Cell Biology News Vol.4 (1) April 2011

Total Page:16

File Type:pdf, Size:1020Kb

Cell Biology News Vol.4 (1) April 2011 Cell Biology News Vol.4 (1) April 2011 IN THIS ISSUE A Tribute to Barry and Judi Shur New Faces in Cell Biology Notable Articles and Commentaries Books and Websites Opus Cellula (Publications) Cell Biology: Under the Lens Graduate Student Corner Life in the Department A tribute to Barry and Judi Shur – Atlanta, Emory University and the De- partment of Cell Biology 1996 – 2010. We will all deeply miss Judi and Barry Shur who have been our friends, mentors and colleagues for the last 14 years. These were very special years due to Judi’s and Barry’s care for the Department and for each of us. Barry set a very high stand of scholarly achievement and professionalism, leading by example and treating everyone with dignity. Barry is a wise and enthusiastic mentor and generous leader with a great sense of humor. We will miss Judi and Barry, look forward to meeting again and wish them the best in their new Colorado home. Thank you Judi and Barry. New Faces in Cell Biology Alexa Mattheyses PhD. Instructor in Cell Biology Director of the ENNCF Micros- copy and Image Analysis Core The focus of my research is to develop novel fluorescence microscopy and data analysis techniques to answer questions in cell biology. I am espe- cially interested in exploiting basic properties of light and fluorescence to investigate the dynamics and func- tions of proteins inside living cells. My background is very interdisciplinary, encompassing the development and application of novel and advanced mi- croscopy techniques to a variety of bi- ological questions including dynamics in endocytosis, mitochondrial mem- brane permeability in apoptosis, and the structure and function of the nucle- ar pore complex. Select examples of techniques and their applications from my work include: polarized FRET to detect fast protein-protein interactions, fluorescence anisotropy to study orientation and organization of protein domains relative to a larger structure, and variants of TIRF microscopy to differentiate between protein dynamics and plasma membrane/vesicle dynam- ics. I plan to continue developing novel techniques to shed light on difficult biological problems. In addition, I am the technical director of the ENNCF Microscopy and Image Analysis Core located on the 4th and 5th floors of the Whitehead building. In this role I strive to provide researchers with the tools and knowledge they need to successfully conduct fluorescence microscopy experiments. This includes providing consulting, one-on-one trainings, and educational seminars. I am also spearheading efforts to bring new imaging technology to Emory with a special focus on TIRF and super resolution microscopy. New Faces in Cell Biology Maureen Wirschell PhD. Research Assistant Professor My research focus is to un- derstand the regulation and assembly of cilia and the dynein motors using the model experimental system Chlamydomonas reinhardtii. In particular, studies of cilia in Chlamydomonas has pio- neered our current under- standing of human diseases/ syndromes that are caused by ciliary defects; these pa- thologies are collectively called “ciliopathies” and in- clude obesity, cardiovascular defects (developmental heart looping and left-right pat- terning defects), polycystic kidney disease and cell pro- liferation defects including cancer just to name a few. Thus, studies conducted us- ing model organisms, like Chlamydomonas, can elucidate fundamental mechanisms for important biological processes; highlighting the importance of basic science in discoveries related to human health and diseases. My focus on cilia and the dynein motors began in graduate school when I worked with Dr. George B. Witman on assembly of the outer dynein arm—an impor- tant ciliary dynein that provides much of the power for ciliary move- ment. I continued my studies with Dr. Winfield S. Sale to study cili- ary dynein assembly and regulation for my postdoctoral training. With Win, I continued my training as a scientist at the bench, but also Win helped craft my impression of what a mentor should be. These strengths will serve me well in my independent position here in Cell Biology. My home life revolves around my son, Ryan Lawrence, who is now almost 4 years old and my husband (and other child!), Roberto—who is not 4 years old but wishes he was! They both love cars, trucks, tractors and trains. New Faces in Cell Biology David Katz PhD. Assistant Professor Going back to the earliest days of biology, scientists have been aware of the extensive epigenetic reprogramming that must occur during the transition from gametes to the em- bryo. Recently, the field has even been able to marginally recapitulate this process; deriv- ing stem cells from adult fibroblasts using the induced pluripotent stem cell process (iPS). However, the mechanisms of this reprogram- ming remain almost a complete mystery. As graduate student in Shirley Tilghman’s lab at Princeton University, I studied the role of chromatin in regulating genomic imprint- ing. During these studies I became intrigued by how epigenetic mechanisms could func- tion to completely reverse the transcriptional states of imprinted genes during each pas- sage through the germline. This fascination pushed me towards postdoctoral work in the lab of Bill Kelly where we generated, in the worm C. elegans, the first direct evidence for an epigenetic reprogramming mechanism at fertilization. Today, my lab is broadening these stud- ies in both C. elegans and mouse to try and understand the function of epigenetics dur- ing changes in cell fate. We are interested in the idea that histone modifications can serve as a heritable transcription memory and we would like to understand how this memory is regulated in vivo and during stem cell thera- peutics. We are also interested in the possi- bility that human disease could result from the inappropriate transmission of epigenetic memory. Since its inception last September, the labo- ratory has quickly grown to 5 members. We have enjoyed getting to know the Cell Biol- ogy Department and are particularly proud to boast that we recently annihilated the Moberg Lab in the NCAA March Madness pool. Outside of the Cell Biology Department (but not too far) I am married to Tamara Cas- pary in the Human Genetics Department. We spend most of our time with our soon to be 4 year old twins, Simon and Anna, who enjoy encouraging me to score goals during my other passion, playing soccer. New Faces in Cell Biology Wilfried Rossol PhD. Research Assistant Professor I was first introduced to real bench work at the Research Institute of Molecular Patholo- gy (IMP), where I did my graduate research on the cell cycle of the yeast Saccharomy- ces cerevisiae. After I received my PhD in Genetics from the University of Vienna, I felt the desire to work on something more directly disease-related. I chose the Institute for Clinical Neurobiology of the University of Würzburg for my postdoctoral training, where I developed a keen interest in how deficiencies in neuronal mRNA processing may underlie the development of several devastating neurodegenerative diseases. I took the opportunity to move to Emory to work as Instructor and now Research As- sistant Professor with Gary Bassell, who has been always been a great mentor for my transition into an independent research posi- tion with my own research funding. Gary and I share an interest in the role of mRNA transport and local translation in neurons and their dysfunction in neurological diseases. One of my main projects is to study the biological role of the spinal muscu- lar atrophy (SMA) disease protein SMN in the development and maintenance of motor neurons. More recently, I have also started a research program on the amyotrophic lateral sclerosis (ALS) disease protein TDP-43. These disor- ders are characterized by a very selective degeneration of motor neurons. It is one of the great unsolved mysteries in the field, how mutations in ubiquitous housekeeping genes can lead to the loss of a very specific subtype of neurons. Since I believe that the answer to this question lies in unique properties and requirements of this cell type, I have dedicated a lot of effort into establishing primary motor neuron cultures and compartmentalized cultures of stem cell- derived motor neurons. Together with my colleagues, I am also working on the development of high content screens to address the urgent need for effective drugs for the treatment for SMA. Notable Articles and Commentaries Advocating for the Cell Sequences and consequences. Philos Trans R Soc Lond B Biol Sci. 2010 365(1537):207-12. This article by Sidney Brenner, 2002 Nobel Prize in Physiology or Medicine, discusses the concept that the right organization level to understand modern biology is the cell instead of systems biol- ogy , a novel discipline. ...”The genome must therefore form the kernel of any theory we construct but since trans- forming the information in a genome into the final living organism involves many compli- cated processes mediated by molecules specified in the genome, all of this will need to be known in considerable detail before we can read and understand genomes. There is no simple way to map organisms onto their genomes once they have reached a certain level of complex- ity. Thus while the genome sequence is central, it is a level of abstraction which is too cryptic to be used for the organization of data and the derivation of theoretical models. Proposals to base everything on the genome sequence by annotating it with additional data will only increase its opacity. The correct level of abstraction is the cell. The cell is the fundamental unit of structure, function and organization of living systems— something we have known for 180 years. This is the key feature of what I have called Cellmap, a design for a biological information system that will allow us not only to handle the vast accumulation of data but also to generate and test hypotheses.
Recommended publications
  • YAP1 and the Hippo Signaling Pathway Regulate Progenitor Proliferation
    YAP1 and the Hippo Signaling Pathway Regulate Progenitor Proliferation Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin submitted by Dipl.-Biochem. Karin Schlegelmilch born in Berlin, Germany 2013 I conducted my doctoral studies from July 2009 until February 2013 at the Boston Children’s Hospital/ Department for Stem Cell and Regenerative Biology of Harvard University in Boston, USA under the supervision of Assistant Prof. Dr. Fernando D. Camargo. 1st Reviewer: Assistant Prof. Dr. Fernando D. Camargo, Harvard University, Boston, USA 2nd Reviewer: Prof. Dr. Petra Knaus, Freie Universität Berlin, Berlin, Germany Date of defense: Acknowledgements Most importantly, I would like to thank Assistant Professor Fernando Camargo for giving me the great opportunity to work in his laboratory, for always being there for stimulating discussions and providing guidance and support. I would also like to thank Professor Petra Knaus. Without her support and commitment, my PhD thesis abroad would not have been possible. I thank my whole family and in particular my parents, Sigrid and Walter Schlegelmilch, who have supported me in my decisions all my life. I am moreover truly grateful to my brother Ingo Schlegelmilch for all his encouragement. I am immensely grateful to Jan Riethmayer for supporting me in every possible way throughout my PhD, it means so much to me and made all the difference. I am especially thankful to have met my amiga Ingrid Carvacho during the time at Children’s Hospital. Thanks so much for always being there for me and finding the right words.
    [Show full text]
  • The Adhesome Network: Key Components Shaping the Tumour Stroma
    cancers Review The Adhesome Network: Key Components Shaping the Tumour Stroma Pinelopi A. Nikolopoulou † , Maria A. Koufaki † and Vassiliki Kostourou * Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; nikolopoulou@fleming.gr (P.A.N.); koufaki@fleming.gr (M.A.K.) * Correspondence: kostourou@fleming.gr; Tel.: +30-210-965-4465 † These authors contributed equally to this work. Simple Summary: Tumours are not formed only by malignant cells but contain many other cell types, including endothelial and mural cells of blood vessels, immune cells and cancer-associated fibroblasts. These host cells, together with extracellular matrix, form the tumour stroma. Tumour growth and metastasis depends on interactions between cancer cells and tumour stroma. Cell adhesion to extracellular matrix is essential for tissue growth and homeostasis and is deregulated in many pathological conditions, including cancer. This review highlights the vital role of cell adhesion in malignancy and describes how adhesion components regulate tumour stroma responses and control cancer development. Abstract: Beyond the conventional perception of solid tumours as mere masses of cancer cells, ad- vanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as “tumour microenvironment” (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with Citation: Nikolopoulou, P.A.; the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Koufaki, M.A.; Kostourou, V. The Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to Adhesome Network: Key ECM arises as a crucial determinant in cancer progression.
    [Show full text]
  • APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability
    Published OnlineFirst January 9, 2017; DOI: 10.1158/2159-8290.CD-16-0645 RESEARCH ARTICLE APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability Laurent Sansregret 1 , James O. Patterson 1 , Sally Dewhurst 1 , Carlos López-García 1 , André Koch 2 , Nicholas McGranahan 1,3 , William Chong Hang Chao 1 , David J. Barry 1 , Andrew Rowan 1 , Rachael Instrell 1 , Stuart Horswell 1 , Michael Way 1 , Michael Howell 1 , Martin R. Singleton 1 , René H. Medema 2 , Paul Nurse 1 , Mark Petronczki 1 , 4 , and Charles Swanton 1 , 3 Downloaded from cancerdiscovery.aacrjournals.org on October 2, 2021. © 2017 American Association for Cancer Research. Published OnlineFirst January 9, 2017; DOI: 10.1158/2159-8290.CD-16-0645 ABSTRACT Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We fi nd partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subu- nit nonsense mutation increases CIN.
    [Show full text]
  • Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells
    Downloaded from http://cshperspectives.cshlp.org/ on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells Alexia I. Bachir,1,4 Alan Rick Horwitz,2 W. James Nelson,3 and Julie M. Bianchini3,4 1Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402 2Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903 3Department of Biology, Stanford University, Stanford, California 94305 Correspondence: [email protected] SUMMARY Cell adhesions link cells to the extracellular matrix (ECM) and to each other and depend on interactions with the actin cytoskeleton. Both cell–ECM and cell–cell adhesion sites contain discrete, yet overlapping, functional modules. These modules establish physical associations with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell–ECM and cell–cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as to sense and translate the mechanical properties of the cellular environment into changes in cell organization and behavior. Here, we review the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the mo- lecular mechanisms of mechanotransduction
    [Show full text]
  • Cytoskeletal Proteins in Neurological Disorders
    cells Review Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders Diana C. Muñoz-Lasso 1 , Carlos Romá-Mateo 2,3,4, Federico V. Pallardó 2,3,4 and Pilar Gonzalez-Cabo 2,3,4,* 1 Department of Oncogenomics, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; [email protected] 2 Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, 46010 Valencia, Spain; [email protected] (C.R.-M.); [email protected] (F.V.P.) 3 CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain 4 Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain * Correspondence: [email protected]; Tel.: +34-963-395-036 Received: 10 December 2019; Accepted: 29 January 2020; Published: 4 February 2020 Abstract: Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
    [Show full text]
  • Neuromuscular Junction Defects in a Mouse Model of Charcot-Marie-Tooth Disease Type 2O" (2018)
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2018 Neuromuscular Junction Defects in a Mouse Model of Charcot- Marie-Tooth Disease Type 2O Thywill Sabblah University of Central Florida Part of the Medical Neurobiology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Sabblah, Thywill, "Neuromuscular Junction Defects in a Mouse Model of Charcot-Marie-Tooth Disease Type 2O" (2018). Electronic Theses and Dissertations, 2004-2019. 5904. https://stars.library.ucf.edu/etd/5904 NEUROMUSCULAR JUNCTION DEFECTS IN A MOUSE MODEL OF CHARCOT- MARIE-TOOTH DISEASE TYPE 2O by THYWILL TSATSU SABBLAH B.Sc. Kwame Nkrumah University of Science and Technology, 2005 M.S. University of Central Florida, 2013 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Spring Term 2018 Major Professor: Stephen J. King ©2018 THYWILL TSATSU SABBLAH ii ABSTRACT Charcot Marie Tooth disease (CMT) represents the most common inheritable peripheral group of motor and sensory disorders; affecting 1 in 2500 people worldwide. Individuals with CMT experience slow progressing weakness of the muscle, atrophy, mild loss of motor coordination and in some cases loss of sensory function in the hands and feet which could ultimately affect mobility.
    [Show full text]
  • Drosophila Information Service
    Drosophila Information Service Number 103 December 2020 Prepared at the Department of Biology University of Oklahoma Norman, OK 73019 U.S.A. ii Dros. Inf. Serv. 103 (2020) Preface Drosophila Information Service (often called “DIS” by those in the field) was first printed in March, 1934. For those first issues, material contributed by Drosophila workers was arranged by C.B. Bridges and M. Demerec. As noted in its preface, which is reprinted in Dros. Inf. Serv. 75 (1994), Drosophila Information Service was undertaken because, “An appreciable share of credit for the fine accomplishments in Drosophila genetics is due to the broadmindedness of the original Drosophila workers who established the policy of a free exchange of material and information among all actively interested in Drosophila research. This policy has proved to be a great stimulus for the use of Drosophila material in genetic research and is directly responsible for many important contributions.” Since that first issue, DIS has continued to promote open communication. The production of this volume of DIS could not have been completed without the generous efforts of many people. Except for the special issues that contained mutant and stock information now provided in detail by FlyBase and similar material in the annual volumes, all issues are now freely-accessible from our web site: www.ou.edu/journals/dis. For early issues that only exist as aging typed or mimeographed copies, some notes and announcements have not yet been fully brought on line, but key information in those issues is available from FlyBase. We intend to fill in those gaps for historical purposes in the future.
    [Show full text]
  • The Hippo Signaling Pathway in Stem Cell Biology and Cancer
    Published online: May 12, 2014 Review The Hippo signaling pathway in stem cell biology and cancer Jung-Soon Mo, Hyun Woo Park & Kun-Liang Guan* Abstract bind to other DNA binding proteins including Mad, Homothorax (Hth), and teashirt to promote gene expression [18,19]. The Hippo signaling pathway, consisting of a highly conserved The Hippo pathway is a tumor suppressor pathway because kinase cascade (MST and Lats) and downstream transcription co- mutations in these regulatory pathway components result in an activators (YAP and TAZ), plays a key role in tissue homeostasis overgrowth phenotype. and organ size control by regulating tissue-specific stem cells. In mammals, the Hippo pathway consists of the serine/threonine Moreover, this pathway plays a prominent role in tissue repair and kinases MST1/2 (mammalian Ste2-like kinases, Hpo orthologs) and regeneration. Dysregulation of the Hippo pathway is associated LATS1/2 (large tumor suppressor kinase 1/2, Wts orthologs) [7,20– with cancer development. Recent studies have revealed a complex 22]. Activation of the Hippo pathway results in the inactivation of network of upstream inputs, including cell density, mechanical YAP (Yes-associated protein, Yki ortholog) by LATS1/2-mediated sensation, and G-protein-coupled receptor (GPCR) signaling, that direct phosphorylation on YAP Ser127 (in humans). Phosphorylated modulate Hippo pathway activity. This review focuses on the role YAP is sequestered in the cytoplasm via binding to 14-3-3 and is of the Hippo pathway in stem cell biology and its potential impli- degraded in a ubiquitin-proteasome-dependent manner, which cations in tissue homeostasis and cancer. depends on phosphorylation of YAP Ser381 and Ser384 [23].
    [Show full text]
  • Federal Agency Return on Investment in Foreign Patenting
    NIST GCR 20-025 Federal Agency Return on Investment in Foreign Patenting David P. Leech Economic Analysis & Evaluation, LLC John T. Scott, Ph.D. Dartmouth College This publication is available free of charge from: https://doi.org/10.6028/NIST.GCR.20-025 NIST GCR 20-025 Federal Agency Return on Investment in Foreign Patenting Prepared for U.S. Department of Commerce Technology Partnerships Office National Institute of Standards and Technology Gaithersburg, MD 20899 By David P. Leech Economic Analysis & Evaluation, LLC John T. Scott, Ph.D. Dartmouth College This publication is available free of charge from: https://doi.org/10.6028/NIST.GCR.20-025 April 2021 U.S. Department of Commerce Gina M. Raimondo, Secretary National Institute of Standards and Technology James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce for Standards and Technology & Director, National Institute of Standards and Technology Disclaimer This publication was produced as part of contract 1333ND19FNB405279 with the National Institute of Standards and Technology. The contents of this publication do not necessarily reflect the views or policies of the National Institute of Standards and Technology or the US Government. Preface This report documents the U.S. federal agencies’ use of foreign patents and provides evidence about the costs and benefits of acquiring foreign as well as U.S. patents to protect the intellectual property for inventions created in their laboratories. In the six months following the completion of this report, we assembled additional data. The new data about the patent portfolios of the U.S. federal agencies extends back in time four decades from the present.
    [Show full text]
  • Microtubules Are Major Dynamic Structural Components of the Cytoskeleton Involved in a Variety of Cell Functions Important for T
    REFERENCES 1. Walker, R. A., Pryer, N. K., and Salmon, E. D. Dilution of individual microtubules observed in real time in vitro: evidence that cap size is small and independent of elongation rate. J Cell Biol, 114: 73-81, 1991. 2. Jordan, M. A. and Wilson, L. The use and action of drugs in analyzing mitosis. Methods Cell Biol, 61: 267-295, 1999. 3. Joshi, H. C. Microtubule dynamics in living cells. Curr Opin Cell Biol, 10: 35-44, 1998. 4. Saxton, W. M., Stemple, D. L., Leslie, R. J., Salmon, E. D., Zavortink, M., and McIntosh, J. R. Tubulin dynamics in cultured mammalian cells. J Cell Biol, 99: 2175-2186, 1984. 5. Schulze, E. and Kirschner, M. Microtubule dynamics in interphase cells. J Cell Biol, 102: 1020-1031, 1986. 6. Pepperkok, R., Bre, M. H., Davoust, J., and Kreis, T. E. Microtubules are stabilized in confluent epithelial cells but not in fibroblasts. J Cell Biol, 111: 3003-3012, 1990. 7. Belmont, L. D., Hyman, A. A., Sawin, K. E., and Mitchison, T. J. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell, 62: 579-589, 1990. 8. Luduena, R. F. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol, 178: 207-275, 1998. 9. Orr, G. A., Verdier-Pinard, P., McDaid, H., and Horwitz, S. B. Mechanisms of Taxol resistance related to microtubules. Oncogene, 22: 7280-7295, 2003. 10. Nicoletti, M. I., Valoti, G., Giannakakou, P., Zhan, Z., Kim, J. H., Lucchini, V., Landoni, F., Mayo, J. G., Giavazzi, R., and Fojo, T.
    [Show full text]
  • Heat Shock Proteins in Systemic Lupus Erythematosus
    CYTOKINES AND THE REGULATION OF HEAT SHOCK PROTEINS IN SYSTEMIC LUPUS ERYTHEMATOSUS by Barry James Marc Ripley B.Sc., PGDlp (LSHTM), M.Sc. Thesis submitted for the degree of Ph D. Institute of Child Health, University College London 2001 ProQuest Number: U643772 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643772 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 To my family for all their love and support Abstract Previous studies have reported elevated levels of the 90 kDa heat shock protein (Hsp 90) and autoantibodies to Hsp 90 in a subset of patients with systemic lupus erythematosus (SLE). However, the mechanisms leading to the overexpression of Hsp 90 in SLE and a link between this event and the induction of Hsp 90 autoantibodies, have remained unclear. Recent studies have shown that the cytokine IL-6, which is elevated in SLE, activates Hsp 90 gene expression in cultured cells via specific transcription factors, that include STAT-3. In view of the known role of STAT proteins in signalling pathways of the cytokine IL-10, the effect of IL-10 on Hsp 90 levels in different cells was investigated.
    [Show full text]
  • MARIE-TOOTH DISEASE TYPE 2O by THYWILL TSATSU SABBLAH B.Sc. Kwame N
    NEUROMUSCULAR JUNCTION DEFECTS IN A MOUSE MODEL OF CHARCOT- MARIE-TOOTH DISEASE TYPE 2O by THYWILL TSATSU SABBLAH B.Sc. Kwame Nkrumah University of Science and Technology, 2005 M.S. University of Central Florida, 2013 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Spring Term 2018 Major Professor: Stephen J. King ©2018 THYWILL TSATSU SABBLAH ii ABSTRACT Charcot Marie Tooth disease (CMT) represents the most common inheritable peripheral group of motor and sensory disorders; affecting 1 in 2500 people worldwide. Individuals with CMT experience slow progressing weakness of the muscle, atrophy, mild loss of motor coordination and in some cases loss of sensory function in the hands and feet which could ultimately affect mobility. Dynein is an essential molecular motor that functions to transport cargos in all cells. A point mutation in the dynein heavy chain was discovered to cause CMT disease in humans, specifically CMT type 2O. We generated a knock-in mouse model bearing the same mutation(H304R) in the dynein heavy chain to study the disease. We utilized behavioral assays to determine whether our mutant mice had a phenotype linked to CMT disease. The mutant mice had motor coordination defects and reduced muscle strength compared to normal mice. To better understand the disease pathway, we obtained homozygous mutants from a heterozygous cross, and the homozygotes show even more severe deficits compared to heterozygotes. They also developed an abnormal gait which separates them from heterozygous mice.
    [Show full text]