Membrane Transporter/Ion Channel

Total Page:16

File Type:pdf, Size:1020Kb

Membrane Transporter/Ion Channel Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com Membrane Transporter/Ion Channel Most of molecules enter or leave cells mainly via membrane transport proteins, which play important roles in several cellular functions, including cell metabolism, ion homeostasis, signal transduction, binding with small molecules in extracellular space, the recognition process in the immune system, energy transduction, osmoregulation, and physiological and developmental processes. There are three major types of transport proteins, ATP-powered pumps, channel proteins and transporters. ATP-powered pumps are ATPases that use the energy of ATP hydrolysis to move ions or small molecules across a membrane against a chemical concentration gradient or electric potential. Channel proteins transport water or specific types of ions down their concentration or electric potential gradients. Many other types of channel proteins are usually closed, and open only in response to specific signals. Because these types of ion channels play a fundamental role in the functioning of nerve cells. Transporters, a third class of membrane transport proteins, move a wide variety of ions and molecules across cell membranes. Membrane transporters either enhance or restrict drug distribution to the target organs. Depending on their main function, these membrane transporters are divided into two categories: the efflux (export) and the influx (uptake) transporters. Transport proteins such as channels and transporters play important roles in the maintenance of intracellular homeostasis, and mutations in these transport protein genes have been identified in the pathogenesis of a number of hereditary diseases. In the central nervous system ion channels have been linked to many diseases such, but not limited to, ataxias, paralyses, epilepsies, and deafness indicative of the roles of ion channels in the initiation and coordination of movement, sensory perception, and encoding and processing of information. Furthermore, drug transporters can serve as drug targets or as a mechanism to facilitate drug delivery to cells and tissues. References: [1] Sadée W, et al. Pharm Res. 1995 Dec;12(12):1823-37. [2] Girardin F. Dialogues Clin Neurosci. 2006;8(3):311-21. [3] Zaydman MA, et al. Chem Rev. 2012 Dec 12;112(12):6319-33. www.MedChemExpress.com 1 2 Tel: 609-228-6898 Fax: 609-228-5909 Email: [email protected] Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com Target List in Membrane Transporter/Ion Channel • ATP Synthase 3 • Proton Pump 101 • BCRP 6 • SGLT 106 • Calcium Channel 8 • Sodium Channel 109 • CFTR 22 • TRP Channel 119 • Chloride Channel 25 • URAT1 127 • CRAC Channel 28 • CRM1 30 • EAAT2 32 • GABA Receptor 34 • GlyT 45 • HCN Channel 47 • iGluR 49 • Monoamine Transporter 61 • Monocarboxylate Transporter 64 • Na+/Ca2+ Exchanger 66 • Na+/HCO3- Cotransporter 68 • Na+/K+ ATPase 70 • nAChR 73 • NKCC 79 • P-glycoprotein 81 • P2X Receptor 85 • Potassium Channel 88 www.MedChemExpress.com 3 ATP Synthase ATPases are a class of enzymes that catalyze the decompositionof ATP into ADP and a free phosphate ion. This dephosphorylation reaction releases energy, which the enzyme (in most cases) harnesses to drive other chemical reactions that would not otherwise occur. Some such enzymes are integral membrane proteins and move solutes across the membrane, typically against their concentration gradient. These are called transmembrane ATPases. Transmembrane ATPases import many of the metabolites necessary for cell metabolism and export toxins, wastes, and solutes that can hinder cellular processes. Such as the sodium-potassium exchanger (or Na + /K + ATPase) and the hydrogen potassium ATPase (H +/K + ATPase or gastric proton pump) that acidifies the contents of the stomach. 4 Tel: 609-228-6898 Fax: 609-228-5909 Email: [email protected] ATP Synthase Inhibitors & Modulators ATP synthase inhibitor 1 BTB06584 Cat. No.: HY-112715 Cat. No.: HY-15877 Bioactivity: ATP synthase inhibitor 1 is a potent inhibitor of c subunit Bioactivity: BTB06584 is an IF1-dependent selective inhibitor of the mitochondrial F1Fo-ATPase. of the F1/FO-ATP synthase complex, inhibits mitochondrial permeability transition pore (mPTP) opening, does not affect ATP levels [1]. Purity: >98% Purity: 98.48% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 100 mg, 250 mg, 500 mg Size: 10mM x 1mL in DMSO, 5 mg, 10 mg, 50 mg, 100 mg Gboxin Oligomycin A Cat. No.: HY-111651 (MCH 32) Cat. No.: HY-16589 Bioactivity: Gboxin is an oxidative phosphorylation inhibitor that targets Bioactivity: Oligomycin A, created by Streptomyces, acts as a glioblastoma. Gboxin inhibits the activity of F0F1 ATP mitochondrial F0F1-ATPase inhibitor, with a Ki of 1 μM; synthase [1]. Antitumour activity [1]. Oligomycin A shows anti-fungal activity. Purity: 99.32% Purity: 99.94% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 5 mg, 10 mg, 50 mg, 100 mg 1 mg, 5 mg www.MedChemExpress.com 5 BCRP Breast cancer resistance protein;ABCG2 BCRP(breast cancer resistant protein) is an ATP-binding cassette (ABC) transporter, which together with two other ABC efflux drug pumps, namely P-glycoprotein (P-gp, ABCB1) and multidrug resistance-related protein 1 (MRP1, ABCC1) is the most important multidrug resistance protein found in eukaryotic cells including cells in the testis. Breast cancer resistance protein (BCRP/ABCG2) is known to localize at the blood-brain barrier (BBB) and can significantly restrict xenobiotic permeability in the brain. The objective of this study is to investigate the regulation of BCRP functional expression by peroxisome proliferator-activated receptor alpha (PPARα), a ligand-activated transcription factor primarily involved in lipid metabolism, in a cerebral microvascular endothelial cell culture system (hCMEC/D3), representative of human BBB. 6 Tel: 609-228-6898 Fax: 609-228-5909 Email: [email protected] BCRP Inhibitors & Modulators BCRP-IN-1 Elacridar Cat. No.: HY-100390 (GF120918; GW0918; GG918; GW120918) Cat. No.: HY-50879 Bioactivity: BCRP-IN-1 is a breast cancer resistance protein ( BCRP) Bioactivity: Elacridar is a potent P-glycoprotein (Pgp) and BCRP inhibitor with an IC50 of 0.6 μM on BCRP efflux transporter. inhibitor. Purity: 98.13% Purity: 98.47% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10 mg, 50 mg, 100 mg, 200 mg, 500 mg 5 mg, 10 mg, 25 mg, 50 mg, 100 mg Fumitremorgin C Ko 143 (12α-Fumitremorgin C) Cat. No.: HY-N2143 Cat. No.: HY-10010 Bioactivity: Fumitremorgin C is a potent and selective ABCG2/BRCP Bioactivity: Ko 143 is a potent and selective ATP-binding cassette inhibitor. sub-family G member 2 ( ABCG2) inhibitor. Purity: 99.63% Purity: 99.79% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 250u g, 1 mg 5 mg, 10 mg, 50 mg, 100 mg KS176 YHO-13177 Cat. No.: HY-19753 Cat. No.: HY-12757 Bioactivity: KS176 is a potent and selective inhibitor of the breast cancer Bioactivity: YHO-13177 is a potent and specific inhibitor of BCRP; resistance protein (BCRP) multidrug transporter (IC50 values potentiated the cytotoxicity of SN-38 in cancer cells and no are 0.59 and 1.39 μM in Pheo A and Hoechst 33342 assays effect on P-glycoprotein–mediated paclitaxel resistance in respectively). Displays no inhibitory activity against P-gp or MDR1-transduced human leukemia K562 cells. MRP1. Purity: 99.21% Purity: 98.72% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 5 mg, 10 mg, 50 mg, 100 mg 5 mg, 10 mg, 50 mg, 100 mg YHO-13351 YHO-13351 free base Cat. No.: HY-12758 Cat. No.: HY-12758A Bioactivity: YHO-13351 is the water-soluble prodrug of YHO-13177, which is Bioactivity: YHO-13351 (free base) is the water-soluble prodrug of a potent and specific inhibitor of BCRP. YHO-13177, which is a potent and specific inhibitor of BCRP. Purity: >98% Purity: 98.10% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 5 mg, 10 mg Size: 10mM x 1mL in DMSO, 5 mg, 10 mg, 50 mg, 100 mg Zamicastat (BIA 5-1058) Cat. No.: HY-106004 Bioactivity: Zamicastat (BIA 5-1058) is a dopamine β-hydroxylase (DBH) inhibitor that could cross the blood-brain barrier (BBB) and cause central as well as peripheral effects. Zamicastat is also a concentration-dependent dual P-gp and BCRP inhibitor [1] with IC50 values of 73.8 μM and 17.0 μM, respectively .… Purity: 99.95% Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, 5 mg, 10 mg, 50 mg, 100 mg www.MedChemExpress.com 7 Calcium Channel Ca2+ channels;Ca channels Calcium channel is an ion channel which displays selective permeability to calcium ions. It is sometimes synonymous as voltage-dependent calcium channel, although there are also ligand-gated calcium channels. Voltage-gated calcium (CaV) channels catalyse rapid, highly selective influx of Ca 2+ into cells despite a 70-fold higher extracellular concentration of Na +. Some calcium channel blockers have the added benefit of slowing your heart rate, which can further reduce blood pressure, relieve chest pain (angina) and control an irregular heartbeat. 8 Tel: 609-228-6898 Fax: 609-228-5909 Email: [email protected] Calcium Channel Inhibitors & Modulators (+)-Kavain ABT-639 Cat. No.: HY-B1671 Cat. No.: HY-19721 Bioactivity: (+)-Kavain, a main kavalactone extracted from Piper Bioactivity: ABT-639 is a novel, peripherally acting, selective T-type methysticum, has anticonvulsive properties, attenuating Ca2+ channel blocker. vascular smooth muscle contraction through interactions with voltage-dependent Na + and Ca 2+ channels [1]. (+)-Kav… Purity: 99.98% Purity: 99.15% Clinical Data: No Development Reported Clinical Data: Phase 2 Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 5 mg, 10 mg 1 mg, 5 mg, 10 mg, 50 mg, 100 mg ABT-639 hydrochloride Acetylcholine chloride Cat.
Recommended publications
  • Présentation HJ
    Conflits d’intérêts Astra-Zeneca, Janssen, Abacus international, Laboratoire ETAP, Institut Pasteur. Dr Hervé JAVELOT Pharmacien PH Etablissement Public de Santé Alsace Nord Service Pharmacie 141 avenue de Strasbourg 67 170 BRUMATH Tél. : 03 88 64 61 70 Fax : 03 88 64 61 58 Mail : [email protected] Perspectives dans la psychopharmacologie de l’anxiété et de la dépression Hervé JAVELOT Etablissement Public de Santé Alsace Nord Perspectives dans la psychopharmacologie de l’anxiété et de la dépression Traitements des troubles anxio-dépressifs. Les perspectives. ◦ L’axe GABAergique…éternellement prometteur ? ◦ L’incontournable théorie « monoaminergique »… ◦ Des théories alternatives à suivre … Traitements des troubles anxio-dépressifs. Contexte : ◦ XXI ème siècle : Le « siècle de la dépression » s’installe ? (Hardeveld et al., 2010) L’« ère de l’angoisse » s’affirme ? (Auden, 1947) ◦ Prévalence au cours de la vie : 16 à 17% pour la dépression, 17 à 18% pour les troubles anxieux Co-morbidité des 2 troubles dans 20 à 40% des cas (Antony, 2011 ; Depping et al., 2010 ; Hardeveld et al., 2010 ; Huppert, 2009) Auden WH (1947). The Age of Anxiety: A Baroque Eclogue. Random House: New York. Hardeveld F, Spijker J, De Graaf R, Nolen WA, Beekman AT. Prevalence and predictors of recurrence of major depressive disorder in the adult population. Acta Psychiatr Scand. 2010;122(3):184-91. Antony MM. Recent advances in the treatment of anxiety disorders. Canadian Psychology 2011;52(1), 10-19. Depping AM, Komossa K, Kissling W, Leucht S. Second-generation antipsychotics for anxiety disorders. Cochrane Database Syst Rev. 2010;(12):CD008120. Huppert JD. Anxiety disorders and depression comorbidity.
    [Show full text]
  • In Vitro Testicular Toxicity Models : Opportunities for Advancement Via Biomedical Engineering Techniques
    Erschienen in: Alternatives to Animal Experimentation : ALTEX ; 30 (2013), 3. - S. 353-377 http://dx.doi.org/10.14573/altex.2013.3.353 t4 Report* In Vitro Testicular Toxicity Models: Opportunities for Advancement via Biomedical Engineering Techniques Louise Parks Saldutti 1, Bruce K. Beyer 2, William Breslin 3, Terry R. Brown 4, Robert E. Chapin 5, Sarah Campion 5, Brian Enright 6, Elaine Faustman 7, Paul M. D. Foster 8, Thomas Hartung 9, William Kelce 10, James H. Kim 11, Elizabeth G. Loboa 12, Aldert H. Piersma 13, David Seyler 14, Katie J. Turner 15, Hanry Yu 16, Xiaozhong Yu 17, and Jennifer C. Sasaki 18 1 2 Department of Development & Reproduction, Merck & Co., West Point, PA, USA; Department of Disposition, Safety 3 and Animal Research – Preclinical Safety, Sanofi U.S. Inc., Bridgewater, NJ, USA; Eli Lilly and Company, Lilly Research 4 Laboratories, Indianapolis, IN, USA; Department of Biochemistry & Molecular Biology, Johns Hopkins Bloomberg School of 5 Public Health, Baltimore, MD, USA; Pfizer Inc., Global R&D, Developmental and Reproductive Toxicology Group, Groton, 7 CT, USA; 6AbbVie Inc., North Chicago, IL, USA; University of Washington, Department of Environmental and Occupational 8 Health Sciences, Institute for Risk Analysis and Risk Communication, Seattle, WA, USA; National Toxicology Program, National Institutes of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, 9 Research Triangle Park, NC, USA; Johns Hopkins University, Bloomberg School of Public Health, Center for
    [Show full text]
  • Effects of Chronic Systemic Low-Impact Ampakine Treatment On
    Biomedicine & Pharmacotherapy 105 (2018) 540–544 Contents lists available at ScienceDirect Biomedicine & Pharmacotherapy journal homepage: www.elsevier.com/locate/biopha Effects of chronic systemic low-impact ampakine treatment on neurotrophin T expression in rat brain ⁎ Daniel P. Radin , Steven Johnson, Richard Purcell, Arnold S. Lippa RespireRx Pharmaceuticals, Inc., 126 Valley Road, Glen Rock, NJ, 07452, United States ARTICLE INFO ABSTRACT Keywords: Neurotrophin dysregulation has been implicated in a large number of neurodegenerative and neuropsychiatric Ampakine diseases. Unfortunately, neurotrophins cannot cross the blood brain barrier thus, novel means of up regulating BDNF their expression are greatly needed. It has been demonstrated previously that neurotrophins are up regulated in Cognitive enhancement response to increases in brain activity. Therefore, molecules that act as cognitive enhancers may provide a LTP clinical means of up regulating neurotrophin expression. Ampakines are a class of molecules that act as positive Neurotrophin allosteric modulators of AMPA-type glutamate receptors. Currently, they are being developed to prevent opioid- NGF induced respiratory depression without sacrificing the analgesic properties of the opioids. In addition, these molecules increase neuronal activity and have been shown to restore age-related deficits in LTP in aged rats. In the current study, we examined whether two different ampakines could increase levels of BDNF and NGF at doses that are active in behavioral measures of cognition. Results demonstrate that ampakines CX516 and CX691 induce differential increases in neurotrophins across several brain regions. Notable increases in NGF were ob- served in the dentate gyrus and piriform cortex while notable BDNF increases were observed in basolateral and lateral nuclei of the amygdala.
    [Show full text]
  • ANNNNNNNNNNNNNNNNNNNN 100A 006 Left Eye Input Right Eye Input
    US 20190175049A1 ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2019 /0175049 A1 Welling ( 43 ) Pub . Date : Jun . 13 , 2019 ( 54 ) TECHNIQUES FOR ANALYZING (52 ) U . S . CI. NON -VERBAL MARKERS OF CONDITIONS CPC . .. A61B 5 /04842 (2013 . 01 ) ; A61B 5 / 7289 USING ELECTROPHYSIOLOGICAL DATA (2013 . 01) ; A61B 5 /0478 ( 2013 .01 ) ; A61B 5 /7225 ( 2013. 01 ) ; G06N 20 / 10 (2019 .01 ) (71 ) Applicant: Massachusetts Institute of Technology , Cambridge , MA (US ) ( 57 ) ABSTRACT (72 ) Inventor : Caroline Welling, Hanover, NH (US ) Embodiments related to analyzing brain activity of a subject to identify signs associated with binocular rivalry . Sensed ( 21 ) Appl. No. : 16 / 206, 639 electrical activity of a subject' s brain is received over a time period while the subject is exposed to a visual stimulus. The ( 22 ) Filed : Nov. 30 , 2018 sensed electrical activity comprises a first frequency band Related U . S . Application Data associated with a first frequency of a first image presented to the subject ' s left eye , a second frequency band associated (60 ) Provisional application No .62 / 593 , 535, filed on Dec . with a second frequency of a second image presented to the 1 , 2017 subject ' s right eye . A set of events in the time period is determined based on the frequency bands, wherein an event Publication Classification is associated with a change from a previous perceptual event (51 ) Int. Ci. to a new perceptual event. A metric for the subject is A61B 5 /0484 ( 2006 .01 ) determined based on the set of events . The metric is ana A61B 5 /00 ( 2006 .01 ) lyzed to determine whether the subject exhibits signs asso GO6N 20 / 10 (2006 .01 ) ciated with a condition that is associated with binocular A61B 5 /0478 ( 2006 .01 ) rivalry .
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • 2D6 Substrates 2D6 Inhibitors 2D6 Inducers
    Physician Guidelines: Drugs Metabolized by Cytochrome P450’s 1 2D6 Substrates Acetaminophen Captopril Dextroamphetamine Fluphenazine Methoxyphenamine Paroxetine Tacrine Ajmaline Carteolol Dextromethorphan Fluvoxamine Metoclopramide Perhexiline Tamoxifen Alprenolol Carvedilol Diazinon Galantamine Metoprolol Perphenazine Tamsulosin Amiflamine Cevimeline Dihydrocodeine Guanoxan Mexiletine Phenacetin Thioridazine Amitriptyline Chloropromazine Diltiazem Haloperidol Mianserin Phenformin Timolol Amphetamine Chlorpheniramine Diprafenone Hydrocodone Minaprine Procainamide Tolterodine Amprenavir Chlorpyrifos Dolasetron Ibogaine Mirtazapine Promethazine Tradodone Aprindine Cinnarizine Donepezil Iloperidone Nefazodone Propafenone Tramadol Aripiprazole Citalopram Doxepin Imipramine Nifedipine Propranolol Trimipramine Atomoxetine Clomipramine Encainide Indoramin Nisoldipine Quanoxan Tropisetron Benztropine Clozapine Ethylmorphine Lidocaine Norcodeine Quetiapine Venlafaxine Bisoprolol Codeine Ezlopitant Loratidine Nortriptyline Ranitidine Verapamil Brofaramine Debrisoquine Flecainide Maprotline olanzapine Remoxipride Zotepine Bufuralol Delavirdine Flunarizine Mequitazine Ondansetron Risperidone Zuclopenthixol Bunitrolol Desipramine Fluoxetine Methadone Oxycodone Sertraline Butylamphetamine Dexfenfluramine Fluperlapine Methamphetamine Parathion Sparteine 2D6 Inhibitors Ajmaline Chlorpromazine Diphenhydramine Indinavir Mibefradil Pimozide Terfenadine Amiodarone Cimetidine Doxorubicin Lasoprazole Moclobemide Quinidine Thioridazine Amitriptyline Cisapride
    [Show full text]
  • Neuroprotection in Alzheimer's Disease
    Chapter 8 Neuroprotection in Alzheimer’s Disease Introduction Alzheimer’s disease (AD) is a progressive degenerative disorder of the brain that begins with memory impairment and eventually progresses to dementia, physical impairment, and death. Patients develop various psychiatric and neurological signs during the course of the disease. The prevalence rates of dementia vary significantly in different countries, but range from 2.1 to 10.5%. AD is the most common type of dementia, accounting for 50–60% of all cases, and is described in detail in a special report on AD (Jain 2010). Several other types of dementias are considered in the differential diagnosis of AD and sometimes all the dementias are lumped together if the type is not known. Other well-known types of dementias are vascular dementia, dementia of aging, and dementia associated with HIV infection. The focus of this section is on AD and some other dementias will be described in Chap. 11. Pathomechanism of Alzheimer’s Disease Several factors that play a role in the etiology and pathogenesis of AD include the following: • Aging • Genetic risk factors • Amyloid precursor protein (APP) and beta-amyloid (Ab) accumulation with neural and vascular sequelae • Tau hyperphosphorylation • Membrane disturbances, phospholipid metabolism, and disruption of signal transduction • Inflammatory reactions and immunological disturbances • Environmental toxins: trace metals • Neurotransmitter defects and imbalances K.K. Jain, The Handbook of Neuroprotection, DOI 10.1007/978-1-61779-049-2_8, 337 © Springer Science+Business Media, LLC 2011 338 8 Neuroprotection in Alzheimer’s Disease • Neuroendocrine disturbances • Oxidative injury and free radicals • Disturbances in regulation and receptors of neurotrophic factors (NTFs) Such a large number of factors in the etiology of AD are responsible for the plethora of theories of cause of AD.
    [Show full text]
  • Systematic Review of the Effect of Intravenous Lipid Emulsion Therapy for Non-Local Anesthetics Toxicity
    Clinical Toxicology ISSN: 1556-3650 (Print) 1556-9519 (Online) Journal homepage: http://www.tandfonline.com/loi/ictx20 Systematic review of the effect of intravenous lipid emulsion therapy for non-local anesthetics toxicity Michael Levine, Robert S. Hoffman, Valéry Lavergne, Christine M. Stork, Andis Graudins, Ryan Chuang, Samuel J. Stellpflug, Martin Morris, Andrea Miller-Nesbitt, Sophie Gosselin & for the Lipid Emulsion Workgroup* To cite this article: Michael Levine, Robert S. Hoffman, Valéry Lavergne, Christine M. Stork, Andis Graudins, Ryan Chuang, Samuel J. Stellpflug, Martin Morris, Andrea Miller-Nesbitt, Sophie Gosselin & for the Lipid Emulsion Workgroup* (2016) Systematic review of the effect of intravenous lipid emulsion therapy for non-local anesthetics toxicity, Clinical Toxicology, 54:3, 194-221, DOI: 10.3109/15563650.2015.1126286 To link to this article: http://dx.doi.org/10.3109/15563650.2015.1126286 Published online: 06 Feb 2016. Submit your article to this journal Article views: 692 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ictx20 Download by: [UPSTATE Medical University Health Sciences Library] Date: 03 August 2016, At: 08:19 CLINICAL TOXICOLOGY, 2016 VOL. 54, NO. 3, 194–221 http://dx.doi.org/10.3109/15563650.2015.1126286 REVIEW Systematic review of the effect of intravenous lipid emulsion therapy for non-local anesthetics toxicity Michael Levinea, Robert S. Hoffmanb, Vale´ry Lavergnec, Christine M. Storkd, Andis Graudinse, Ryan Chuangf, Samuel J. Stellpflugg, Martin Morrish, Andrea Miller-Nesbitth, Sophie Gosselini and for the Lipid Emulsion Workgroup* aDepartment of Emergency Medicine, Section of Medical Toxicology, University of Southern California, Los Angeles, CA, USA; bDivision of Medical Toxicology, Ronald O.
    [Show full text]
  • Rodgers 693..696
    Copyright #ERS Journals Ltd 1999 Eur Respir J 1999; 14: 693±696 European Respiratory Journal Printed in UK ± all rights reserved ISSN 0903-1936 The effect of topical benzamil and amiloride on nasal potential difference in cystic fibrosis H.C. Rodgers, A.J. Knox The effect of topical benzamil and amiloride on nasal potential difference in cystic fibrosis. Respiratory Medicine Unit, City Hospital, H.C. Rodgers, A.J. Knox. #ERS Journals Ltd 1999. Hucknall Road, Nottingham, NG5 IPB. ABSTRACT: The electrochemical defect in the bronchial epithelium in cystic fibrosis (CF) consists of defective chloride secretion and excessive sodium reabsorption. The Correspondence: A.J. Knox Respiratory Medicine Unit sodium channel blocker, amiloride, has been shown to reversibly correct the sodium Clinical Sciences Building reabsorption in CF subjects, but long term studies of amiloride have been disap- City Hospital pointing due to its short duration of action. Benzamil, a benzyl substituted amiloride Hucknall Road analogue, has a longer duration of action than amiloride in cultured human nasal Nottingham NG5 lPB epithelium. The results of the first randomized, placebo controlled, double blind, UK crossover study are reported here comparing the effects of benzamil and amiloride on Fax: 0115 9602140 nasal potential difference (nasal PD) in CF. Ten adults with CF attended on three occasions. At each visit baseline nasal PD was Keywords: Amiloride -3 -3 benzamil recorded, the drug (amiloride 1610 M, benzamil 1.7610 M, or 0.9% sodium cystic fibrosis chloride) was administered topically via a nasal spray, and nasal PD was measured at nasal potential difference 15, 30 min, 1, 2, 4 and 8 h.
    [Show full text]
  • 4 Supplementary File
    Supplemental Material for High-throughput screening discovers anti-fibrotic properties of Haloperidol by hindering myofibroblast activation Michael Rehman1, Simone Vodret1, Luca Braga2, Corrado Guarnaccia3, Fulvio Celsi4, Giulia Rossetti5, Valentina Martinelli2, Tiziana Battini1, Carlin Long2, Kristina Vukusic1, Tea Kocijan1, Chiara Collesi2,6, Nadja Ring1, Natasa Skoko3, Mauro Giacca2,6, Giannino Del Sal7,8, Marco Confalonieri6, Marcello Raspa9, Alessandro Marcello10, Michael P. Myers11, Sergio Crovella3, Paolo Carloni5, Serena Zacchigna1,6 1Cardiovascular Biology, 2Molecular Medicine, 3Biotechnology Development, 10Molecular Virology, and 11Protein Networks Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy 4Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy 5Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany 6Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy 7National Laboratory CIB, Area Science Park Padriciano, Trieste, 34149, Italy 8Department of Life Sciences, University of Trieste, Trieste, 34127, Italy 9Consiglio Nazionale delle Ricerche (IBCN), CNR-Campus International Development (EMMA- INFRAFRONTIER-IMPC), Rome, Italy This PDF file includes: Supplementary Methods Supplementary References Supplementary Figures with legends 1 – 18 Supplementary Tables with legends 1 – 5 Supplementary Movie legends 1, 2 Supplementary Methods Cell culture Primary murine fibroblasts were isolated from skin, lung, kidney and hearts of adult CD1, C57BL/6 or aSMA-RFP/COLL-EGFP mice (1) by mechanical and enzymatic tissue digestion. Briefly, tissue was chopped in small chunks that were digested using a mixture of enzymes (Miltenyi Biotec, 130- 098-305) for 1 hour at 37°C with mechanical dissociation followed by filtration through a 70 µm cell strainer and centrifugation.
    [Show full text]
  • Downloads/Drugs/…/Guidances/UCM078932
    UCLA UCLA Previously Published Works Title Homotaurine, a safe blood-brain barrier permeable GABAA-R-specific agonist, ameliorates disease in mouse models of multiple sclerosis. Permalink https://escholarship.org/uc/item/7kq6p5tv Journal Scientific reports, 8(1) ISSN 2045-2322 Authors Tian, Jide Dang, Hoa Wallner, Martin et al. Publication Date 2018-11-08 DOI 10.1038/s41598-018-32733-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Homotaurine, a safe blood-brain barrier permeable GABAA-R-specifc agonist, ameliorates disease in Received: 12 April 2018 Accepted: 11 September 2018 mouse models of multiple sclerosis Published: xx xx xxxx Jide Tian, Hoa Dang, Martin Wallner, Richard Olsen & Daniel L. Kaufman There is a need for treatments that can safely promote regulatory lymphocyte responses. T cells express GABA receptors (GABAA-Rs) and GABA administration can inhibit Th1-mediated processes such as type 1 diabetes and rheumatoid arthritis in mouse models. Whether GABAA-R agonists can also inhibit Th17-driven processes such as experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), is an open question. GABA does not pass through the blood-brain barrier (BBB) making it ill-suited to inhibit the spreading of autoreactivity within the CNS. Homotaurine is a BBB-permeable amino acid that antagonizes amyloid fbril formation and was found to be safe but inefective in long-term Alzheimer’s disease clinical trials. Homotaurine also acts as GABAA-R agonist with better pharmacokinetics than that of GABA. Working with both monophasic and relapsing-remitting mouse models of EAE, we show that oral administration of homotaurine can (1) enhance CD8+CD122+PD-1+ and CD4+Foxp3+ Treg, but not Breg, responses, (2) inhibit autoreactive Th17 and Th1 responses, and (3) efectively ameliorate ongoing disease.
    [Show full text]
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]