Proteomic Analysis of Isgylation in Immortalized Porcine Alveolar Macrophage Cell Lines Induced by Type I Interferon

Total Page:16

File Type:pdf, Size:1020Kb

Proteomic Analysis of Isgylation in Immortalized Porcine Alveolar Macrophage Cell Lines Induced by Type I Interferon Article Proteomic Analysis of ISGylation in Immortalized Porcine Alveolar Macrophage Cell Lines Induced by Type I Interferon Chengbo Zhu 1,†, Jingrui Li 2,†, Chaonan Tian 1, Mengmeng Qin 1, Zhenni Wang 1, Bingjun Shi 1,3, Guanggang Qu 4,*, Chunyan Wu 1,* and Yuchen Nan 1,* 1 Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; [email protected] (C.Z.); [email protected] (C.T.); [email protected] (M.Q.); [email protected] (Z.W.); [email protected] (B.S.) 2 State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; [email protected] 3 Shaanxi Animal Disease Control Center, Xi’an 710000, China 4 Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, China * Correspondence: [email protected] (G.Q.); [email protected] (C.W.); [email protected] (Y.N.) † These authors contributed equally to this article. Abstract: Interferon-stimulated gene product 15 (ISG15), a ubiquitin-like molecule, can be conjugated to protein substrates through a reversible process known as ISGylation. ISG15 and ISGylation are both strongly upregulated by type I interferons and play putative key roles in host innate immunity against viral infection. However, the function of ISGylation and identities of ISGylation substrates are largely unknown. Here, a novel monoclonal antibody (Mab) that specifically recognizes porcine Citation: Zhu, C.; Li, J.; Tian, C.; Qin, M.; ISG15 (pISG15) was employed to capture ISG15-conjugated proteins from IFNs-stimulated porcine Wang, Z.; Shi, B.; Qu, G.; Wu, C.; Nan, Y. cell lysates. Next, Mab-captured conjugates were analyzed using proteomics-based tools to identify Proteomic Analysis of ISGylation in potential ISGylation protein targets in order to elucidate the roles of ISG15 and ISGylation in porcine Immortalized Porcine Alveolar cells. Subsequently, 190 putative ISGylation sites were detected within 98 identified ISGylation Macrophage Cell Lines Induced by candidates; several candidates contained more than one ISGylation-modifiable lysine residue, includ- Type I Interferon. Vaccines 2021, 9, ing pISG15 itself. Motif enrichment analysis of confirmed ISGylation sites demonstrated a moderate 164. https://doi.org/10.3390/vaccines9 bias towards certain sites with specific upstream amino acid residues. Meanwhile, results of Gene 020164 Ontology (GO)-based annotation and functional enrichment and protein-protein interaction (PPI) network analyses of porcine ISG15-conjugated substrate proteins indicated that these substrates Academic Editor: Giampiero Girolomoni were mainly associated with the host metabolism, especially nucleotide metabolic pathways that ultimately may participate in cellular antiviral defenses. Notably, several ISGs (MX1, IFIT1, OAS1, Received: 7 January 2021 ISG15 and putative ISG15 E3 ligase Herc6) were also identified as putative ISGylation substrates Accepted: 13 February 2021 within a regulatory loop involving ISGylation of ISGs themselves. Taken together, proteomics anal- Published: 17 February 2021 ysis of porcine ISGylation substrates revealed putative functional roles of ISG15 and novel host ISGylation targets that may ultimately be involved in cellular antiviral responses. Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in Keywords: interferons; interferons-stimulated genes (ISGs), ISG15; ISGylation; ubiquitination published maps and institutional affil- iations. 1. Introduction Interferons (IFNs), a group of secreted cytokines that play key roles in host antiviral im- Copyright: © 2021 by the authors. munity, are defined by their abilities to inhibit virus replication in vitro and in vivo. So far, Licensee MDPI, Basel, Switzerland. three types of IFNs (type I, II and III) have been characterized [1]. Type I IFNs, the most This article is an open access article well-known IFN type, constitute the largest of the three IFN families [2] and include IFN-α, distributed under the terms and IFN-β, IFN-", IFN-κ and IFN-! [3,4]. All type I IFNs bind to a ubiquitously expressed conditions of the Creative Commons heterodimeric receptor complex composed of IFN-α receptors IFNAR1 and IFNAR2 to Attribution (CC BY) license (https:// activate Janus kinase and signal transducer and activator of transcription (JAK/STAT) creativecommons.org/licenses/by/ pathways. The Type II IFN family, which is solely comprised of IFN-γ, is distinct from type 4.0/). Vaccines 2021, 9, 164. https://doi.org/10.3390/vaccines9020164 https://www.mdpi.com/journal/vaccines Vaccines 2021, 9, 164 2 of 14 I IFNs, due to its different receptors and distinct chromosomal location [2,5]. IFN-γ signal transduction depends on participation of a broadly expressed IFN-γ receptor complex (IFNGR) [6–8]. IFN-γ plays a central role in establishing cellular immunity, while also inducing expression of a specific group of antiviral genes which apparently also respond to type I IFNs as well [9,10]. The Type III IFN family, the most recently discovered family, is comprised of IFN-λs 1 through 4 [5,11]. IFN-λ signaling is mediated by a heterodimeric receptor composed of IFNLR1 (or IL-28R) and IL-10R2 that is quite distinct from receptors triggered by type I and type II IFNs. Nevertheless, IFN-λ activates the same downstream pathways as those triggered by type I IFNs and induces expression of similar downstream genes. Thus, all IFNs stimulate cells via binding of their corresponding receptors to trigger JAK/STAT pathway activation [12] that subsequently evokes a sequential cascade of events leading to increased expression of IFN-stimulated genes (ISGs) [13]. Generally, more than 300 ISGs have been shown to be upregulated by type I IFNs [14]. IFN-stimulated gene product 15 (ISG15) was identified soon after the discovery of ubiquitin and is recognized as a ubiquitin homologue [15]. Mature human ISG15 protein is shorter than its precursor, due to the removal of 8 C-terminal amino acids, and retains a shared C-terminal amino acid motif LRLRGG with mature ubiquitin [16], which is capable of undergoing conjugation with protein substrates. However, unlike other ubiquitin homo- logues, such as small ubiquitin-like modifier (SUMO) or neural precursor cell-expressed developmentally down-regulated gene 8 (Nedd8), ISG15 orthologues have not been de- tected in yeast, insects, plants or other lower organisms, implying that ISG15 performs a highly specialized function in vertebrates [17]. Moreover, sequence analysis has demon- strated that ISG15 is not conserved among mammalian species, suggesting that ISG15 plays distinct species-specific antiviral roles in different hosts [18]. As a ubiquitin-like molecule, ISG15 can be conjugated to protein substrates through a reversible process known as ISGylation [15]. While it has been demonstrated that protein ISGylation does not lead to substrate degradation, as occurs after K48-linked ubiquitination, no universal role of protein ISGylation has been identified. Indeed, it is still unclear whether ISGylated proteins share a common fate similar to ubiquitination or if fates of individual ISGylated proteins vary [19,20]. Nevertheless, ISG15 expression is strongly upregulated after IFN treatment, supporting an important role for ISG15 in the host innate immune response. Moreover, it has been reported that ISG15-deficient mice exhibit increased susceptibility to influenza A and B viruses, Sindbis virus and HSV-1 [21,22]. Early studies using proteomics-based approaches have also identified 76 total ISGylation candidates in IFNs-treated mouse and human cells, with only 21 of these putative targets overlapping between species [23], evidence that ISG15-conjugated substrates may be species-specific as well. However, natural substrates of porcine ISG15 have not yet been investigated, due to the lack of antibodies that specifically bind to porcine ISG15. In our previous report, we described development of a novel monoclonal antibody (Mab) that specifically recognized endogenous porcine ISG15 (pISG15) produced by IFNs- stimulated porcine cells but did not cross-react with ISG15 from other species [24]. Here we utilized this Mab to capture pISG15-conjugated substrates from IFNs-treated porcine cells then conducted proteomics analyses of potential targets of porcine ISGylation to reveal antiviral roles played by ISG15-conjugated proteins in porcine cells. Our data here demonstrated that ISG15 and ISG15-conjugated targets were mainly associated with host metabolic pathways, while several antiviral proteins, such as MX1, IFIT1, OAS1 and ISG15, were also identified as ISGylation candidates. In summary, our data reveal a novel function of ISG15 in porcine cells that is tied to cellular antiviral responses. 2. Material and Methods 2.1. Cells and Chemicals Immortalized porcine alveolar macrophage cell line 3D4/21 ATCC® CRL-2843 cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA) and maintained in Dulbecco’s Modified Eagle Medium (DMEM; Biological Industries, Vaccines 2021, 9, 164 3 of 14 Israel) supplemented with 10% FBS (Biological Industries). Recombinant porcine IFN-α (pIFN-α) was purchased from R&D Systems (Minneapolis, MN, USA) and used to treat CRL-2843 cells at a concentration of 10 ng/mL. 2.2. Western Blot (WB) Analysis Whole cell lysates of CRL-2843 cells with or without pIFN-α treatment were pre- pared by addition to cells of 1× Laemmli sample buffer (Bio-Rad Laboratories, Hercules, CA, USA). Lysate
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Ubiquitination Enzymes of Leishmania Mexicana
    The ubiquitination enzymes of Leishmania mexicana Rebecca Jayne Burge Doctor of Philosophy University of York Biology October 2020 Abstract Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. Although 20 deubiquitinating enzymes (DUBs) have been partially characterised in Leishmania mexicana, little is known about the role of E1 ubiquitin-activating (E1), E2 ubiquitin- conjugating (E2) and E3 ubiquitin ligase (E3) enzymes in this parasite. Using bioinformatic methods, 2 E1, 13 E2 and 79 E3 genes were identified in the L. mexicana genome. Subsequently, bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed that the E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for successful promastigote to amastigote differentiation and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, revealed a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a was found to load ubiquitin onto UBC2, allowing UBC2- UEV1 to form K63-linked di-ubiquitin chains in vitro. UBC2 was also shown to cooperate with human E3s RNF8 and BIRC2 in vitro to form non-K63-linked polyubiquitin chains, but association of UBC2 with UEV1 inhibits this ability.
    [Show full text]
  • Secretion and LPS-Induced Endotoxin Shock Α Lipopolysaccharide
    IFIT2 Is an Effector Protein of Type I IFN− Mediated Amplification of Lipopolysaccharide (LPS)-Induced TNF- α Secretion and LPS-Induced Endotoxin Shock This information is current as of September 27, 2021. Alexandra Siegfried, Susanne Berchtold, Birgit Manncke, Eva Deuschle, Julia Reber, Thomas Ott, Michaela Weber, Ulrich Kalinke, Markus J. Hofer, Bastian Hatesuer, Klaus Schughart, Valérie Gailus-Durner, Helmut Fuchs, Martin Hrabe de Angelis, Friedemann Weber, Mathias W. Hornef, Ingo B. Autenrieth and Erwin Bohn Downloaded from J Immunol published online 6 September 2013 http://www.jimmunol.org/content/early/2013/09/06/jimmun ol.1203305 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2013/09/06/jimmunol.120330 Material 5.DC1 Why The JI? Submit online. by guest on September 27, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 6, 2013, doi:10.4049/jimmunol.1203305 The Journal of Immunology IFIT2 Is an Effector Protein of Type I IFN–Mediated Amplification of Lipopolysaccharide (LPS)-Induced TNF-a Secretion and LPS-Induced Endotoxin Shock Alexandra Siegfried,*,1 Susanne Berchtold,*,1 Birgit Manncke,* Eva Deuschle,* Julia Reber,* Thomas Ott,† Michaela Weber,‡ Ulrich Kalinke,x Markus J.
    [Show full text]
  • Α Are Regulated by Heat Shock Protein 90
    The Levels of Retinoic Acid-Inducible Gene I Are Regulated by Heat Shock Protein 90- α Tomoh Matsumiya, Tadaatsu Imaizumi, Hidemi Yoshida, Kei Satoh, Matthew K. Topham and Diana M. Stafforini This information is current as of October 2, 2021. J Immunol 2009; 182:2717-2725; ; doi: 10.4049/jimmunol.0802933 http://www.jimmunol.org/content/182/5/2717 Downloaded from References This article cites 44 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/182/5/2717.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Levels of Retinoic Acid-Inducible Gene I Are Regulated by Heat Shock Protein 90-␣1 Tomoh Matsumiya,*‡ Tadaatsu Imaizumi,‡ Hidemi Yoshida,‡ Kei Satoh,‡ Matthew K. Topham,*† and Diana M. Stafforini2*† Retinoic acid-inducible gene I (RIG-I) is an intracellular pattern recognition receptor that plays important roles during innate immune responses to viral dsRNAs.
    [Show full text]
  • Entinostat Augments NK Cell Functions Via Epigenetic Upregulation of IFIT1-STING-STAT4 Pathway
    www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 20), pp: 1799-1815 Research Paper Entinostat augments NK cell functions via epigenetic upregulation of IFIT1-STING-STAT4 pathway John M. Idso1, Shunhua Lao1, Nathan J. Schloemer1,2, Jeffrey Knipstein2, Robert Burns3, Monica S. Thakar1,2,* and Subramaniam Malarkannan1,2,4,5,* 1Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA 2Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA 3Bioinformatics Core, Blood Research Institute, Versiti, Milwaukee, WI, USA 4Divson of Hematology-Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA 5Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA *Co-senior authors Correspondence to: Monica S. Thakar, email: [email protected] Subramaniam Malarkannan, email: [email protected] Keywords: NK cells; histone deacetylase inhibitor; Ewing sarcoma; rhabdomyosarcoma; immunotherapy Received: September 10, 2019 Accepted: March 03, 2020 Published: May 19, 2020 Copyright: Idso et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Histone deacetylase inhibitors (HDACi) are an emerging cancer therapy; however, their effect on natural killer (NK) cell-mediated anti-tumor responses remain unknown. Here, we evaluated the impact of a benzamide HDACi, entinostat, on human primary NK cells as well as tumor cell lines. Entinostat significantly upregulated the expression of NKG2D, an essential NK cell activating receptor. Independently, entinostat augmented the expression of ULBP1, HLA, and MICA/B on both rhabdomyosarcoma and Ewing sarcoma cell lines.
    [Show full text]
  • Protein Stability: a Crystallographer's Perspective
    IYCr crystallization series Protein stability: a crystallographer’s perspective Marc C. Deller,a* Leopold Kongb and Bernhard Ruppc,d ISSN 2053-230X aStanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Shriram Center, 443 Via Ortega, Room 097, MC5082, Stanford, CA 94305-4125, USA, bLaboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8, Room 1A03, 8 Center Drive, Bethesda, MD 20814, USA, cDepartment of Forensic Crystallography, k.-k. Hofkristallamt, 91 Audrey Place, Vista, CA 92084, USA, and dDepartment of Genetic Epidemiology, Medical University of Innsbruck, Received 27 November 2015 Schopfstrasse 41, A-6020 Innsbruck, Austria. *Correspondence e-mail: [email protected] Accepted 21 December 2015 ¨ Edited by H. M. Einspahr, Lawrenceville, USA Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration Keywords: protein stability; protein for academic researchers studying proteins. An understanding of protein crystallization; protein disorder; crystallizability. stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein
    [Show full text]
  • Microarray Analysis of Novel Genes Involved in HSV- 2 Infection
    Microarray analysis of novel genes involved in HSV- 2 infection Hao Zhang Nanjing University of Chinese Medicine Tao Liu ( [email protected] ) Nanjing University of Chinese Medicine https://orcid.org/0000-0002-7654-2995 Research Article Keywords: HSV-2 infection,Microarray analysis,Histospecic gene expression Posted Date: May 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-517057/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Background: Herpes simplex virus type 2 infects the body and becomes an incurable and recurring disease. The pathogenesis of HSV-2 infection is not completely clear. Methods: We analyze the GSE18527 dataset in the GEO database in this paper to obtain distinctively displayed genes(DDGs)in the total sequential RNA of the biopsies of normal and lesioned skin groups, healed skin and lesioned skin groups of genital herpes patients, respectively.The related data of 3 cases of normal skin group, 4 cases of lesioned group and 6 cases of healed group were analyzed.The histospecic gene analysis , functional enrichment and protein interaction network analysis of the differential genes were also performed, and the critical components were selected. Results: 40 up-regulated genes and 43 down-regulated genes were isolated by differential performance assay. Histospecic gene analysis of DDGs suggested that the most abundant system for gene expression was the skin, immune system and the nervous system.Through the construction of core gene combinations, protein interaction network analysis and selection of histospecic distribution genes, 17 associated genes were selected CXCL10,MX1,ISG15,IFIT1,IFIT3,IFIT2,OASL,ISG20,RSAD2,GBP1,IFI44L,DDX58,USP18,CXCL11,GBP5,GBP4 and CXCL9.The above genes are mainly located in the skin, immune system, nervous system and reproductive system.
    [Show full text]
  • Genome-Wide Analysis of DNA Methylation, Copy Number Variation, and Gene Expression in Monozygotic Twins Discordant for Primary Biliary Cirrhosis
    UC Davis UC Davis Previously Published Works Title Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. Permalink https://escholarship.org/uc/item/34d4m5nk Journal Frontiers in immunology, 5(MAR) ISSN 1664-3224 Authors Selmi, Carlo Cavaciocchi, Francesca Lleo, Ana et al. Publication Date 2014 DOI 10.3389/fimmu.2014.00128 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH ARTICLE published: 28 March 2014 doi: 10.3389/fimmu.2014.00128 Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis Carlo Selmi 1,2*, Francesca Cavaciocchi 1,3, Ana Lleo4, Cristina Cheroni 5, Raffaele De Francesco5, Simone A. Lombardi 1, Maria De Santis 1,3, Francesca Meda1, Maria Gabriella Raimondo1, Chiara Crotti 1, Marco Folci 1, Luca Zammataro1, Marlyn J. Mayo6, Nancy Bach7, Shinji Shimoda8, Stuart C. Gordon9, Monica Miozzo10,11, Pietro Invernizzi 4, Mauro Podda1, Rossana Scavelli 5, Michelle R. Martin12, Michael F. Seldin13,14, Janine M. LaSalle 12 and M. Eric Gershwin2 1 Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy 2 Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA 3 BIOMETRA Department, University of Milan, Milan, Italy 4 Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Milan, Italy 5 National Institute of Molecular Genetics (INGM), Milan, Italy 6 University of Texas Southwestern, Dallas, TX, USA 7 Mt. Sinai University, NewYork, NY, USA 8 Clinical Research Center, National Nagasaki Medical Center, Nagasaki, Japan 9 Henry Ford Hospital, Detroit, MI, USA 10 Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy 11 Division of Pathology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy 12 Genome Center and M.I.N.D.
    [Show full text]
  • UBE2I Sirna Set I UBE2I Sirna Set I
    Catalog # Aliquot Size U224-911-05 3 x 5 nmol U224-911-20 3 x 20 nmol U224-911-50 3 x 50 nmol UBE2I siRNA Set I siRNA duplexes targeted against three exon regions Catalog # U224-911 Lot # Z2109-25 Specificity Formulation UBE2I siRNAs are designed to specifically knock-down The siRNAs are supplied as a lyophilized powder and human UBE2I expression. shipped at room temperature. Product Description Reconstitution Protocol UBE2I siRNA is a pool of three individual synthetic siRNA Briefly centrifuge the tubes (maximum RCF 4,000g) to duplexes designed to knock-down human UBE2I mRNA collect lyophilized siRNA at the bottom of the tube. expression. Each siRNA is 19-25 bases in length. The gene Resuspend the siRNA in 50 µl of DEPC-treated water accession number is NM_003345. (supplied by researcher), which results in a 1x stock solution (10 µM). Gently pipet the solution 3-5 times to mix Gene Aliases and avoid the introduction of bubbles. Optional: aliquot C358B7.1; P18; UBC9 1x stock solutions for storage. Storage and Stability Related Products The lyophilized powder is stable for at least 4 weeks at room temperature. It is recommended that the Product Name Catalog Number lyophilized and resuspended siRNAs are stored at or UBE2E3 (UBCH9) Protein U219-30H below -20oC. After resuspension, siRNA stock solutions ≥2 UBE2F Protein U220-30H µM can undergo up to 50 freeze-thaw cycles without UBE2G1 (UBC7) Protein U221-30H significant degradation. For long-term storage, it is UBE2H Protein U223-30H recommended that the siRNA is stored at -70oC. For most UBE2I Protein U224-30H favorable performance, avoid repeated handling and UBE2J1 Protein U225-30G multiple freeze/thaw cycles.
    [Show full text]
  • (USP7) in Histone H2A Ubiquitination
    Characterization of E2E Ubiquitin-Conjugating Enzymes and Ubiquitin-Specific Protease 7 (USP7) in Histone H2A Ubiquitination Hossein Davarinejad A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Biology York University Toronto, Ontario December 2017 © Hossein Davarinejad, 2017 Abstract Ubiquitin(Ub)-conjugating E2 enzymes play essential roles in ubiquitination of proteins. The UbE2E sub-family members UbE2E1, UbE2E2, and UbE2E3 have N-terminal extensions to the conserved E2 core which contain Ubiquitin-Specific Protease 7 (USP7) binding sequences (P/A/ExxS). Here, we continued our investigations to established that USP7 can interact with E2Es in vitro and in vivo. Our new data indicated that the N-terminal extensions of E2E2 or E2E3 can directly associate with USP7 TRAF domain. We demonstrated that E2E2 or E2E3 are stabilized by USP7 in cells. We also showed that E2Es interact with Ring1B:BMI1, the core components of the Polycomb Repressive Complex 1 (PRC1) and established E2E1 as an in vivo E2 for monoubiquitination of histone H2A on lysine(K) 119. We demonstrated that E2Es can modulate the levels of H2A monoubiquitination in cells and that USP7 may exert an effect on K119-UbH2A levels through regulating E2Es. ii Dedications For my dearest, and departed grandmother. Your memories, love, and grace are eternal. I also dedicate this to Agnieszka, GhoorGhoor, and Charlie for their invaluable support. And for science; may our collective and ever developing understanding of the universe and life lead us to make the world a better and a more peaceful place, for all life is precious.
    [Show full text]
  • The Proteasomal Deubiquitinating Enzyme PSMD14 Regulates Macroautophagy by Controlling Golgi-To-ER Retrograde Transport
    Supplementary Materials The proteasomal deubiquitinating enzyme PSMD14 regulates macroautophagy by controlling Golgi-to-ER retrograde transport Bustamante HA., et al. Figure S1. siRNA sequences directed against human PSMD14 used for Validation Stage. Figure S2. Primer pairs sequences used for RT-qPCR. Figure S3. The PSMD14 DUB inhibitor CZM increases the Golgi apparatus area. Immunofluorescence microscopy analysis of the Golgi area in parental H4 cells treated for 4 h either with the vehicle (DMSO; Control) or CZM. The Golgi marker GM130 was used to determine the region of interest in each condition. Statistical significance was determined by Student's t-test. Bars represent the mean ± SEM (n =43 cells). ***P <0.001. Figure S4. CZM causes the accumulation of KDELR1-GFP at the Golgi apparatus. HeLa cells expressing KDELR1-GFP were either left untreated or treated with CZM for 30, 60 or 90 min. Cells were fixed and representative confocal images were acquired. Figure S5. Effect of CZM on proteasome activity. Parental H4 cells were treated either with the vehicle (DMSO; Control), CZM or MG132, for 90 min. Protein extracts were used to measure in vitro the Chymotrypsin-like peptidase activity of the proteasome. The enzymatic activity was quantified according to the cleavage of the fluorogenic substrate Suc-LLVY-AMC to AMC, and normalized to that of control cells. The statistical significance was determined by One-Way ANOVA, followed by Tukey’s test. Bars represent the mean ± SD of biological replicates (n=3). **P <0.01; n.s., not significant. Figure S6. Effect of CZM and MG132 on basal macroautophagy. (A) Immunofluorescence microscopy analysis of the subcellular localization of LC3 in parental H4 cells treated with either with the vehicle (DMSO; Control), CZM for 4 h or MG132 for 6 h.
    [Show full text]
  • Structural and Functional Analyses of the Interaction Between the Usp7-Ntd and the E2-Conjugating Enzymes, Ube2e2 and Ube2e3
    STRUCTURAL AND FUNCTIONAL ANALYSES OF THE INTERACTION BETWEEN THE USP7-NTD AND THE E2-CONJUGATING ENZYMES, UBE2E2 AND UBE2E3 LEILA ASHUROV A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN BIOLOGY YORK UNIVERSITY TORONTO, ONTARIO AUGUST 2014 © LEILA ASHUROV, 2014 ABSTRACT Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that regulates the turnover of proteins in a cell. To date several interacting partners that are involved in various cellular processes have been identified for USP7. Many of the interacting partners of USP7 contain a P/AxxS motif. We have identified two E2 ubiquitin- conjugating enzymes, UbE2E2 and UbE2E3, which contain the P/AxxS motif. Using a co-immunoprecipitation assay we have shown that these E2 proteins interact with USP7 through their P/AxxS motif. Co-crystal structures of the N-terminal domain of USP7 (USP7-NTD) and the E2 peptides reveal that the interactions are formed between USP7- NTD residues 164DWGF167 and the E2 P/AxxS motifs. It has also been established that USP7 may be involved in regulating the cellular levels of UbE2E2. Overall, our findings suggest USP7, a de-ubiquitinating enzyme, is a regulator of ubiquitin-conjugating enzymes, which are involved in the ubiquitination cascade. ii ACKNOWLEDGEMENTS I would like to give my utmost gratitude to my Supervisor Dr. Vivian Saridakis. Thank you for taking me into your lab and providing me with this tremendous opportunity. Your constant support and guidance has allowed me to achieve my goals and complete this project.
    [Show full text]