The Gaba Agonist Thip, a Muscimol Analogue, Does Not Interfere with the Benzodiazepine Binding Site on Rats Cortical Membranes

Total Page:16

File Type:pdf, Size:1020Kb

The Gaba Agonist Thip, a Muscimol Analogue, Does Not Interfere with the Benzodiazepine Binding Site on Rats Cortical Membranes Neuroscience Letters, 12 (1979) 65--68 65 © Elsevier/North-Holland Scientific Publishers Ltd. THE GABA AGONIST THIP, A MUSCIMOL ANALOGUE, DOES NOT INTERFERE WITH THE BENZODIAZEPINE BINDING SITE ON RATS CORTICAL MEMBRANES RICHARD MAURER Biological and Medical Research Division, Sandoz Ltd., CH-4002 Basel (Switzerland) (Received November 3rd, 1978) (Revised version December 22nd, 1978) (Accepted December 22nd, 1978) SUMMARY THIP, a cyclic analogue of muscimol, is a powerful GABA agonist. It is as active as GABA in displacing [3H]muscimol from its binding site to cerebellar membranes (ICs0 = 31.5 + 2.5 raM). However, unlike muscimol or GABA, it is devoid of any modulatory interaction with the benzodiazepine binding site on rat's cortical membranes. Homotaurine, isoguvacine and imidazole acetic acid are less active than muscimol and GABA for increasing the affinity of [3H]dia- zepam to cortical membrane preparations. Biochemical studies failed for a long time to reveal any direct interaction between benzodiazepines and GABA at the receptor level. Recently, however, a modulatory role of GABA agonists and antagonists on the benzodiazepine binding site has been shown [7]. GABA and muscimol increase the affinity of [3H]diazepam for its binding sites on washed membranes of rat cortex, whereas (+)-bicuculline lowers the apparent affinity for [3H]diazepam. A notable exception is imidazole acetic acid, an electrophysiologically and biochemically characterized GABA agonist [1,8], which has no influence on the binding of [3H]diazepam to cortical membranes of the rat. Addition- ally the purification of a heat stable protein from rat brain has been described which seems to act both as a ligand for benzodiazepine receptors and as a modulator of GABA receptors [2]. 4,5,6,7-Tetrahydroisoxazolo[5,4-c]pyridine-3-ol (THIP), a bicyclic muscimol analogue related to isoguvacine which has been described recently [3] as a member of a new class of GABA agonists, competes effectively for the [3H]GABA binding site (ICs0 = 2.6 + 0.5 uM) and depresses the firing of spinal interneurons, an effect which is antagonized by the GABA antagonist bicuculline. Furthermore, THIP does not affect GABA uptake or inhibit the actions of GAD and GABA-T [4]. 66 In the present paper we compare the potencies of different GABA agonists, and in particular those of THIP, to displace [3H] muscimol with their ability to interact with the benzodiazepine binding site on rat's cortical membranes. The [3H]diazepam-binding assay was performed essentially as described by Mohler et al. [5]. Cerebral cortex of male rats (Ivanovas, 350--400 g) was homogenized in 20 vols. of ice-cold 0.32 M sucrose with a Polytron homo- genizer (position 3 for 15 sec, total setting 10) and centrifuged at 1000 g for 10 min at 4°C. The supernatant was centrifuged for an additional 20 min at 20,000 g and the resulting pellet resuspended with the polytron in Tris--HC1 buffer (0.05 M, pH 7.4) containing 200 mM NaC1. To remove endogenous small molecular weight compound the suspension was dialysed at 0°C against the same buffer for 1--2 days. For [3H]muscimol binding studies rat cerebellar tissue was used. Except for a change in the buffer (Tris-citrate 0.05 M, pH 6.7) the preparation of cere- bellar membranes was identical to the methodology used for cortical mem- branes. Binding assay conditions were the same as described by Snodgrass [6]. [3H] Diazepam (39 Ci-mmo1-1) and [3H]muscimol (12.9 Ci • mol-l) were purchased from New England Nuclear, THIP was obtained through Lundbeck Pharamaceutical Company Denmark, isoguvacine was synthetised at Sandoz, all other compounds being commercially available. The different GABA agonists are listed in Table I in order of their potency in displacing [3H]muscimol from its binding site. Muscimol is the most active compound (ICso = 2.97 • 10 -9 M), followed by a group of compounds including GABA, homotaurine, isoguvacine and THIP, each of which is about 10 times less active than muscimol. Imidazole acetic acid, the weakest GABA agonist tested, is 40 times less active than muscimol. Although muscimol, THIP and isoguvacine are acknowledged to be strong GABA agonists, their effects on [3H]diazepam binding are very different from TABLE I COMPETITION BY GABA AGONISTS FOR SPECIFIC [3H]MUSCIMOL BINDING TO RAT CEREBELLAR MEMBRANE SUSPENSION Each value is the mean of the observed specifically bound ligand +- S.E.M. of 2 to 3 experiments; in each experiment assays were done in triplicate. Compound ICs0 (nM) Muscimol 2.97 ± 0.35 Homotaurine 18.0 -+ 1.0 Isoguvacine 20.5 -+ 1.5 GABA 21.5 ± 0.3 THIP 31.5 -+ 2.5 Imidazole acetic acid 118.0 ± 18.0 67 80- . f' MUSCIMOL -~ 60 / ~D ~- (I) N ' < 40 / / ~-m a / /--ISOGUVACINE ¢J z z ~ 20 i • i Iltl~ O I = ....... 1 ...... 5 ........ I ....... I ....... "1 - -7 -6 -5 -4 -3 CONCENTRATION(log M) Fig. 1. Concentration dependence of specific [ 3H]diazepam binding stimulation with muscimol, isoguvacine and THIP. All symbols represent the mean values of three indepen- dent experiments. TABLE II CHANGES IN [SH]DIAZEPAM BINDING INDUCED BY GABA AGONISTS All experiments were done with triplicate tubes and results of several experiments have been combined. Compound Structure Concentration Stimulation (#M) (% of control ± S.E.M.) Muscimol H2N~ 1 47.3 + 8.7 10 74.7 ± 8.1 GABA H2N ~--I ~H 101 33.7 + 4.3 58.3 + 7.1 Homotaurine H2N~__/--S%H 1 24.0 + 1.0 10 41.0 + 0.2 Isoguvacine H~: 1 0 10 27.0 + 0.2 OH Imidazole .~/--~o 1 0 acetic acid 10 12.0 + 1.6 THIP " 1 10 68 one another (Fig. 1). Whereas THIP is absolutely devoid of any modulating activity on [3H]diazapam binding up to concentrations of 3 • 10 -4 M, isoguva- cine and muscimol increase the affinity of [3H]diazepam binding at concen- trations as low as 10 -6 and 10 -s M respectively. All six GABA agonists were then tested at two different concentrations (10 -5 and 10 -6 M) for their effect on [3H]diazepam binding. Homotaurine increased the affinity of [3H]diaze- pam when used within a concentration range similar to that for GABA and muscimol. Imidazole acetic acid produced only a slight stimulation at 10 -s M and next to THIP was the weakest compound tested (Table II). These results clearly demonstrate that GABA agonists (GABA, homotaurine, isoguvacine, THIP) which are almost equiactive in terms of their ability to displace [3H]muscimol nevertheless display very different potencies for amplifying [3H]diazepam binding. The qualitatively different effects observed with the various substances investigated might be related to the position of the nitrogen atom within the molecule (Table II). GABA agonists like muscimol and homotaurine that have a free amino group modulate the affinity of the benzodiazepine binding site whereas agonists in which the N-atom (correspon- ding to the amino group of GABA) is incorporated into a ring structure show either a marked loss (isoguvacine and imidazole acetic acid} or an inability (THIP) to interact with the benzodiazepine binding site. ACKNOWLEDGEMENTS Thanks go to Drs. B.H. G~dlwiler and E. van Deusen for helpful discussions and assistance in the preparation of the manuscript. REFERENCES 1 Dray, A., Comparison of bicucuUine methochloride with bicuculline and picrotoxin as antagonists of amino acid and monoamine depression of neurons in the rat brain stem, Neuropharmacology, 14 (1975) 887--891. 2 Guidotti, A., Toffano, G. and Costa, E., An endogenous protein modulates the affinity of GABA and benzodiazepine receptors in rat brain, Nature (Lond.), 275 (1978) 553--555. 3 Krogsgaard-Larsen, P., Johnston, G.A.R., Lodge, D. and Curtis, D.R., A new class of GABA agonist, Nature (Lond.), 268 (1977) 53--55. 4 Krogsgaard-Larsen, P., GABA agonists and uptake inhibitors of restricted conformation: structure-activity relations. In F. Fonnum (Ed.), Amino Acids as Chemical Transmitter, in press. 5 M~hler, H. and Okada, T., Properties of [SH]diazepam to benzodiazepine receptors in rat cerebral cortex, Life Sci., 20 (1977) 2101--2110. 6 Snodg~a~, S.Q., Use of 3H-muscimol for GABA receptor studies, Nature (Lond.), 273 (1978) 392--394. 7 Tallmann, J.F., Thomas, J.W. and Gallager, D.W., GABAergic modulation of benzodiaze- pine binding site sensitivity, Nature (Lond.), 274 (1978) 383--385. 8 Zukin, S.R., Young, A.D. and Snyder, S.H., Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system, Proc. Nat. Acad. Sci. (U.S.A.), 71 (1974) 4802--4807. .
Recommended publications
  • Downloads/Drugs/…/Guidances/UCM078932
    UCLA UCLA Previously Published Works Title Homotaurine, a safe blood-brain barrier permeable GABAA-R-specific agonist, ameliorates disease in mouse models of multiple sclerosis. Permalink https://escholarship.org/uc/item/7kq6p5tv Journal Scientific reports, 8(1) ISSN 2045-2322 Authors Tian, Jide Dang, Hoa Wallner, Martin et al. Publication Date 2018-11-08 DOI 10.1038/s41598-018-32733-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Homotaurine, a safe blood-brain barrier permeable GABAA-R-specifc agonist, ameliorates disease in Received: 12 April 2018 Accepted: 11 September 2018 mouse models of multiple sclerosis Published: xx xx xxxx Jide Tian, Hoa Dang, Martin Wallner, Richard Olsen & Daniel L. Kaufman There is a need for treatments that can safely promote regulatory lymphocyte responses. T cells express GABA receptors (GABAA-Rs) and GABA administration can inhibit Th1-mediated processes such as type 1 diabetes and rheumatoid arthritis in mouse models. Whether GABAA-R agonists can also inhibit Th17-driven processes such as experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), is an open question. GABA does not pass through the blood-brain barrier (BBB) making it ill-suited to inhibit the spreading of autoreactivity within the CNS. Homotaurine is a BBB-permeable amino acid that antagonizes amyloid fbril formation and was found to be safe but inefective in long-term Alzheimer’s disease clinical trials. Homotaurine also acts as GABAA-R agonist with better pharmacokinetics than that of GABA. Working with both monophasic and relapsing-remitting mouse models of EAE, we show that oral administration of homotaurine can (1) enhance CD8+CD122+PD-1+ and CD4+Foxp3+ Treg, but not Breg, responses, (2) inhibit autoreactive Th17 and Th1 responses, and (3) efectively ameliorate ongoing disease.
    [Show full text]
  • Practice Guideline
    THE AMERICAN ASSOCIATION PSYCHIATRIC PRACTICE GUIDELINE FOR THE PHARMACOLOGICAL TREATMENT WITH OF ALCOHOL PATIENTS USE DISORDER lcohol use disorder (AUD) is a major public health problem in the United States. The estimated 12-month and lifetime prevalence values for AUD are 13.9% and THE AMERICAN PSYCHIATRIC ASSOCIATION A 29.1%, respectively, with approximately half of individuals with lifetime AUD having a severe disorder. AUD and its sequelae also account for significant excess mortality and cost the United States more than $200 billion annually. Despite its high prevalence and numerous negative consequences, AUD remains undertreated. In fact, fewer than 1 in 10 individuals in the United States with a 12-month diagnosis of AUD PRACTICE GUIDELINE receive any treatment. Nevertheless, effective and evidence-based interventions are available, and treatment is associated with reductions in the risk of relapse and AUD- FOR THE associated mortality. The American Psychiatric Association Practice Guideline for the Pharmacological Pharmacological Treatment of Treatment of Patients With Alcohol Use Disorder seeks to reduce these substantial psychosocial and public health consequences of AUD for millions of affected individu- Patients With Alcohol Use Disorder als. The guideline focuses specifically on evidence-based pharmacological treatments for AUD in outpatient settings and includes additional information on assessment and treatment planning, which are an integral part of using pharmacotherapy to treat AUD. In addition to reviewing the available evidence on the use of AUD pharmacotherapy, the guideline offers clear, concise, and actionable recommendation statements, each of which is given a rating that reflects the level of confidence that potential benefits of an intervention outweigh potential harms.
    [Show full text]
  • Taurine and Its Analogs in Neurological Disorders Focus On
    Redox Biology 24 (2019) 101223 Contents lists available at ScienceDirect Redox Biology journal homepage: www.elsevier.com/locate/redox Review article Taurine and its analogs in neurological disorders: Focus on therapeutic T potential and molecular mechanisms Md. Jakariaa, Shofiul Azama, Md. Ezazul Haquea, Song-Hee Joa, Md. Sahab Uddinb, In-Su Kima,c, ∗ Dong-Kug Choia,c, a Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea b Department of Pharmacy, Southeast University, Dhaka, Bangladesh c Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, and Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea ARTICLE INFO ABSTRACT Keywords: Taurine is a sulfur-containing amino acid and known as semi-essential in mammals and is produced chiefly by Taurine the liver and kidney. It presents in different organs, including retina, brain, heart and placenta and demonstrates Analogs extensive physiological activities within the body. In the several disease models, it attenuates inflammation- and Therapeutic oxidative stress-mediated injuries. Taurine also modulates ER stress, Ca2+ homeostasis and neuronal activity at Molecular role the molecular level as part of its broader roles. Different cellular processes such as energy metabolism, gene Clinical study and Neurological disorders expression, osmosis and quality control of protein are regulated by taurine. In addition, taurine displays po- tential ameliorating effects against different neurological disorders such as neurodegenerative diseases, stroke, epilepsy and diabetic neuropathy and protects against injuries and toxicities of the nervous system. Several findings demonstrate its therapeutic role against neurodevelopmental disorders, including Angelman syndrome, Fragile X syndrome, sleep-wake disorders, neural tube defects and attention-deficit hyperactivity disorder.
    [Show full text]
  • Treatment of Patients with Substance Use Disorders Second Edition
    PRACTICE GUIDELINE FOR THE Treatment of Patients With Substance Use Disorders Second Edition WORK GROUP ON SUBSTANCE USE DISORDERS Herbert D. Kleber, M.D., Chair Roger D. Weiss, M.D., Vice-Chair Raymond F. Anton Jr., M.D. To n y P. G e o r ge , M .D . Shelly F. Greenfield, M.D., M.P.H. Thomas R. Kosten, M.D. Charles P. O’Brien, M.D., Ph.D. Bruce J. Rounsaville, M.D. Eric C. Strain, M.D. Douglas M. Ziedonis, M.D. Grace Hennessy, M.D. (Consultant) Hilary Smith Connery, M.D., Ph.D. (Consultant) This practice guideline was approved in December 2005 and published in August 2006. A guideline watch, summarizing significant developments in the scientific literature since publication of this guideline, may be available in the Psychiatric Practice section of the APA web site at www.psych.org. 1 Copyright 2010, American Psychiatric Association. APA makes this practice guideline freely available to promote its dissemination and use; however, copyright protections are enforced in full. No part of this guideline may be reproduced except as permitted under Sections 107 and 108 of U.S. Copyright Act. For permission for reuse, visit APPI Permissions & Licensing Center at http://www.appi.org/CustomerService/Pages/Permissions.aspx. AMERICAN PSYCHIATRIC ASSOCIATION STEERING COMMITTEE ON PRACTICE GUIDELINES John S. McIntyre, M.D., Chair Sara C. Charles, M.D., Vice-Chair Daniel J. Anzia, M.D. Ian A. Cook, M.D. Molly T. Finnerty, M.D. Bradley R. Johnson, M.D. James E. Nininger, M.D. Paul Summergrad, M.D. Sherwyn M.
    [Show full text]
  • Modulation of Brain Hyperexcitability: Potential New Therapeutic Approaches in Alzheimer’S Disease
    International Journal of Molecular Sciences Review Modulation of Brain Hyperexcitability: Potential New Therapeutic Approaches in Alzheimer’s Disease Sofia Toniolo 1,2,*, Arjune Sen 3 and Masud Husain 1,2 1 Cognitive Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; [email protected] 2 Wellcome Trust Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6AE, UK 3 Oxford Epilepsy Research Group, Nuffield Department Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK; [email protected] * Correspondence: sofi[email protected]; Tel.: +44-1865-271310 Received: 29 October 2020; Accepted: 5 December 2020; Published: 7 December 2020 Abstract: People with Alzheimer’s disease (AD) have significantly higher rates of subclinical and overt epileptiform activity. In animal models, oligomeric Aβ amyloid is able to induce neuronal hyperexcitability even in the early phases of the disease. Such aberrant activity subsequently leads to downstream accumulation of toxic proteins, and ultimately to further neurodegeneration and neuronal silencing mediated by concomitant tau accumulation. Several neurotransmitters participate in the initial hyperexcitable state, with increased synaptic glutamatergic tone and decreased GABAergic inhibition. These changes appear to activate excitotoxic pathways and, ultimately, cause reduced long-term potentiation, increased long-term depression, and increased GABAergic inhibitory remodelling at the network level. Brain hyperexcitability has therefore been identified as a potential target for therapeutic interventions aimed at enhancing cognition, and, possibly, disease modification in the longer term. Clinical trials are ongoing to evaluate the potential efficacy in targeting hyperexcitability in AD, with levetiracetam showing some encouraging effects.
    [Show full text]
  • Contents of Volume 219
    CONTENTS OF VOLUME 219 No. 1, October 1981 The Lung Parenchymal Strip: A Reappraisal. CHARLES BRINK, PAMELA DUNCAN AND JAMES S. DOUGLAS 1 Acute Effect of Ethanol on Hepatic First-Pass Elimination of Propoxyphene in Rats. TAKAYOSHI OGUMA AND GERHARD LEVY 7 Dose- and Time-Dependent Elimination of Acetaminophen in Rats: Pharmacokinetic Implications of Cosubstrate Depletion. RAYMOND E. GALINSKY AND GERHARD LEVY 14 Alterations in Prejunctional Adrenoceptor Function in Guinea-Pig and Rat Vas Deferens after Chronic Ganglionic Blockade. ROBERT D. SAX AND THOMAS C. WESTFALL 21 The Nuclear Envelope as a Site of Glucuronyltransferase in Rat Liver: Properties of and Effect of Inducers on Enzyme Activity. T. H. ELMAMLOUK, H. MUKHTAR AND J. R. BEND 27 The Metabolism and Excretion of Styrene Oxide-Glutathione Conjugates in the Rat and by Isolated Perfused Liver, Lung and Kidney Preparations. JOHN W. STEELE, BORIS YAGEN, OSCAR HERNANDEZ, RICHARD H. Cox, BRIAN R. SMITH AND JOHN R.BEND 35 Effect of Heparin or Salicylate Infusion on Serum Protein Binding and on Concentrations of Phenytoin in Serum, Brain and Cerebrospinal Fluid of Rats. RUBY C. CHOU AND GERHARD LEVY 42 Acetaminophen as an Internal Standard for Calibrating in Vivo Electrochemical Electrodes. MICHAEL E. MORGAN AND CURT R. FREED.. .. ... 49 Effect of Volume Expansion and Furosemide Diuresis on the Renal Clearance of Digoxin. THOMAS P. GIBSON AND ANTONIO P. Downloaded from QUINTANILLA 54 Conditioned Taste Aversion and Operant Behavior in Rats: Effects of Cocaine, Apomorphine and Some Long-Acting Derivatives. G. D. D’MELLO, D. M. GOLDBERG, S. R. GOLDBERG AND I. P. STOLERMAN 60 Structural Specificity in the Renal Tubular Transport of Tyrosine.
    [Show full text]
  • Efficacite Et Tolerance Du Baclofène Prescrit a Hautes Doses, Etude Sur 146 Patients Suivis Pendant Un an En Ambulatoire Pour Des Problemes D’Alcool
    UNIVERSITE PARIS DESCARTES Faculté de Médecine PARIS DESCARTES ___________________________________________________________________________ Année 2013 N° THÈSE POUR LE DIPLÔME D’ÉTAT DE DOCTEUR EN MÉDECINE Présentée et soutenue publiquement le 27 septembre 2013 Par LEGAY HOANG Lea Née le 17 mars 1984 à Paris EFFICACITE ET TOLERANCE DU BACLOFÈNE PRESCRIT A HAUTES DOSES, ETUDE SUR 146 PATIENTS SUIVIS PENDANT UN AN EN AMBULATOIRE POUR DES PROBLEMES D’ALCOOL JURY : Président du Jury : Monsieur le Professeur P Jaury Directeur de Thèse : Monsieur le Professeur P Jaury Monsieur le Professeur B Granger Monsieur le Docteur L. Rigal 1 Monsieur le Docteur F. Chhuy 2 Remerciements A monsieur le Professeur Philippe Jaury Je vous remercie de me faire l’honneur d’avoir dirigé cette thèse. Vous m’avez fait découvrir un sujet passionnant. Je vous remercie de votre grande disponibilité et de vos conseils avisés durant le travail. A monsieur le Professeur Bernard Granger Je vous remercie de me faire l’honneur de participer à ce jury. Veuillez recevoir l’expression de ma sincère reconnaissance. A monsieur le Docteur Laurent Rigal Je vous remercie de me faire l’honneur de participer à ce jury. Encore un grand merci pour votre aide avec les statistiques et vos remarques si précieuses. A l’ensemble des équipes médicales et paramédicales, que j’ai côtoyé durant mon externat puis mon internat, pour leur soutien, leur gentillesse et leur accueil. A mon père M Anh Van Hoang et ma mère Catherine Legay, qui m’ont toujours épaulé de leurs mieux dans la réalisation de mes projets et avec qui j’ai aimé partager ce travail.
    [Show full text]
  • (DHEA) and Pregnanolone with Existing Pharmacotherapies for Alcohol Abuse on Ethanol- and Food-Maintained Responding in Male Rats
    Alcohol 49 (2015) 127e138 Contents lists available at ScienceDirect Alcohol journal homepage: http://www.alcoholjournal.org/ Comparison of dehydroepiandrosterone (DHEA) and pregnanolone with existing pharmacotherapies for alcohol abuse on ethanol- and food-maintained responding in male rats Mary W. Hulin a,b,*, Michelle N. Lawrence a, Russell J. Amato c, Peter F. Weed a, Peter J. Winsauer a,b a Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA b Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA c Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA article info abstract Article history: The present study compared two putative pharmacotherapies for alcohol abuse and dependence, de- Received 6 June 2014 hydroepiandrosterone (DHEA) and pregnanolone, with two Food and Drug Administration (FDA)- Accepted 1 July 2014 approved pharmacotherapies, naltrexone and acamprosate. Experiment 1 assessed the effects of different doses of DHEA, pregnanolone, naltrexone, and acamprosate on both ethanol- and food- maintained responding under a multiple fixed-ratio (FR)-10 FR-20 schedule, respectively. Experiment Keywords: 2 assessed the effects of different mean intervals of food presentation on responding for ethanol under a Ethanol FR-10 variable-interval (VI) schedule, whereas Experiment 3 assessed the effects of a single dose of each Multiple schedules DHEA drug under a FR-10 VI-80 schedule. In Experiment 1, all four drugs dose-dependently decreased response Pregnanolone rate for both food and ethanol, although differences in the rate-decreasing effects were apparent among Naltrexone the drugs.
    [Show full text]
  • WO 2013/127918 Al 6 September 2013 (06.09.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/127918 Al 6 September 2013 (06.09.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/137 (2006.01) A61K 31/42 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/138 (2006.01) A61K 31/64 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/185 (2006.01) A61P 25/16 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61K 31/195 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/EP20 13/054026 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (22) International Filing Date: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 28 February 2013 (28.02.2013) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (25) Filing Language: English ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, PCT/EP2012/053565 1 March 2012 (01 .03.2012) EP GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, PCT/EP2012/053568 1 March 2012 (01 .03.2012) EP UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, PCT/EP2012/053570 1 March 2012 (01 .03.2012) EP TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 12306063.4 5 September 2012 (05.09.2012) EP EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 61/696,992 5 September 2012 (05.09.2012) US MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (71) Applicant: PHARNEXT [FR/FR]; 11 rue des Peupliers, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Florencio Zaragoza Dörwald Lead Optimization for Medicinal Chemists
    Florencio Zaragoza Dorwald¨ Lead Optimization for Medicinal Chemists Related Titles Smith, D. A., Allerton, C., Kalgutkar, A. S., Curry, S. H., Whelpton, R. van de Waterbeemd, H., Walker, D. K. Drug Disposition and Pharmacokinetics and Metabolism Pharmacokinetics in Drug Design From Principles to Applications 2012 2011 ISBN: 978-3-527-32954-0 ISBN: 978-0-470-68446-7 Gad, S. C. (ed.) Rankovic, Z., Morphy, R. Development of Therapeutic Lead Generation Approaches Agents Handbook in Drug Discovery 2012 2010 ISBN: 978-0-471-21385-7 ISBN: 978-0-470-25761-6 Tsaioun, K., Kates, S. A. (eds.) Han, C., Davis, C. B., Wang, B. (eds.) ADMET for Medicinal Chemists Evaluation of Drug Candidates A Practical Guide for Preclinical Development 2011 Pharmacokinetics, Metabolism, ISBN: 978-0-470-48407-4 Pharmaceutics, and Toxicology 2010 ISBN: 978-0-470-04491-9 Sotriffer, C. (ed.) Virtual Screening Principles, Challenges, and Practical Faller, B., Urban, L. (eds.) Guidelines Hit and Lead Profiling 2011 Identification and Optimization ISBN: 978-3-527-32636-5 of Drug-like Molecules 2009 ISBN: 978-3-527-32331-9 Florencio Zaragoza Dorwald¨ Lead Optimization for Medicinal Chemists Pharmacokinetic Properties of Functional Groups and Organic Compounds The Author All books published by Wiley-VCH are carefully produced. Nevertheless, authors, Dr. Florencio Zaragoza D¨orwald editors, and publisher do not warrant the Lonza AG information contained in these books, Rottenstrasse 6 including this book, to be free of errors. 3930 Visp Readers are advised to keep in mind that Switzerland statements, data, illustrations, procedural details or other items may inadvertently be Cover illustration: inaccurate.
    [Show full text]
  • GABA Administration Limits Viral Replication and Pneumonitis in a Mouse Model of COVID-19
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430446; this version posted February 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. GABA administration limits viral replication and pneumonitis in a mouse model of COVID-19 Jide Tian, Blake Middleton, and Daniel L. Kaufman Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California Corresponding authors: Daniel Kaufman or Jide Tian, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California, Los Angeles, CA. 90095-1735. e-mail: [email protected] or [email protected] Keywords: COVID-19, GABA, GABA-receptors, MHV, therapy bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430446; this version posted February 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Despite the availability of vaccines for COVID-19, serious illness and death induced by coronavirus infection will remain a global health burden because of vaccination hesitancy, possible virus mutations, and the appearance of novel coronaviruses. Accordingly, there is a need for new approaches to limit severe illness stemming from coronavirus infections. Cells of the immune system and lung epithelia express receptors for GABA (GABA-Rs), a widely used neurotransmitter within the CNS.
    [Show full text]
  • Membrane Transporter/Ion Channel
    Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com Membrane Transporter/Ion Channel Most of molecules enter or leave cells mainly via membrane transport proteins, which play important roles in several cellular functions, including cell metabolism, ion homeostasis, signal transduction, binding with small molecules in extracellular space, the recognition process in the immune system, energy transduction, osmoregulation, and physiological and developmental processes. There are three major types of transport proteins, ATP-powered pumps, channel proteins and transporters. ATP-powered pumps are ATPases that use the energy of ATP hydrolysis to move ions or small molecules across a membrane against a chemical concentration gradient or electric potential. Channel proteins transport water or specific types of ions down their concentration or electric potential gradients. Many other types of channel proteins are usually closed, and open only in response to specific signals. Because these types of ion channels play a fundamental role in the functioning of nerve cells. Transporters, a third class of membrane transport proteins, move a wide variety of ions and molecules across cell membranes. Membrane transporters either enhance or restrict drug distribution to the target organs. Depending on their main function, these membrane transporters are divided into two categories: the efflux (export) and the influx (uptake) transporters. Transport proteins such as channels and transporters play important roles in the maintenance of intracellular homeostasis, and mutations in these transport protein genes have been identified in the pathogenesis of a number of hereditary diseases. In the central nervous system ion channels have been linked to many diseases such, but not limited to, ataxias, paralyses, epilepsies, and deafness indicative of the roles of ion channels in the initiation and coordination of movement, sensory perception, and encoding and processing of information.
    [Show full text]