UBE2I Sirna Set I UBE2I Sirna Set I

Total Page:16

File Type:pdf, Size:1020Kb

UBE2I Sirna Set I UBE2I Sirna Set I Catalog # Aliquot Size U224-911-05 3 x 5 nmol U224-911-20 3 x 20 nmol U224-911-50 3 x 50 nmol UBE2I siRNA Set I siRNA duplexes targeted against three exon regions Catalog # U224-911 Lot # Z2109-25 Specificity Formulation UBE2I siRNAs are designed to specifically knock-down The siRNAs are supplied as a lyophilized powder and human UBE2I expression. shipped at room temperature. Product Description Reconstitution Protocol UBE2I siRNA is a pool of three individual synthetic siRNA Briefly centrifuge the tubes (maximum RCF 4,000g) to duplexes designed to knock-down human UBE2I mRNA collect lyophilized siRNA at the bottom of the tube. expression. Each siRNA is 19-25 bases in length. The gene Resuspend the siRNA in 50 µl of DEPC-treated water accession number is NM_003345. (supplied by researcher), which results in a 1x stock solution (10 µM). Gently pipet the solution 3-5 times to mix Gene Aliases and avoid the introduction of bubbles. Optional: aliquot C358B7.1; P18; UBC9 1x stock solutions for storage. Storage and Stability Related Products The lyophilized powder is stable for at least 4 weeks at room temperature. It is recommended that the Product Name Catalog Number lyophilized and resuspended siRNAs are stored at or UBE2E3 (UBCH9) Protein U219-30H below -20oC. After resuspension, siRNA stock solutions ≥2 UBE2F Protein U220-30H µM can undergo up to 50 freeze-thaw cycles without UBE2G1 (UBC7) Protein U221-30H significant degradation. For long-term storage, it is UBE2H Protein U223-30H recommended that the siRNA is stored at -70oC. For most UBE2I Protein U224-30H favorable performance, avoid repeated handling and UBE2J1 Protein U225-30G multiple freeze/thaw cycles. UBE2K (UBC1) Protein U227-30H UBE2L6 (UBCH8) Protein U229-30H Scientific Background UBE2I or ubiquitin-conjugating enzyme E2I is a member of the E2 ubiquitin-conjugating enzyme family which is required for post-replicative DNA damage repair. UBE21 UBE2I siRNA Set I also known as UBC9, plays a role DNA damage repair via siRNA duplexes targeted against three exon regions interaction with WT1, which is able to impose a block in cell cycle progression in eukaryotic cells (1). Listeria and Catalog # U224-911 probably other pathogens, dampens the host response Lot # Z2109-25 by decreasing the sumoylation level of proteins critical for Packaging Specifications 2.5 nmol/tube for 3 x 5nmol infection by targeting UBC21, an essential enzyme of the Format Lyophilized powder SUMO pathway. UBC21 and the SUMO pathway are Stability 1yr at -70oC from date of shipment crucial for proper nuclear architecture, accurate Storage & Shipping The lyophilized powder is stable for at chromosome segregation, and embryonic viability (2). least 4 weeks at room temperature. It is recommended that the lyophilized and resuspended siRNAs are stored at References or below -20oC. After resuspension, 1. Wang, Z.-Y. et.al: Molecular cloning of the cDNA and siRNA stock solutions ≥2 µM can undergo up to 50 freeze-thaw cycles chromosome localization of the gene for human without significant degradation. For ubiquitin-conjugating enzyme 9. J. Biol. Chem. 271: long-term storage, it is recommended 24811-24816, 1996. that the siRNA is stored at -70oC. For most favorable performance, avoid 2. Nacerddine, K. et.al The SUMO pathway is essential repeated handling and multiple for nuclear integrity and chromosome segregation in freeze/thaw cycles. mice. Dev. Cell 9: 769-779, 2005. To place your order, please contact us by phone 1-(604)-232-4600, fax 1-604-232-4601 or by email: [email protected] www.signalchem.com FOR IN VITRO RESEARCH PURPOSES ONLY. NOT INTENDED FOR USE IN HUMAN OR ANIMALS. .
Recommended publications
  • Figure S1. DMD Module Network. the Network Is Formed by 260 Genes from Disgenet and 1101 Interactions from STRING. Red Nodes Are the Five Seed Candidate Genes
    Figure S1. DMD module network. The network is formed by 260 genes from DisGeNET and 1101 interactions from STRING. Red nodes are the five seed candidate genes. Figure S2. DMD module network is more connected than a random module of the same size. It is shown the distribution of the largest connected component of 10.000 random modules of the same size of the DMD module network. The green line (x=260) represents the DMD largest connected component, obtaining a z-score=8.9. Figure S3. Shared genes between BMD and DMD signature. A) A meta-analysis of three microarray datasets (GSE3307, GSE13608 and GSE109178) was performed for the identification of differentially expressed genes (DEGs) in BMD muscle biopsies as compared to normal muscle biopsies. Briefly, the GSE13608 dataset included 6 samples of skeletal muscle biopsy from healthy people and 5 samples from BMD patients. Biopsies were taken from either biceps brachii, triceps brachii or deltoid. The GSE3307 dataset included 17 samples of skeletal muscle biopsy from healthy people and 10 samples from BMD patients. The GSE109178 dataset included 14 samples of controls and 11 samples from BMD patients. For both GSE3307 and GSE10917 datasets, biopsies were taken at the time of diagnosis and from the vastus lateralis. For the meta-analysis of GSE13608, GSE3307 and GSE109178, a random effects model of effect size measure was used to integrate gene expression patterns from the two datasets. Genes with an adjusted p value (FDR) < 0.05 and an │effect size│>2 were identified as DEGs and selected for further analysis. A significant number of DEGs (p<0.001) were in common with the DMD signature genes (blue nodes), as determined by a hypergeometric test assessing the significance of the overlap between the BMD DEGs and the number of DMD signature genes B) MCODE analysis of the overlapping genes between BMD DEGs and DMD signature genes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Ubiquitination Enzymes of Leishmania Mexicana
    The ubiquitination enzymes of Leishmania mexicana Rebecca Jayne Burge Doctor of Philosophy University of York Biology October 2020 Abstract Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. Although 20 deubiquitinating enzymes (DUBs) have been partially characterised in Leishmania mexicana, little is known about the role of E1 ubiquitin-activating (E1), E2 ubiquitin- conjugating (E2) and E3 ubiquitin ligase (E3) enzymes in this parasite. Using bioinformatic methods, 2 E1, 13 E2 and 79 E3 genes were identified in the L. mexicana genome. Subsequently, bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed that the E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for successful promastigote to amastigote differentiation and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, revealed a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a was found to load ubiquitin onto UBC2, allowing UBC2- UEV1 to form K63-linked di-ubiquitin chains in vitro. UBC2 was also shown to cooperate with human E3s RNF8 and BIRC2 in vitro to form non-K63-linked polyubiquitin chains, but association of UBC2 with UEV1 inhibits this ability.
    [Show full text]
  • Uncovering Ubiquitin and Ubiquitin-Like Signaling Networks Alfred C
    REVIEW pubs.acs.org/CR Uncovering Ubiquitin and Ubiquitin-like Signaling Networks Alfred C. O. Vertegaal* Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands CONTENTS 8. Crosstalk between Post-Translational Modifications 7934 1. Introduction 7923 8.1. Crosstalk between Phosphorylation and 1.1. Ubiquitin and Ubiquitin-like Proteins 7924 Ubiquitylation 7934 1.2. Quantitative Proteomics 7924 8.2. Phosphorylation-Dependent SUMOylation 7935 8.3. Competition between Different Lysine 1.3. Setting the Scenery: Mass Spectrometry Modifications 7935 Based Investigation of Phosphorylation 8.4. Crosstalk between SUMOylation and the and Acetylation 7925 UbiquitinÀProteasome System 7935 2. Ubiquitin and Ubiquitin-like Protein Purification 9. Conclusions and Future Perspectives 7935 Approaches 7925 Author Information 7935 2.1. Epitope-Tagged Ubiquitin and Ubiquitin-like Biography 7935 Proteins 7925 Acknowledgment 7936 2.2. Traps Based on Ubiquitin- and Ubiquitin-like References 7936 Binding Domains 7926 2.3. Antibody-Based Purification of Ubiquitin and Ubiquitin-like Proteins 7926 1. INTRODUCTION 2.4. Challenges and Pitfalls 7926 Proteomes are significantly more complex than genomes 2.5. Summary 7926 and transcriptomes due to protein processing and extensive 3. Ubiquitin Proteomics 7927 post-translational modification (PTM) of proteins. Hundreds ff fi 3.1. Proteomic Studies Employing Tagged of di erent modi cations exist. Release 66 of the RESID database1 (http://www.ebi.ac.uk/RESID/) contains 559 dif- Ubiquitin 7927 ferent modifications, including small chemical modifications 3.2. Ubiquitin Binding Domains 7927 such as phosphorylation, acetylation, and methylation and mod- 3.3. Anti-Ubiquitin Antibodies 7927 ification by small proteins, including ubiquitin and ubiquitin- 3.4.
    [Show full text]
  • Product Information
    Product information Monoclonal anti-human UBE2L6 antibody (clone K1H3) Mouse IgG2b, Cat. No. IBAUB0907 Immunogen: Recombinant human UBE2L6 (1-152aa) purified from E. coli NCBI Accession No.: NP_004214 Isotype: Mouse IgG2b heavy chain and light chain Clone: Anti-human UBE2L6 mAb, clone K1H3, is derived from hybridization of mouse F0 myeloma cells with spleen cells from BALB/c mice immunized with a recombinant human UBE2L6 protein. Description: Ubiquitin-conjugating enzyme E2L6 (UBE2L6), also known as UbcH8, is a member of the E2 ubiquitin-conjugating enzyme family. The modification of proteins with ubiquitin is an important cellular mechanism for targeting abnormal or short-lived proteins for degradation. Ubiquitination of a protein substrate requires the concerted action of 3 classes of enzymes: E1 ubiquitin-activating enzymes, E2 ubiquitin- conjugating enzymes, and E3 ubiquitin protein ligases. The E2 ubiquitin-conjugating enzyme is highly similar in primary structure to the enzyme encoded by UBE2L3 gene. Concentration: 1mg/ml Form: Liquid. In Phosphate-Buffered Saline (pH 7.4) with 0.02% Sodium Azide, 10% Glycerol. Storage: Can be stored at +4°C. For long term storage, aliquot and store at -20°C. Avoid repeated freezing and thawing cycles. Usage: The antibody has been tested by ELISA, Western blot analysis, Flow cytometry and ICC/IF immunohistochemistry to assure specificity and reactivity. Since application varies, however, each investigation should be titrated by the reagent to obtain optimal results. Application: ELISA, WB, IHC, Flow cytometry, ICC/IF For research use only. This product is not intended or approved for human, diagnostics or veterinary use. Manufactured for: Immuno-Biological Laboratories, Inc.
    [Show full text]
  • Targeting the Ubiquitin System in Glioblastoma', Frontiers in Oncology
    Citation for published version: Licchesi, J 2020, 'Targeting the Ubiquitin System in Glioblastoma', Frontiers in Oncology. https://doi.org/10.3389/fonc.2020.574011 DOI: 10.3389/fonc.2020.574011 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link to publication University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Sep. 2021 REVIEW published: 25 November 2020 doi: 10.3389/fonc.2020.574011 Targeting the Ubiquitin System in Glioblastoma Nico Scholz 1, Kathreena M. Kurian 2, Florian A. Siebzehnrubl 3 and Julien D. F. Licchesi 1* 1 Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom, 2 Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom, 3 Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options.
    [Show full text]
  • Figure S1. HAEC ROS Production and ML090 NOX5-Inhibition
    Figure S1. HAEC ROS production and ML090 NOX5-inhibition. (a) Extracellular H2O2 production in HAEC treated with ML090 at different concentrations and 24 h after being infected with GFP and NOX5-β adenoviruses (MOI 100). **p< 0.01, and ****p< 0.0001 vs control NOX5-β-infected cells (ML090, 0 nM). Results expressed as mean ± SEM. Fold increase vs GFP-infected cells with 0 nM of ML090. n= 6. (b) NOX5-β overexpression and DHE oxidation in HAEC. Representative images from three experiments are shown. Intracellular superoxide anion production of HAEC 24 h after infection with GFP and NOX5-β adenoviruses at different MOIs treated or not with ML090 (10 nM). MOI: Multiplicity of infection. Figure S2. Ontology analysis of HAEC infected with NOX5-β. Ontology analysis shows that the response to unfolded protein is the most relevant. Figure S3. UPR mRNA expression in heart of infarcted transgenic mice. n= 12-13. Results expressed as mean ± SEM. Table S1: Altered gene expression due to NOX5-β expression at 12 h (bold, highlighted in yellow). N12hvsG12h N18hvsG18h N24hvsG24h GeneName GeneDescription TranscriptID logFC p-value logFC p-value logFC p-value family with sequence similarity NM_052966 1.45 1.20E-17 2.44 3.27E-19 2.96 6.24E-21 FAM129A 129. member A DnaJ (Hsp40) homolog. NM_001130182 2.19 9.83E-20 2.94 2.90E-19 3.01 1.68E-19 DNAJA4 subfamily A. member 4 phorbol-12-myristate-13-acetate- NM_021127 0.93 1.84E-12 2.41 1.32E-17 2.69 1.43E-18 PMAIP1 induced protein 1 E2F7 E2F transcription factor 7 NM_203394 0.71 8.35E-11 2.20 2.21E-17 2.48 1.84E-18 DnaJ (Hsp40) homolog.
    [Show full text]
  • (USP7) in Histone H2A Ubiquitination
    Characterization of E2E Ubiquitin-Conjugating Enzymes and Ubiquitin-Specific Protease 7 (USP7) in Histone H2A Ubiquitination Hossein Davarinejad A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Biology York University Toronto, Ontario December 2017 © Hossein Davarinejad, 2017 Abstract Ubiquitin(Ub)-conjugating E2 enzymes play essential roles in ubiquitination of proteins. The UbE2E sub-family members UbE2E1, UbE2E2, and UbE2E3 have N-terminal extensions to the conserved E2 core which contain Ubiquitin-Specific Protease 7 (USP7) binding sequences (P/A/ExxS). Here, we continued our investigations to established that USP7 can interact with E2Es in vitro and in vivo. Our new data indicated that the N-terminal extensions of E2E2 or E2E3 can directly associate with USP7 TRAF domain. We demonstrated that E2E2 or E2E3 are stabilized by USP7 in cells. We also showed that E2Es interact with Ring1B:BMI1, the core components of the Polycomb Repressive Complex 1 (PRC1) and established E2E1 as an in vivo E2 for monoubiquitination of histone H2A on lysine(K) 119. We demonstrated that E2Es can modulate the levels of H2A monoubiquitination in cells and that USP7 may exert an effect on K119-UbH2A levels through regulating E2Es. ii Dedications For my dearest, and departed grandmother. Your memories, love, and grace are eternal. I also dedicate this to Agnieszka, GhoorGhoor, and Charlie for their invaluable support. And for science; may our collective and ever developing understanding of the universe and life lead us to make the world a better and a more peaceful place, for all life is precious.
    [Show full text]
  • The Effect of Increased Temperatures on the Antarctic Sponge Isodictya Sp
    bioRxiv preprint doi: https://doi.org/10.1101/416677; this version posted September 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Warm Temperatures, Cool Sponges: The Effect of Increased Temperatures on the Antarctic Sponge Isodictya sp. M. González-Aravena1*, N.J. Kenny2*^, M. Osorio1, A. Font1, A. Riesgo2, C.A. Cárdenas1^ 1 Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, 6200965, Chile 2 Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK * Authors contributed equally to manuscript ^ Corresponding authors MGA: [email protected] NJK: [email protected] MO: [email protected] AF: [email protected] AR: [email protected] CAC: [email protected] Corresponding author details: NJK: +44 20 7942 6475 CAC: +56 61 2298124 1 bioRxiv preprint doi: https://doi.org/10.1101/416677; this version posted September 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Although the cellular and molecular responses to exposure to relatively high temperatures (acute thermal stress or heat shock) have been studied previously, only sparse empirical evidence of how it affects cold-water species is available. As climate change becomes more pronounced in areas such as the Western Antarctic Peninsula, it has become crucial to understand the capacity of these species to respond to thermal stress.
    [Show full text]
  • The Proteasomal Deubiquitinating Enzyme PSMD14 Regulates Macroautophagy by Controlling Golgi-To-ER Retrograde Transport
    Supplementary Materials The proteasomal deubiquitinating enzyme PSMD14 regulates macroautophagy by controlling Golgi-to-ER retrograde transport Bustamante HA., et al. Figure S1. siRNA sequences directed against human PSMD14 used for Validation Stage. Figure S2. Primer pairs sequences used for RT-qPCR. Figure S3. The PSMD14 DUB inhibitor CZM increases the Golgi apparatus area. Immunofluorescence microscopy analysis of the Golgi area in parental H4 cells treated for 4 h either with the vehicle (DMSO; Control) or CZM. The Golgi marker GM130 was used to determine the region of interest in each condition. Statistical significance was determined by Student's t-test. Bars represent the mean ± SEM (n =43 cells). ***P <0.001. Figure S4. CZM causes the accumulation of KDELR1-GFP at the Golgi apparatus. HeLa cells expressing KDELR1-GFP were either left untreated or treated with CZM for 30, 60 or 90 min. Cells were fixed and representative confocal images were acquired. Figure S5. Effect of CZM on proteasome activity. Parental H4 cells were treated either with the vehicle (DMSO; Control), CZM or MG132, for 90 min. Protein extracts were used to measure in vitro the Chymotrypsin-like peptidase activity of the proteasome. The enzymatic activity was quantified according to the cleavage of the fluorogenic substrate Suc-LLVY-AMC to AMC, and normalized to that of control cells. The statistical significance was determined by One-Way ANOVA, followed by Tukey’s test. Bars represent the mean ± SD of biological replicates (n=3). **P <0.01; n.s., not significant. Figure S6. Effect of CZM and MG132 on basal macroautophagy. (A) Immunofluorescence microscopy analysis of the subcellular localization of LC3 in parental H4 cells treated with either with the vehicle (DMSO; Control), CZM for 4 h or MG132 for 6 h.
    [Show full text]
  • Structural and Functional Analyses of the Interaction Between the Usp7-Ntd and the E2-Conjugating Enzymes, Ube2e2 and Ube2e3
    STRUCTURAL AND FUNCTIONAL ANALYSES OF THE INTERACTION BETWEEN THE USP7-NTD AND THE E2-CONJUGATING ENZYMES, UBE2E2 AND UBE2E3 LEILA ASHUROV A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN BIOLOGY YORK UNIVERSITY TORONTO, ONTARIO AUGUST 2014 © LEILA ASHUROV, 2014 ABSTRACT Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that regulates the turnover of proteins in a cell. To date several interacting partners that are involved in various cellular processes have been identified for USP7. Many of the interacting partners of USP7 contain a P/AxxS motif. We have identified two E2 ubiquitin- conjugating enzymes, UbE2E2 and UbE2E3, which contain the P/AxxS motif. Using a co-immunoprecipitation assay we have shown that these E2 proteins interact with USP7 through their P/AxxS motif. Co-crystal structures of the N-terminal domain of USP7 (USP7-NTD) and the E2 peptides reveal that the interactions are formed between USP7- NTD residues 164DWGF167 and the E2 P/AxxS motifs. It has also been established that USP7 may be involved in regulating the cellular levels of UbE2E2. Overall, our findings suggest USP7, a de-ubiquitinating enzyme, is a regulator of ubiquitin-conjugating enzymes, which are involved in the ubiquitination cascade. ii ACKNOWLEDGEMENTS I would like to give my utmost gratitude to my Supervisor Dr. Vivian Saridakis. Thank you for taking me into your lab and providing me with this tremendous opportunity. Your constant support and guidance has allowed me to achieve my goals and complete this project.
    [Show full text]
  • The MALDI TOF E2/E3 Ligase Assay As an Universal Tool for Drug Discovery in the Ubiquitin Pathway
    bioRxiv preprint doi: https://doi.org/10.1101/224600; this version posted November 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The MALDI TOF E2/E3 ligase assay as an universal tool for drug discovery in the ubiquitin pathway Virginia De Cesare*1, Clare Johnson2, Victoria Barlow2, James Hastie2 Axel Knebel1 and 5 Matthias Trost*1,3 1MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St, Dundee, DD1 5EH, Scotland, UK; 2MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services, University of Dundee, Dow St, Dundee, DD1 5EH, Scotland, UK; . 3Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne, 10 NE2 1HH, UK *To whom correspondence should be addressed: Virginia De Cesare ([email protected]) Matthias Trost ([email protected]) 15 Contact information: V.D.C.: MRC PPU, University of Dundee, Dow St, Dundee, DD1 5EH, Phone: +44 1382 20 85822 M.T.: Newcastle University, Institute for Cell and Molecular Biosciences, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, Phone: +44 191 2087009 Key words: Ubiquitin, E3 ligase, E2 enzyme, MALDI TOF, mass spectrometry, drug 25 discovery, high-throughput, assay, MDM2, HOIP, ITCH 1 bioRxiv preprint doi: https://doi.org/10.1101/224600; this version posted November 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]