this 15% only about 1% ever become a problem in the wild. The process that leads to a plant becoming an invasive species, Cultivation – Escape – Naturalization – Invasion, may take over 100 years to complete. What characteristics make invasive species so successful in our environment? Lack predators, pathogens, and diseases to keep population numbers in check Produce copious amounts of seed with a high viability of that seed Use successful dispersal mechanisms – attractive to wildlife Thrive on disturbance, very opportunistic Fast-growing Habitat generalists. They do not have specific or narrow growth requirements. Some demonstrate alleleopathy – produce chemicals that inhibit the growth of other plants nearby. Have longer photosynthetic periods – first to leaf out in the spring and last to drop leaves in autumn Alter soil and habitat conditions where they grow to better suit their own survival and expansion. Why do we care? What is the big deal? Ecological Impacts Impacting/altering natural communities at a startling rate. -
Latitudinal Shifts of Introduced Species: Possible Causes and Implications
Biol Invasions (2012) 14:547–556 DOI 10.1007/s10530-011-0094-8 ORIGINAL PAPER Latitudinal shifts of introduced species: possible causes and implications Qinfeng Guo • Dov F. Sax • Hong Qian • Regan Early Received: 26 January 2011 / Accepted: 22 August 2011 / Published online: 4 September 2011 Ó Springer Science+Business Media B.V. (outside the USA) 2011 Abstract This study aims to document shifts in the those in their native ranges. Only a small fraction of latitudinal distributions of non-native species relative species examined (i.e.\20% of animals and\10% of to their own native distributions and to discuss plants) have expanded their distributions in their possible causes and implications of these shifts. We exotic range beyond both high- and low-limits of used published and newly compiled data on inter- their native latitudes. Birds, mammals and plants continentally introduced birds, mammals and plants. tended to shift their exotic ranges in similar ways. In We found strong correlations between the latitudinal addition, most non-native species (65–85% in differ- distributions occupied by species in their native and ent groups) have not reached the distributional extent exotic ranges. However, relatively more non-native observed in their native ranges. The possible drivers species occur at latitudes higher than those in their of latitudinal shifts in the exotic range may include native ranges, and fewer occur at latitudes lower than climate change, greater biotic resistance at lower latitudes, historical limitations on ranges in native regions, and the impacts of humans on species Electronic supplementary material The online version of this article (doi:10.1007/s10530-011-0094-8) contains distributions. -
Invasive Species and the Cultural Keystone Species Concept
Copyright © 2005 by the author(s). Published here under license by the Resilience Alliance. Nuñez, M. A., and D. Simberloff. 2005. Invasive species and the cultural keystone species concept. Ecology and Society 10(1): r4. [online] URL: http://www.ecologyandsociety.org/vol10/iss1/resp4/ Response to Garibaldi and Turner. 2004. “Cultural Keystone Species: Implications for Ecological Conservation and Restoration” Invasive Species and the Cultural Keystone Species Concept Martin A. Nuñez1 and Daniel Simberloff1 Key Words: biological invasions ; cultural keystone species; conservation; exotic species; invasive species; keystone species The concept of the keystone species (Paine 1966, (Mooney and Hobbs 2000, Simberloff 2000), 1969, Power et al. 1996) has been a transformative serving as cultural icons in different areas of the notion in ecology. Keystone species were originally world. Examples of this include Eucalyptus in narrowly defined to be those whose importance to California, tomatoes (Lycopersicon esculentum) in community and ecosystem structure, composition, Italy, bluegrass (Poa pratensis) in Kentucky, and function is disproportionate to their abundance. Cannabis sativa in Jamaica, bananas (Musa Even this narrow definition fostered great insight paradisiaca) in Ecuador, horses (Equus caballus) into the nature of particular ecosystems and of in the western United States, coffee (Coffea spp) in threats to them (Power et al. 1996). However, in Colombia, and kudzu (Pueraria montana) in the ecological circles the term came to be more casually southeastern United States. used to mean any species that has a very large impact on the ecosystem, no matter how abundant it is More than 100 species of Australian Eucalyptus (Simberloff 2003), and this casual usage has led to trees have been brought to California since the late attacks on the concept on the grounds that it is so 19th century. -
Journal of Ecology, 109 (1)
Article (refereed) - postprint This is the peer reviewed version of the following article: Formenti, Ludovico; Caggìa, Veronica; Puissant, Jeremy; Goodall, Tim; Glauser, Gaétan; Griffiths, Robert; Rasmann, Sergio. 2021. The effect of root‐associated microbes on plant growth and chemical defence traits across two contrasted elevations. Journal of Ecology, 109 (1). 38-50, which has been published in final form at https://doi.org/10.1111/1365-2745.13440 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. © 2020 British Ecological Society This version is available at https://nora.nerc.ac.uk/id/eprint/528184/ Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at https://nora.nerc.ac.uk/policies.html#access. This document is the authors’ final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher’s version. You are advised to consult the publisher’s version if you wish to cite from this article. The definitive version is available at https://onlinelibrary.wiley.com/ Contact UKCEH NORA team at [email protected] The NERC and UKCEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC and UKCEH in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. Journal of Ecology DR SERGIO RASMANN -
And Belowground Insect Herbivory Mediates Invasion Dynamics and Impact of an Exotic Plant
plants Article Release from Above- and Belowground Insect Herbivory Mediates Invasion Dynamics and Impact of an Exotic Plant Lotte Korell 1,2,3,4,* , Martin Schädler 3,4, Roland Brandl 5, Susanne Schreiter 6 and Harald Auge 3,4 1 Plant Ecology and Geobotany, Department of Ecology, University of Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany 2 Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany 3 Department of Community Ecology, Helmholtz-Centre for Environmental Research -UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; [email protected] (M.S.); [email protected] (H.A.) 4 German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany 5 Animal Ecology, Department of Ecology, University of Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany; [email protected] 6 Department of Soil System Science, Helmholtz-Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; [email protected] * Correspondence: [email protected] Received: 28 October 2019; Accepted: 21 November 2019; Published: 26 November 2019 Abstract: The enemy-release hypothesis is one of the most popular but also most discussed hypotheses to explain invasion success. However, there is a lack of explicit, experimental tests of predictions of the enemy-release hypothesis (ERH), particularly regarding the effects of above- and belowground herbivory. Long-term studies investigating the relative effect of herbivores on invasive vs. native plant species within a community are still lacking. Here, we report on a long-term field experiment in an old-field community, invaded by Solidago canadensis s. -
What Are Plant Ecotypes?
United States Department of Agriculture Natural Resources Conservation Service Technical Note No: TX-PM-10-5 August 2010 What Are Plant Ecotypes? Plant Materials Technical Note Variation in early greenup of switchgrass collections in a common garden plot, Shelly Maher, E. “Kika” de la Garza PMC Range scientists and agronomists have shown that individual species having a large geographical distribution vary considerably in such characteristics as plant height, growth habits, maturation dates, leaf appearance, and reproductive habits. These characteristics are not distributed randomly throughout the range of the species but are clustered into ecological regions (ecoregions) or seed transfer zones. Plants within these ecological regions are known as ecotypes. Ecotypes were first recognized by scientists as far back as the 1920’s. Grass ecotypes assembled in common garden studies revealed that northern ecotypes of sideoats grama flower earlier than more southern ecotypes, resulting in shorter plants. Ecotypes of little bluestem originating from either sandy or clay soils did not do well when placed on soils of the opposite texture. More recently Dr. Danny Gustafson found that genetic, morphological and phenological differences existed between ecoregional sources of big bluestem, Indiangrass and purple prairie clover. Locally adapted plant materials are widely recommended because of their increased chances of establishment success and genetic compatibility with surrounding populations. However, it is important to consider the isolation and thus the potential genetic inbreeding of limiting oneself solely to localized remnant populations. Frequently people try to simplify what an ecotype is by stating that it is a plant that is within 100-200 miles of its center of origin. -
Emergent Biogeography of Microbial Communities in a Model Ocean
REPORTS germ insects not only uncovers those features es- mRNA localization indeed appears to be an sential to this developmental mode but also sheds important component of long-germ embryogene- light on how the bcd-dependent anterior patterning sis, perhaps even playing a role in the transition program might have evolved. Through analysis of from the ancestral short-germ to the derived long- the regulation of the trunk gap gene Kr in Dro- germ fate. sophila and Nasonia,wehavebeenabletodem- onstrate that anterior repression of Kr is essential References and Notes for head and thorax formation and is a common 1. G. K. Davis, N. H. Patel, Annu. Rev. Entomol. 47, 669 (2002). feature of long-germ patterning. Both insects 2. T. Berleth et al., EMBO J. 7, 1749 (1988). accomplish this task through maternal, anteriorly 3. W. Driever, C. Nusslein-Volhard, Cell 54, 83 (1988). localized factors that either indirectly (Drosophila) 4. J. Lynch, C. Desplan, Curr. Biol. 13, R557 (2003). or directly (Nasonia) repress Kr and, hence, trunk 5. J. A. Lynch, A. E. Brent, D. S. Leaf, M. A. Pultz, C. Desplan, Nature 439, 728 (2006). fates. In Drosophila, the terminal system and bcd 6. J. Savard et al., Genome Res. 16, 1334 (2006). regulate expression of gap genes, including Dm-gt, 7. G. Struhl, P. Johnston, P. A. Lawrence, Cell 69, 237 (1992). that repress Dm-Kr. Nasonia’s bcd-independent 8. A. Preiss, U. B. Rosenberg, A. Kienlin, E. Seifert, long-germ embryos must solve the same problem, H. Jackle, Nature 313, 27 (1985). Fig. 4. -
Can More K-Selected Species Be Better Invaders?
Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France. -
The Effects of Introduced Tilapias on Native Biodiversity
AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS Aquatic Conserv: Mar. Freshw. Ecosyst. 15: 463–483 (2005) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/aqc.699 The effects of introduced tilapias on native biodiversity GABRIELLE C. CANONICOa,*, ANGELA ARTHINGTONb, JEFFREY K. MCCRARYc,d and MICHELE L. THIEMEe a Sustainable Development and Conservation Biology Program, University of Maryland, College Park, Maryland, USA b Centre for Riverine Landscapes, Faculty of Environmental Sciences, Griffith University, Australia c University of Central America, Managua, Nicaragua d Conservation Management Institute, College of Natural Resources, Virginia Tech, Blacksburg, Virginia, USA e Conservation Science Program, World Wildlife Fund, Washington, DC, USA ABSTRACT 1. The common name ‘tilapia’ refers to a group of tropical freshwater fish in the family Cichlidae (Oreochromis, Tilapia, and Sarotherodon spp.) that are indigenous to Africa and the southwestern Middle East. Since the 1930s, tilapias have been intentionally dispersed worldwide for the biological control of aquatic weeds and insects, as baitfish for certain capture fisheries, for aquaria, and as a food fish. They have most recently been promoted as an important source of protein that could provide food security for developing countries without the environmental problems associated with terrestrial agriculture. In addition, market demand for tilapia in developed countries such as the United States is growing rapidly. 2. Tilapias are well-suited to aquaculture because they are highly prolific and tolerant to a range of environmental conditions. They have come to be known as the ‘aquatic chicken’ because of their potential as an affordable, high-yield source of protein that can be easily raised in a range of environments } from subsistence or ‘backyard’ units to intensive fish hatcheries. -
Naturalised Species May Hold Key to Managing Invasive Aliens
Special Issue 6 20 June 2008 Naturalised species may hold key to managing invasive aliens Alien species, introduced outside their natural range, can become invasive with the potential to cause damage to the ecosystem of the invaded area. Researchers have suggested that more intercontinental collaboration and funding could provide needed research on under- studied countries and ‘naturalised’ species across the world. Invasion biologists are particularly concerned with understanding the common principles that determine how introduced species turn into invasive species. Such information could be used to develop more effective policies to control invasions. However, researchers suggest that there are important knowledge gaps, as not all invasive species have been thoroughly studied and some geographic areas have received little research attention. The study1 found a clear bias towards research on North American and European species. Almost half of all invasive species studied were in North America. Fewer studies have been conducted in Australasia and on oceanic islands, although these areas contain high numbers of naturalised species. An alien species may become naturalised if it forms populations that can survive without human-help. However, it may not yet be ‘invasive’. To be classified as invasive, a species must adapt to overcome barriers in the new environment, such as, for example, a lack of its natural food source or dispersal agents. Naturalisation is therefore an important intermediary stage in the invasion process. Except in South Africa, relatively few detailed studies have been conducted in Asia and Africa, although these regions have many naturalised species. The researchers suggest that thorough studies from a wide variety of habitats around the world are important, because different processes may determine whether species become naturalised in different regions. -
Shell Crushing Resistance of Alien and Native Thiarid Gastropods to Predatory Crabs in South Africa
Aquatic Invasions (2016) Volume 11, Issue 3: 303–311 DOI: http://dx.doi.org/10.3391/ai.2016.11.3.08 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Research Article Shell crushing resistance of alien and native thiarid gastropods to predatory crabs in South Africa 1, 2 1 1 1 Nelson A.F. Miranda *, G. John Measey , Nasreen Peer , Jacqueline L. Raw , Renzo Perissinotto 3 and Christopher C. Appleton 1DST/NRF Research Chair in Shallow Water Ecosystems, Nelson Mandela Metropolitan University, Port Elizabeth 6031, South Africa 2Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa 3School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa *Corresponding author E-mail: [email protected] Received: 22 September 2015 / Accepted: 10 March 2016 / Published online: 11 April 2016 Handling editor: Kenneth Hayes Abstract The successful invasion of freshwater and coastal lakes of South Africa by the recently introduced thiarid snail Tarebia granifera may be due in part to release from predatory pressure. This study aimed to determine the comparative vulnerability of T. granifera and the widespread native aquatic thiarid Melanoides tuberculata to predation. These species also account for many thiarid invasions in the Americas, Europe and parts of Africa. We quantified the shell crushing resistance of these snails, as well as the maximal shell crushing capability of native freshwater crab predators, Potamonautes sidneyi and P. perlatus. Using an Instron isometric transducer, we showed that Tarebia granifera shells were significantly stronger than Melanoides shells, and exceeded the crushing strength we documented for both potential predatory crabs.