Fuel Handling, Reprocessing and Waste and Related Nuclear Data

Total Page:16

File Type:pdf, Size:1020Kb

Fuel Handling, Reprocessing and Waste and Related Nuclear Data MEAcRe- A - 34.5 FUEL HANDLING; REPROCESSINGAND WASTE AND RELATED NUCLEAR DATA ASPECTS H. Kiisters, M. Lalovi&, H.W. Wiese Nuclear Research Center Karlsruhe ‘0 Institute for Neutron Physics and Reactor Technology The essential processes in the out-of-pile nuclear fuel cycle are described, i.e. mining and milling of uraniumores, enrich- ment, fuel fabrication, storage, transportation, reprocessing of irradiated fuel, waste treatment and waste disposal. The aspects of radiation (mainly gammas and neutrons) and of heat production, as well as special safety considerations are outlined with re- spect to their potential operational impacts and long-term ha- l -zards. In this context the importance of nuclear data for the out-of-pile fuel cycle is discussed. Special weight is given to the LWR fuel cycle including recycling; the differences of LMFBR high burn-up fuel with large Pu02 content are described. The HTR, fuel cycle is discussed briefly as well as some alternative fuel cycle concepts. 9730000 1 . -. The nxlesr fuel cycle constitutes the entire ranb:e of processes to which the fuel is subjected fron ore mining, to terminal storn~e of the radioactive vasxe in gee- lo.:i;al fomstions. The la-se axmnt of plutonium in the increased nwrber of ape- ratin.? therm1 gover reactors and the development c~f a fast reactor technolox.7 with already two operatinix prototype reactors in Western-Europe require B ;rell developed fuel cycle industry, especially for the reprocessing of the spent fuel, refabrication of the recycled fuel and waste disposal, areas vhich mm years aso were considered to be of minor iln?ortonce compared to reactor industry. In Ser- maiy, the lesiqn of a lam? scale reprocessin; plant for IX fuel of abo;lt 1500 t/Jr through-put ins been co!Weted and is awaitin,% the licensing: proceaores. With the incressinr plutonim amount another aspect has ,;nined strann interest recently, i.e. safeguardinf7 fissile material in order to prevent or at least i-e- duce the possibility to divert fissile aaterial from the fuel cycle for ;ieapon* fabricntion. ?his aswqt has started I mrld-wide effort to investi?,ste the possi- bility of a fuel which is inherently'safe against diversion (alternative fuel cycles) and, in parallel, has led to a narrowing of the requirements for reliable and timely detection of fissile material diversion. These aipects fors a bsck~round which requires a re-investijiation of the physics. aspects of the nuclear Peel cycle. This ?a?er dells with the out-of-?ile stales of tie file1 cycle, with the processes involved, the present problem and the re- lated nuclear data aspects. 3ecause this confe$ence is ained at assessin: the needs and status of nuclear data for reactors and other applied purposes,the mre strin;ent conditions, im;)osed on fuel cycle aspects, necessitate ta check vhether 0 new nuclee- data requests have to be formulzted although it has been indicated that the out-of-pile processes are not very sensitive to data uncertainties. An appreciation of any data request, and this is true also for reactor cmditions, can be Czde only if a balanced consideration of the nuclear and non-nuclear es- pects of the processes under investiwtion is perforned in order to find wilt uhetber i&roved knowledge of nuclear data can help to decrease actual and goten- tial difficulties or conservatism in the plant design. In the out-of-Bile cycle, besides nuclear processes,fuel handling and che!nical problems have to be discussed. to that extent which is necessary to ,give Saningful data requirenents. It is ob- / vious that in the out-of-oile processes mainly the decay data of nuclei 8s half- lives,heat production, emission of a,b,y-radiation as well as the iission product yields and the productions of neutrons via spontaneous fission end (a,n)-re- actions play the dominant rdle. The reaction cross sections such as neutron fis- sibn and capture we important only during the reactor residence ti!e of the fuel to gredict the proper concentrations of radioactive nuclei,and in investiwting criticality control of out-of-pile fuel. In w a simplified flow diaqrm of the fuel cycle is +ven. Tile will follow tine various stages with main emphasis on the uranim/plutonlm cycle of Lids in- clildiw recycling. me differences and the problems of the fuel cycles for the advanced reactors such as LMFBR and HTR with thorium as fertile naterial We discussed alon?, with some alternate fue;,,~y+e cpncepts. g&l-: :iilc1eer Fuel.Cycle for Lw?s 2. The Route of Unirradiated Fuel fro‘l :!inin< to Fabrication. 2.1. :linins! and !iillinS The problem of mining and milling uranium ore is connected with the huge amount of the waste produced in these processes. The waste originates from the removal of the uaste rock to provide access to the ore body. Substantial amounts of con- tami,nants are generally released from the waste rock piles only when they contain more than 1: saPhide mineral causing bacterial oxidation. Because uranium is extracted from the ore either by acid or alkali leaching, the list of the pollu- tants includes heavy metals, nitrite, phosphate, acidity and alkalinity as well as radioactive materials, namely the a-decay daughters of 11238, i.e. Th230, aa and Hn222. They can appear as contaminants in the waste water, seepage from the waste rock ?iles land from the ail1 tailinks, cotitaminating finally the receiving ground and silrfnce water. Radioactive air wallution is caused by uranium dust and Rn222. The consequences of the airborne releeses are usually small, hilt the water- borne releases after many years of nine operation, dependent on location, nay re- wire treatnent of the waste because of Ra226 activity (t ,L2 = @2,ST) 131. AS indicated by Cohen /&I, the potential ingestion hazard of ,111 talllngs formed to pro$uce fuel for a certain number o f 1000 I&k reactors exceeds the hazards of the waste coxing fros these reactors only after a period of about 250 yr. One should note that the reactor waste is much nore securilg stored than mill tailings (see section 4.2.3).. The environmental impact of mining and milling~ursnium ore cannot. be influenced or reduced by a better knowledge of the decay rates end radiation intensities of ~238 and its decay daughters to Pb206. 2.2 Conversion of U,O, to U?, and Enrichment of Fissile U235 The proble?i in the conversion process is connected with the corrosion of the cox- ponents, because after the reduction of U 0 to U(IV)02 with hydrogen, RF and F2 are used for hydrofluorination to UFq and 38f uorination to UF6. The gaseous waste contains lar.ge aounts of SO2 and NO , a small amount of radioactivity (Ra226) is found in the liquid w%ste. Because o? the high requirement of electrical energy in enric:baents plants due to the low efficiency of the single enrichment steps eventually a large amount of waste heat is produced, which has to be dissinsted to a river or as humidified air fran a cooling tower. For a gaseous diffusion plant similar amounts of gaseous effluents SO and NO we released 8s in the conversion process. As a nuclear aspect, for &ghly &riched UF criticality hasp to be controlled. This is achieved by a slitable geometrical d&inn. !4ore accu- rate nuclear data are not requested, and as in all protective measures, safety margins are applied. 21~z-fabrication of (Inirradiated Uranium Oxide The fabrication of UO does not pose.any problem due to the low radioactivity of U235 (a, spontaneous ?ission neutrons). Criticality control is assured by safe geometrical confi+ratione. Lnvironnental impacts arise from the chemical efflu- ents (fluorine and nitro~zen compounds) in the conversion process from UF6 to U02 (e.s. by reaction of UF6 and NH3 + C02). &.-General Reactor ?hysics .Asoects for mJt-of-Pile Investixations The description of the burn-u? behavior during reactor operation including fuel nsna.Tement has been well developed. In general, this requires an adequate solu- tion for criticality, reaction rate ~n3 flux distributions as well as for the neutron spectrun, the reactivity srorth of control rods 07 blades. a proper treat- 9730000,“, nent of heterogeneity etc. The changes of the absorber rod positions, neutron spectrum and the related changes of the effective cross sections (due to spec- tral changes, nuclide concentrations, resonance selfshielding)~ during burn-u? have to be taken into account, keeping k unity during the evolution of reactor life. This relatively co@icated proced$g provides a reliable nuclide concentra- tion at fuel dischnrqe.of each subassembly , provided the nuclear data used are accurate. For the out-of-pile behaviar of the discharged fuel, tinis unloaded "nuclide vector" determines the amount of e.q. the inventory of radioactivity at any tine after discharge ossuminq the decay rates to be known. However, for out- of-pile purposes the nuclide inventory and the deduced~quantities need not to be known exactly for each space point in the reactor. Fuel bundles of different burn-up we mixed in the. storage pond and in the dissolver tank. Therefore, only average nuclide concentrations for an unloaded fuel batch are needed t.0~ determine heating and radiation. But both these quantities originate from many radioactive fission products, structural material and heavy elements, most of those are usu- ally not incorporated in the burn-up calculations. Therefore often one-energy- &rou!, fundamental mode calculations with all the isotopes of interest are applied also for the in-core description of build-u:, and'decay of nuclides, neglectin!: the tire dependence of effective cross sections, which is different in various zones of the reactor core (e.g.
Recommended publications
  • ESTIMATION of FISSION-PRODUCT GAS PRESSURE in URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by Wuzter A
    NASA TECHNICAL NOTE NASA TN D-4823 - - .- j (2. -1 "-0 -5 M 0-- N t+=$j oo w- P LOAN COPY: RET rm 3 d z c 4 c/) 4 z ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by WuZter A. PuuZson una Roy H. Springborn Lewis Reseurcb Center Clevelund, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. NOVEMBER 1968 i 1 TECH LIBRARY KAFB, NM I 111111 lllll IllH llll lilll1111111111111 Ill1 01317Lb NASA TN D-4823 ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS By Walter A. Paulson and Roy H. Springborn Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 ABSTRACl Fission-product gas pressure in macroscopic voids was calculated over the tempera- ture range of 1000 to 2500 K for clad uranium dioxide fuel elements operating in a fast neutron spectrum. The calculated fission-product yields for uranium-233 and uranium- 235 used in the pressure calculations were based on experimental data compiled from various sources. The contributions of cesium, rubidium, and other condensible fission products are included with those of the gases xenon and krypton. At low temperatures, xenon and krypton are the major contributors to the total pressure. At high tempera- tures, however, cesium and rubidium can make a considerable contribution to the total pressure. ii ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by Walter A. Paulson and Roy H.
    [Show full text]
  • Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
    IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting.
    [Show full text]
  • Relative Fission Product Yield Determination in the Usgs
    RELATIVE FISSION PRODUCT YIELD DETERMINATION IN THE USGS TRIGA MARK I REACTOR by Michael A. Koehl © Copyright by Michael A. Koehl, 2016 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Nuclear Engineering). Golden, Colorado Date: ____________________ Signed: ________________________ Michael A. Koehl Signed: ________________________ Dr. Jenifer C. Braley Thesis Advisor Golden, Colorado Date: ____________________ Signed: ________________________ Dr. Mark P. Jensen Professor and Director Nuclear Science and Engineering Program ii ABSTRACT Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, ; modified spectral index, ; neutron temperature, ; and gold-based cadmium ratiosφ were determined for various sampling√⁄ positions in the USGS TRIGA Mark I reactor.
    [Show full text]
  • Ornl-Tm-1853
    OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION ORNL- TM-1853 COPY NO. - 0-C kc+- DATE -6-6-67 CFSTI RpICZiS CHEMICAL RESEARCHAND DEVELOPMENTFOR MOLTEN- SALT BREEDERREACTORS W. R. Grimes ABSTRACT kq Results of the 15-year program of chemical research and develop- .; ment for molten salt reactors are summarized in this document. These c results indicate that 7LiF-BeFz-LJFb mixtures are feasible fuels for thermal breeder reactors. Such mixtures show satisfactory phase be- havior, they are compatible with Hastelloy N and moderator graphite, and they appear to resist radiation and tolerate fission product ac- cumulation. Mixtures of 7LiF-BeF2-ThF4 similarly appear suitable as blankets for such machines. Several possible secondary coolant mix- tures are available; NaF-NaBF3 systems seem, at present, to be the most likely possibility. Gaps in the technology are presented along with the accomplish- ments, and an attempt is made to define the information (and the research and development program) needed before a Molten Salt Thermal Breeder can be operated with confidence. NOTICE This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Loboratory. It is subject to revision or correction and therefore does not represent a final report. The information is not to be abstracted, reprinted or otherwise given public dis- 4 .”: semination without the approval of the ORNL potent branch, Legal and Infor- mation Control Department. ’ y a I LEGAL NOTICE This report was prepored as an occount of Government sponsored work. Neither the United States, nw the Commission, nor ony person octing un beholf of the Commission: A.
    [Show full text]
  • 12.2% 130,000 155M Top 1% 154 5,300
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 5,300 130,000 155M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter Fast-Spectrum Fluoride Molten Salt Reactor (FFMSR) with Ultimately Reduced Radiotoxicity of Nuclear Wastes Yasuo Hirose Abstract A mixture of NaF-KF-UF4 eutectic and NaF-KF-TRUF3 eutectic containing heavy elements as much as 2.8 g/cc makes a fast-spectrum molten salt reactor based upon the U-Pu cycle available without a blanket. It does not object breeding but a stable operation without fissile makeup under practical contingencies. It is highly integrated with online dry chemical processes based on “selective oxide precipita- tion” to create a U-Pu cycle to provide as low as 0.01% leakage of TRU and nominated as the FFMSR. This certifies that the radiotoxicity of HLW for 1500 effective full power days (EFPD) operation can be equivalent to 405 tons of depleted uranium after 500 years cooling without Partition and Transmutation (P&T). A certain amount of U-TRU mixture recovered from LWR spent fuel is loaded after the initial criticality until U-Pu equilibrium but the fixed amount of 238U only thereafter.
    [Show full text]
  • Paper Template
    Proceedings of 2ndInternational Symposium on BNCT The Application of Nuclear Technology to Support National Sustainable Development: Health, Agriculture, Energy, Industry and Environment August 10-11, 2016 - Pendopo of Surakarta City Government, Surakarta - Central Java, Indonesia Original paper available at http://... pp. …–… Study on The Ability of PCMSR to Produce Valuable Isotopes as By Produce of Energy Generation Andang Widi Harto a aDepartment of Nuclear Engineering and Engineering Physics, Faculty of Engineering UGM, Jln Grafika No.2, Yogyakarta, DIY, 55281, Indonesia Abstract PCMSR (Passive Compact Molten Salt Reactor) is a variant of MSR (Molten Salt Reactor) type reactors. The MSR is one type of the Advanced Nuclear Reactor types. PCMSR uses mixture of fluoride salt if liquid form in high temperature operation. The use of liquid salt fuel allows the application of on line fuel processing system. The on line fuel processing system allow extraction of several valuable fission product isotopes such as Mo- 99, Cs-137, Sr-89 etc. The capability to MSR to produce several valuable isotopes has been studied. This study based on a denaturated breeder MSR design with 920 MWth of thermal power and 500 MWe of electrical output power with the thermal efficiency of 55 %. The 232 initial composition of fuel salt is 70 % mole of LiF, 24 % mole of ThF4, 6 % mole of UF4. The enrichment level of U is 20 % mole of U-235. The study is performed by numerical calculation to solve a set of differential equations of fission product ballance. This calculation calculates fission product generation due to fission reaction and precursor decay and fission product annihilation due to decay, neutron absorption and extraction.
    [Show full text]
  • Fission Product Yield Measurements from Neutron-Induced Fission of 235,238U and 239Pu
    EPJ Web of Conferences 232, 03006 (2020) https://doi.org/10.1051/epjconf/202023203006 HIAS 2019 Fission Product Yield Measurements from Neutron-Induced Fission of 235,238U and 239Pu M. A. Stoyer1;∗, A. P. Tonchev1, J. A. Silano1, M. E. Gooden2, J. B. Wilhelmy2, W. Tornow3, C. R. Howell3, F. Krishichayan3, and S. Finch3 1Lawrence Livermore National Laboratory, Livermore, CA 94550 USA 2Los Alamos National Laboratory, Los Alamos, NM 87545 USA 3Triangle Universities Nuclear Laboratory, Durham, NC 27708 USA Abstract. Fission product yields (FPY) are one of the most fundamental quantities that can be measured for a fissioning nucleus and are important for basic and applied nuclear physics. Recent measurements using mono-energetic and pulsed neutron beams generated using Triangle Universities Nuclear Laboratory’s tandem accelerator and employing a dual fission chamber setup have produced self-consistent, high-precision data critical for testing fission models for the neutron-induced fission of 235;238U and 239Pu between neutron energies of 0.5 to 15.0 MeV. These data have elucidated a low-energy dependence of FPY for several fission products using irradiations of varying lengths and neutron energies. This paper will discuss new measurements just beginning utilizing a RApid Belt-driven Irradiated Target Transfer System (RABITTS) to measure shorter- lived fission products and the time dependence of fission yields, expanding the measurements from cumulative towards independent fission yields. The uniqueness of these FPY data and the impact on the development of fission theory will be discussed. 1 Introduction Nuclear fission is a collective phenomenon in which a heavy parent nucleus splits into two daughter nuclei ei- ther spontaneously or as a result of some inducement (neu- trons, charged particles, photons, etc.).
    [Show full text]
  • Fission Yield Measurements from Deuterium-Tritium Fusion Produced Neutrons Using Cyclic Neutron Activation Analysis and Γ-Γ Coincidence Counting
    Fission yield measurements from deuterium-tritium fusion produced neutrons using cyclic neutron activation analysis and γ-γ coincidence counting by Bruce D. Pierson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Nuclear Engineering & Radiological Sciences) in The University of Michigan 2016 Doctoral Committee: Professor Sara A. Pozzi, co-chair Assistant Professor Marek Flaska, Penn. State University, co-chair Professor, John E. Foster Larry R. Greenwood, Pacific Northwest National Laboratory Assistant Professor Physics Thomas Schwarz c Bruce D. Pierson 2016 All Rights Reserved This dissertation is dedicated to my family for their unyielding patience and support throughout my graduate career. ii ACKNOWLEDGEMENTS I would like to thank Drs. Marek Flaska, Larry Greenwood, Amanda Prinke, Sara Pozzi, and Sean Stave for their assistance, guidance, mentorship, and revisions to written works; their support and input drastically improved the quality of the final analysis and results (between the five them, I was getting at least one form of support from each of them). I'd also like to thank Drs. Ovidiu Toader and Joe Miklos for their assistance and support in maintaining and managing the Neutron Science Laboratory. Dr. Miklos was instrumental in amending the Nuclear Science Laboratory Nuclear Regulatory Commission license that allowed me to even do the work outlined in this document. He is a good friend and cheered me on to the finish at every opportunity. Dr. Toader was an invaluable resource for tools and ideas, and even emotional support when confronted with complex problems and the, what seemed to be, near endless graduate career.
    [Show full text]
  • Calculations Related to Nuclear Fission-Product Yields
    XA9744983 _ International Atomic Energy Agency INDCCCCP1-4Q4 Distr.: L IN DC INTERNATIONAL NUCLEAR DATA COMMITTEE CALCULATIONS RELATED TO NUCLEAR FISSION-PRODUCT YIELDS Three papers by E.S. Bogomolova, A.F. Grashin, A.D. Efimenko, I.B. Lukasevich Moscow Engineering Physics Institute, Moscow Translated by the IAEA August 1997 IAEA NUCLEAR DATA SECTION, WAGRAMERSTRASSE 5. A 1400 VIENNA Reproduced by the IAEA in Austria August 1997 INDC1CCPV404 Distr.: L CALCULATIONS RELATED TO NUCLEAR FISSION-PRODUCT YIELDS Three papers by E.S. Bogomolova, A.F. Grashin, A.D. Efimenko, I.B. Lukasevich Moscow Engineering Physics Institute, Moscow Original articles in Russian published in Jadernye Konstanty (Nuclear Constants) Volumes 1-2, 1995 Translated by the IAEA August 1997 Contents The ASIND-MEPhI Library of Independent Actinide ........................................................ 7 Fission Product Yields (English translation from Yad. Konst. 1-2, 1995, p. 89) Calculation of Independent Fission Product Yields by ...................................................... 25 the Thermodynamic Method (English translation from Yad. Konst. 1-2, 1995, p. 99) Long-Lived Fission Product Yields and the Nuclear .........................................................51 Transmutation Problem (English translation from Yad. Konst. 1-2, 1995, p. 117) XA9744984 - 7 - 96-11496 (N) Translated from Russian UDC 539.173 THE ASIND-MEPhI LIBRARY OF INDEPENDENT ACTINIDE FISSION PRODUCT YIELDS E.S. Bogomolova, A.F. Grashin, A.D. Efimenko, LB. Lukasevich Moscow Engineering Physics Institute, Moscow ABSTRACT THE ASIND-MEPhI LIBRARY OF INDEPENDENT ACTINIDE FISSION PRODUCT YIELDS. This database of independent fission product yields has been set up at the Moscow Engineering Physics Institute on the basis of theoretical calculations within the framework of the super-nonequilibrium thermodynamic model.
    [Show full text]
  • The Concept of Fuel Cycle Integrated Molten Salt Reactor for Transmuting Pu+MA from Spent LWR Fuels
    FR0202049 The Concept of Fuel Cycle Integrated Molten Salt Reactor for Transmuting Pu+MA from Spent LWR Fuels. Y. Hirose, and Y. Takashima The Kashiwa Research Laboratory, The Institute of Research and Innovation 1201, Takada, Kashiwa-shi, Chiba-ken, 277-0861 Japan. ABSTRACT Japan should need a new fuel cycle, not to save spent fuels indefinitely as the reusable resources but to consume plutonium and miner actinides orderly without conventional reprocessing. The key component is a molten salt reactor fueled with the Pu+MA (PMA) separated from LWR spent fuels using fluoride volatility method. A double-tiered once-through reactor system can burn PMA down to 5% remnant ratio, and can make PMA virtually free from the HAW to be disposed geometrically. A key issue to be demonstrated is the first of all 7 solubility behavior of trifiuoride species in the molten fuel salt of LiF-BeF2 mixture. 7 Keywords: LWR Spent Fuels, Transmuting of Pu+MA, Molten Salt Reactor, LiF-BeF2 Molten Salt Mixture, Solubility ofTrifluorides. 1- INTRODUCTION 51 LWRs are operating, 13 LWRs (4 under construction) are to be operated during the next decade, and at least 7 more LWRs are preparing to be operated by 2015 with the total capacity of 68.5 GW(e) in Japan. The nuclear power capacity in Japan increases at a linear rate of 1.5 GW(e)/y as shown in Figure 1. It is predictable that the total nuclear power capacity will reach the maximum of 90 GW(e) in 2030. Because the existing and forthcoming LWR plants will be operable for 60 years at 80% capacity factor, owing to intensive technological endeavor by utility companies and the Government, the power capacity will stay at the constant on going, if the supplement will be kept at the rate of 1.5 GW(e)/y.
    [Show full text]
  • Reactor Fuel Isotopics and Code Validation for Nuclear Applications
    ORNL/TM-2014/464 Reactor Fuel Isotopics and Code Validation for Nuclear Applications Matthew W. Francis Charles F. Weber Marco T. Pigni Approved for public release; Ian C. Gauld distribution is unlimited. September 2014 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website http://www.osti.gov/scitech/ Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Website http://www.ntis.gov/help/ordermethods.aspx Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Website http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • Nuclear Energy Today
    Cov-Nuc Energy Today 4/06/03 11:38 Page 1 Nuclear Development Nuclear Energy Today NUCLEAR•ENERGY•AGENCY 1-RefBook 20 May 2003 23/05/03 19:09 Page 1 Nuclear Development Nuclear Energy Today NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT 1-RefBook 20 May 2003 23/05/03 19:09 Page 2 Foreword All the forecasts of world energy demand for the next 50 years point towards very significant increases in consumption. A big share of this new demand will come from areas of the world where existing energy consumption is now relatively low in comparison with the OECD countries, and which are becoming increasingly integrated in the global economy. As energy demand grows, all societies worldwide will face a real challenge in providing the energy needed to feed economic growth and improve social development, while enhancing protection of the environment. In this context, it is not difficult to conclude that it is the responsibility of policy makers to establish energy policies that meet that challenge while being robust enough to cope with the risks associated with the globalisation of the world economy. Diversification, security of supply, protection of the environment and technology development are key elements of any energy policy that tries to put into the markets enough energy at a reasonable price in a sustainable way. Among the different energy sources that are contributing significantly to world supply none appears to policy makers as more complex than nuclear energy. The economic, technological and social implications of nuclear power makes any decision something that goes far beyond the normal actors of the market place.
    [Show full text]