Neurosteroid Binding Sites on the GABAA Receptor Complex As Novel Targets for Therapeutics to Reduce Alcohol Abuse and Dependence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cognition and Steroidogenesis in the Rhesus Macaque
Cognition and Steroidogenesis in the Rhesus Macaque Krystina G Sorwell A DISSERTATION Presented to the Department of Behavioral Neuroscience and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2013 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL This is to certify that the PhD dissertation of Krystina Gerette Sorwell has been approved Henryk Urbanski Mentor/Advisor Steven Kohama Member Kathleen Grant Member Cynthia Bethea Member Deb Finn Member 1 For Lily 2 TABLE OF CONTENTS Acknowledgments ......................................................................................................................................................... 4 List of Figures and Tables ............................................................................................................................................. 7 List of Abbreviations ................................................................................................................................................... 10 Abstract........................................................................................................................................................................ 13 Introduction ................................................................................................................................................................. 15 Part A: Central steroidogenesis and cognition ............................................................................................................ -
The Human Carotid Body Expression of Oxygen Sensing and Signaling Genes of Relevance for Anesthesia
PERIOPERATIVE MEDICINE Anesthesiology 2010; 113:1270–9 Copyright © 2010, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins The Human Carotid Body Expression of Oxygen Sensing and Signaling Genes of Relevance for Anesthesia Malin Jonsson Fagerlund, M.D., Ph.D.,* Jessica Kåhlin, M.D.,† Anette Ebberyd, B.M.A.,‡ Gunnar Schulte, Ph.D.,§ Souren Mkrtchian, M.D., Ph.D.,ʈ Lars I. Eriksson, M.D., Ph.D., F.R.C.A.# Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/113/6/1270/252613/0000542-201012000-00011.pdf by guest on 28 September 2021 ABSTRACT with DNA microarrays, real-time polymerase chain reaction, Background: Hypoxia is a common cause of adverse events and immunohistochemistry. in the postoperative period, where respiratory depression due Results: We found gene expression of the oxygen-sensing ϩ to residual effects of drugs used in anesthesia is an important pathway, heme oxygenase 2, and the K channels TASK ϩ underlying factor. General anesthetics and neuromuscular (TWIK-related acid sensitive K channel)-1 and BK (large- blocking agents reduce the human ventilatory response to conductance potassium channel). In addition, we show the hypoxia. Although the carotid body (CB) is the major oxygen expression of critical receptor subunits such as ␥-aminobu- ␣  ␥ sensor in humans, critical oxygen sensing and signaling path- tyric acid A ( 2, 3, and 2), nicotinic acetylcholine recep- ␣ ␣  ways have been investigated only in animals so far. Thus, the tors ( 3, 7, and 2), purinoceptors (A2A and P2X2), and aim of this study was to characterize the expression of key the dopamine D2 receptor. genes and localization of their products involved in the hu- Conclusions: In unique samples of the human CB, we here man oxygen sensing and signaling pathways with a focus on demonstrate presence of critical proteins in the oxygen-sens- receptor systems and ion channels of relevance in anesthesia. -
Structural Basis for Potentiation by Alcohols and Anaesthetics in a Ligand-Gated Ion Channel
ARTICLE Received 10 Jul 2012 | Accepted 28 Feb 2013 | Published 16 Apr 2013 DOI: 10.1038/ncomms2682 Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel Ludovic Sauguet1,2,3,4,*, Rebecca J. Howard5,w,*, Laurie Malherbe1,2,3,4,UiS.Lee5, Pierre-Jean Corringer3,4, R. Adron Harris5 & Marc Delarue1,2 Ethanol alters nerve signalling by interacting with proteins in the central nervous system, particularly pentameric ligand-gated ion channels. A recent series of mutagenesis experi- ments on Gloeobacter violaceus ligand-gated ion channel, a prokaryotic member of this family, identified a single-site variant that is potentiated by pharmacologically relevant concentra- tions of ethanol. Here we determine crystal structures of the ethanol-sensitized variant in the absence and presence of ethanol and related modulators, which bind in a transmembrane cavity between channel subunits and may stabilize the open form of the channel. Structural and mutagenesis studies defined overlapping mechanisms of potentiation by alcohols and anaesthetics via the inter-subunit cavity. Furthermore, homology modelling show this cavity to be conserved in human ethanol-sensitive glycine and GABA(A) receptors, and to involve residues previously shown to influence alcohol and anaesthetic action on these proteins. These results suggest a common structural basis for ethanol potentiation of an important class of targets for neurological actions of ethanol. 1 Unite´ de Dynamique Structurale des Macromole´cules, Institut Pasteur, F-75015 Paris, France. 2 UMR 3258, Centre National de la Recherche Scientifique, F-75015 Paris, France. 3 Groupe Re´cepteurs-Canaux, Institut Pasteur, F-75015 Paris, France. 4 Unite´ de Recherche Associe´e 2182, Centre National de la Recherche Scientifique, F-75015 Paris, France. -
Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors
International Journal of Molecular Sciences Article Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors Hana Kubová 1,* , Zde ˇnkaBendová 2,3 , Simona Moravcová 2,3 , Dominika Paˇcesová 2,3, Luisa Rocha 4 and Pavel Mareš 1 1 Institute of Physiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic; [email protected] 2 Faculty of Science, Charles University, 12800 Prague, Czech Republic; [email protected] (Z.B.); [email protected] (S.M.); [email protected] (D.P.) 3 National Institute of Mental Health, 25067 Klecany, Czech Republic 4 Pharmacobiology Department, Center of Research and Advanced Studies, Mexico City 14330, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +420-2-4106-2565 Received: 31 March 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: Benzodiazepines (BZDs) are widely used in patients of all ages. Unlike adults, neonatal animals treated with BZDs exhibit a variety of behavioral deficits later in life; however, the mechanisms underlying these deficits are poorly understood. This study aims to examine whether administration of clonazepam (CZP; 1 mg/kg/day) in 7–11-day-old rats affects Gama aminobutyric acid (GABA)ergic receptors in both the short and long terms. Using RT-PCR and quantitative autoradiography, we examined the expression of the selected GABAA receptor subunits (α1, α2, α4, γ2, and δ) and the GABAB B2 subunit, and GABAA, benzodiazepine, and GABAB receptor binding 48 h, 1 week, and 2 months after treatment discontinuation. Within one week after CZP cessation, the expression of the α2 subunit was upregulated, whereas that of the δ subunit was downregulated in both the hippocampus and cortex. -
The Role of GABRA2 in Risk for Conduct Disorder and Alcohol and Drug Dependence Across Developmental Stages
Behavior Genetics, Vol. 36, No. 4, July 2006 (Ó 2006) DOI: 10.1007/s10519-005-9041-8 The Role of GABRA2 in Risk for Conduct Disorder and Alcohol and Drug Dependence across Developmental Stages Danielle M. Dick,1,9 Laura Bierut,1 Anthony Hinrichs,1 Louis Fox,1 Kathleen K. Bucholz,1 John Kramer,2 Samuel Kuperman,2 Victor Hesselbrock,3 Marc Schuckit,4 Laura Almasy,5 Jay Tischfield,6 Bernice Porjesz,7 Henri Begleiter,7 John Nurnberger Jr.,8 Xiaoling Xuei,8 Howard J. Edenberg,8 and Tatiana Foroud8 Received Apr. 28 2005—Final Dec. 22 2005 We use findings from the behavior genetics literature about how genetic factors (latently) influence alcohol dependence and related disorders to develop and test hypotheses about the risk associated with a specific gene, GABRA2, across different developmental stages. This gene has previously been associated with adult alcohol dependence in the Collaborative Study of the Genetics of Alcoholism (COGA) sample [Edenberg, H. J., Dick, D. M., Xuei, X., Tian, H., Almasy, L., Bauer, L. O., Crowe, R., Goate, A., Hesselbrock, V., Jones, K. A., Kwon, J., Li, T. K., Nurnberger Jr., J. I., OÕConnor, S. J., Reich, T., Rice, J., Schuckit, M., Porjesz, B., Foroud, T., and Begleiter, H. (2004). Am. J. Hum. Genet. 74:705–714] and other studies [Covault, J., Gelernter, J., Hesselbrock, V., Nellissery, M., and Kranzler, H. R. (2004). Am. J. Med. Genet. B Neuropsychiatr. Genet. 129B:104–109; Lappalainen, J., Krupitsky, E., Remizov, M., Pchelina, S., Taraskina, A., Zvartau, E., Somberg, L. K., Covault, J., Kranzler, H. R., Krystal, J., and Gelernter, J. -
Current Strategies of Cancer Chemoprevention: 13Th Sapporo Cancer Seminar
ICANCER RESEARCH54, 3315—3318,June15, 19941 Meeting Report Current Strategies of Cancer Chemoprevention: 13th Sapporo Cancer Seminar The broad concept of chemoprevention applies to the prevention of either antimutagenic or antimitogenic. Antioxidants, because of their clinical cancer by the administration of pharmaceuticals or dietary similar mechanism of action, have been grouped separately as a third constituents. In recent years there has been a rapid expansion of basic class. Antioxidants are both antimutagenic and antimitogenic. research on mechanisms of chemoprevention, and more and more candidate compounds are entering clinical trials. It is therefore timely Clinical Trials of Chemopreventive Agents that the subject of the 13th Sapporo Cancer Seminar held on July 6—9, 1993, was “CurrentStrategies of Cancer Chemoprevention.― The Head and Neck. Dr. W-K. Hong (University of Texas M. D. Seminar was organized by Drs. H. Fujiki, H. Kobayashi, L. W. Anderson Cancer Center, Houston, TX) reviewed the successful use Wattenberg, C. W. Boone, and 0. J. Kelloff. of 13-cRA against the development of upper aerodigestive tract neo plasia. In trials in human oral premalignancy, or leukoplakia, 13-cPA Chemoprevention by Minor Nonnutrient Constituents achieved a significant objective response rate of 67% (3). In an of the Diet adjuvant trial to prevent second primary tumors in patients initially “cured―ofhead and neck squamous cell carcinoma, 13-cPA signifi Dr. L. Wattenberg (University of Minnesota, Minneapolis, MN) cantly reduced the high incidence of these usually fatal second ma described the growing awareness in recent years that dietary nonnu lignancies (4). Moderate to severe side effects of 13-cPA include: skin trient compounds can have extremely important effects on the conse dryness (63% versus 8% placebo); cheilitis (24% versus 2% placebo); quences of exposure to carcinogens, drugs, and an assortment of other and conjunctivitis (18% versus 8% placebo). -
New Aspects for the Treatment of Cardiac Diseases Based on the Diversity of Functional Controls on Cardiac Muscles: Acute Effect
J Pharmacol Sci 109, 334 – 340 (2009)3 Journal of Pharmacological Sciences ©2009 The Japanese Pharmacological Society Forum Minireview New Aspects for the Treatment of Cardiac Diseases Based on the Diversity of Functional Controls on Cardiac Muscles: Acute Effects of Female Hormones on Cardiac Ion Channels and Cardiac Repolarization Junko Kurokawa1,*, Takeshi Suzuki2, and Tetsushi Furukawa1 1Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan 2Faculty of Pharmacy, Division of Basic Biological Sciences, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512, Japan Received October 16, 2008; Accepted December 6, 2008 Abstract. Regulation of cardiac ion channels by sex hormones accounts for gender differences in susceptibility to arrhythmias associated with QT prolongation (TdP). Women are more prone to develop TdP than men with either congenital or acquired long-QT syndrome. The risk of drug- induced TdP varies during the menstrual cycle, suggesting that dynamic changes in levels of ovarian steroids, estradiol and progesterone, have cyclical effects on cardiac repolarization. Although increasing evidence suggests that the mechanism of this involves effects of female hormones on cardiac repolarization, it has not been completely clarified. In addition to well- characterized transcriptional regulation of cardiac ion channels and their modifiers through nuclear hormone receptors, we recently reported that physiological levels of female hormones modify functions of cardiac ion channels in mammalian hearts. In this review, we introduce our recent findings showing that physiological levels of the two ovarian steroids have opposite effects on cardiac repolarization. These findings may explain the dynamic changes in risk of arrhythmia in women during the menstrual cycle and around delivery, and they provide clues to avoiding potentially lethal arrhythmias associated with QT prolongation. -
Downloads/Drugs/…/Guidances/UCM078932
UCLA UCLA Previously Published Works Title Homotaurine, a safe blood-brain barrier permeable GABAA-R-specific agonist, ameliorates disease in mouse models of multiple sclerosis. Permalink https://escholarship.org/uc/item/7kq6p5tv Journal Scientific reports, 8(1) ISSN 2045-2322 Authors Tian, Jide Dang, Hoa Wallner, Martin et al. Publication Date 2018-11-08 DOI 10.1038/s41598-018-32733-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Homotaurine, a safe blood-brain barrier permeable GABAA-R-specifc agonist, ameliorates disease in Received: 12 April 2018 Accepted: 11 September 2018 mouse models of multiple sclerosis Published: xx xx xxxx Jide Tian, Hoa Dang, Martin Wallner, Richard Olsen & Daniel L. Kaufman There is a need for treatments that can safely promote regulatory lymphocyte responses. T cells express GABA receptors (GABAA-Rs) and GABA administration can inhibit Th1-mediated processes such as type 1 diabetes and rheumatoid arthritis in mouse models. Whether GABAA-R agonists can also inhibit Th17-driven processes such as experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), is an open question. GABA does not pass through the blood-brain barrier (BBB) making it ill-suited to inhibit the spreading of autoreactivity within the CNS. Homotaurine is a BBB-permeable amino acid that antagonizes amyloid fbril formation and was found to be safe but inefective in long-term Alzheimer’s disease clinical trials. Homotaurine also acts as GABAA-R agonist with better pharmacokinetics than that of GABA. Working with both monophasic and relapsing-remitting mouse models of EAE, we show that oral administration of homotaurine can (1) enhance CD8+CD122+PD-1+ and CD4+Foxp3+ Treg, but not Breg, responses, (2) inhibit autoreactive Th17 and Th1 responses, and (3) efectively ameliorate ongoing disease. -
A Human Stem Cell-Derived Test System for Agents Modifying Neuronal N
Archives of Toxicology (2021) 95:1703–1722 https://doi.org/10.1007/s00204-021-03024-0 IN VITRO SYSTEMS A human stem cell‑derived test system for agents modifying neuronal 2+ N‑methyl‑D‑aspartate‑type glutamate receptor Ca ‑signalling Stefanie Klima1,2 · Markus Brüll1 · Anna‑Sophie Spreng1,3 · Ilinca Suciu1,3 · Tjalda Falt1 · Jens C. Schwamborn4 · Tanja Waldmann1 · Christiaan Karreman1 · Marcel Leist1,5 Received: 28 October 2020 / Accepted: 4 March 2021 / Published online: 13 March 2021 © The Author(s) 2021 Abstract Methods to assess neuronal receptor functions are needed in toxicology and for drug development. Human-based test systems that allow studies on glutamate signalling are still scarce. To address this issue, we developed and characterized pluripotent stem cell (PSC)-based neural cultures capable of forming a functional network. Starting from a stably proliferating neu- roepithelial stem cell (NESC) population, we generate “mixed cortical cultures” (MCC) within 24 days. Characterization by immunocytochemistry, gene expression profling and functional tests (multi-electrode arrays) showed that MCC contain various functional neurotransmitter receptors, and in particular, the N-methyl-D-aspartate subtype of ionotropic glutamate receptors (NMDA-R). As this important receptor is found neither on conventional neural cell lines nor on most stem cell- derived neurons, we focused here on the characterization of rapid glutamate-triggered Ca2+ signalling. Changes of the intra- 2+ cellular free calcium ion concentration ([Ca ]i) were measured by fuorescent imaging as the main endpoint, and a method to evaluate and quantify signals in hundreds of cells at the same time was developed. We observed responses to glutamate in the low µM range. -
Gabaergic Signaling Linked to Autophagy Enhances Host Protection Against Intracellular Bacterial Infections
ARTICLE DOI: 10.1038/s41467-018-06487-5 OPEN GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections Jin Kyung Kim1,2,3, Yi Sak Kim1,2,3, Hye-Mi Lee1,3, Hyo Sun Jin4, Chiranjivi Neupane 2,5, Sup Kim1,2,3, Sang-Hee Lee6, Jung-Joon Min7, Miwa Sasai8, Jae-Ho Jeong 9,10, Seong-Kyu Choe11, Jin-Man Kim12, Masahiro Yamamoto8, Hyon E. Choy 9,10, Jin Bong Park 2,5 & Eun-Kyeong Jo1,2,3 1234567890():,; Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the brain; however, the roles of GABA in antimicrobial host defenses are largely unknown. Here we demonstrate that GABAergic activation enhances antimicrobial responses against intracel- lular bacterial infection. Intracellular bacterial infection decreases GABA levels in vitro in macrophages and in vivo in sera. Treatment of macrophages with GABA or GABAergic drugs promotes autophagy activation, enhances phagosomal maturation and antimicrobial responses against mycobacterial infection. In macrophages, the GABAergic defense is mediated via macrophage type A GABA receptor (GABAAR), intracellular calcium release, and the GABA type A receptor-associated protein-like 1 (GABARAPL1; an Atg8 homolog). Finally, GABAergic inhibition increases bacterial loads in mice and zebrafish in vivo, sug- gesting that the GABAergic defense plays an essential function in metazoan host defenses. Our study identified a previously unappreciated role for GABAergic signaling in linking antibacterial autophagy to enhance host innate defense against intracellular bacterial infection. 1 Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea. 2 Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea. -
Practice Guideline
THE AMERICAN ASSOCIATION PSYCHIATRIC PRACTICE GUIDELINE FOR THE PHARMACOLOGICAL TREATMENT WITH OF ALCOHOL PATIENTS USE DISORDER lcohol use disorder (AUD) is a major public health problem in the United States. The estimated 12-month and lifetime prevalence values for AUD are 13.9% and THE AMERICAN PSYCHIATRIC ASSOCIATION A 29.1%, respectively, with approximately half of individuals with lifetime AUD having a severe disorder. AUD and its sequelae also account for significant excess mortality and cost the United States more than $200 billion annually. Despite its high prevalence and numerous negative consequences, AUD remains undertreated. In fact, fewer than 1 in 10 individuals in the United States with a 12-month diagnosis of AUD PRACTICE GUIDELINE receive any treatment. Nevertheless, effective and evidence-based interventions are available, and treatment is associated with reductions in the risk of relapse and AUD- FOR THE associated mortality. The American Psychiatric Association Practice Guideline for the Pharmacological Pharmacological Treatment of Treatment of Patients With Alcohol Use Disorder seeks to reduce these substantial psychosocial and public health consequences of AUD for millions of affected individu- Patients With Alcohol Use Disorder als. The guideline focuses specifically on evidence-based pharmacological treatments for AUD in outpatient settings and includes additional information on assessment and treatment planning, which are an integral part of using pharmacotherapy to treat AUD. In addition to reviewing the available evidence on the use of AUD pharmacotherapy, the guideline offers clear, concise, and actionable recommendation statements, each of which is given a rating that reflects the level of confidence that potential benefits of an intervention outweigh potential harms. -
Taurine and Its Analogs in Neurological Disorders Focus On
Redox Biology 24 (2019) 101223 Contents lists available at ScienceDirect Redox Biology journal homepage: www.elsevier.com/locate/redox Review article Taurine and its analogs in neurological disorders: Focus on therapeutic T potential and molecular mechanisms Md. Jakariaa, Shofiul Azama, Md. Ezazul Haquea, Song-Hee Joa, Md. Sahab Uddinb, In-Su Kima,c, ∗ Dong-Kug Choia,c, a Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea b Department of Pharmacy, Southeast University, Dhaka, Bangladesh c Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, and Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea ARTICLE INFO ABSTRACT Keywords: Taurine is a sulfur-containing amino acid and known as semi-essential in mammals and is produced chiefly by Taurine the liver and kidney. It presents in different organs, including retina, brain, heart and placenta and demonstrates Analogs extensive physiological activities within the body. In the several disease models, it attenuates inflammation- and Therapeutic oxidative stress-mediated injuries. Taurine also modulates ER stress, Ca2+ homeostasis and neuronal activity at Molecular role the molecular level as part of its broader roles. Different cellular processes such as energy metabolism, gene Clinical study and Neurological disorders expression, osmosis and quality control of protein are regulated by taurine. In addition, taurine displays po- tential ameliorating effects against different neurological disorders such as neurodegenerative diseases, stroke, epilepsy and diabetic neuropathy and protects against injuries and toxicities of the nervous system. Several findings demonstrate its therapeutic role against neurodevelopmental disorders, including Angelman syndrome, Fragile X syndrome, sleep-wake disorders, neural tube defects and attention-deficit hyperactivity disorder.