Metamorphism and Metamorphic Rocks

Total Page:16

File Type:pdf, Size:1020Kb

Metamorphism and Metamorphic Rocks Big Island Field Trip • Space Still Available • Group Airline Tickets – May be available if enough people sign on • If interested send email to Greg Ravizza <[email protected]> • Planning Meeting Next Week – Will be announced by email 1 Metamorphic Rocks Metamorphism: to change form Metamorphic rock: any rock (sedimentary, volcanic, plutonic, metamorphic) that has undergone changes in texture or mineralogical composition in the solid state No Single Mode of Origin • Metamorphic rocks result from the partial or complete recrystallization of minerals in rocks over long periods of time • Rocks remain essentially solid during metamorphism 2 Metamorphic Processes HEAT: stability region of mineral sensitive to T. With increased T, pore fluid decreases PRESSURE: greater pressure tends to decrease space available; metamorphic mineral tend to be dense Increased P can come from any directed stress (burial, differential stress) Differential stress will bring about a preferred orientation of minerals FLUIDS (H2O, CO2): acts as catalysts during metamorphism; aids the exchange of ions between growing crystals Metamorphic Grade Refers to the intensity of metamorphism High grade: high T, P Low grade: low T, P 3 Pressure and Temperature vs. Depth Temperature and Pressure Conditions of Metamorphism 4 Metamorphic Grade Evidence of Metamorphism Shale e.g., Sedimentary Rocks – Made of minerals derived from weathering of a parent rock – Stable at atmospheric temperatures and pressures (low T & P) – Originally horizontal, continuous and uniform layers • 1. Bent (deformed) layers Gneiss 5 Evidence of Metamorphism • 2. Flattened Pebbles Conglomerate Differential pressure “squashes” rock and included features Metaconglomerate 6 Evidence of Metamorphism Quartz Sandstone Quartzite • 3. Crystalline Texture Minerals tightly interlocking due to recrystallization under pressure Evidence of Metamorphism • 4. New mineral assemblages e.g., Shale: Clay minerals (some quartz) Æ Metamorphism (Mid-grade) • Forms Schist: Mica, Feldspar and other silicate minerals Æ 7 Metamorphism •Parent Rock –Even though minerals will change Shale – Most elements are provided by parent rock – Except water and some dissolved ions Schist Metamorphism Temp. (ºC) C 0 600 1200 A B 600 1200 A B C • Increased Temperature (geothermal gradients) – Minerals stable at lower temperatures converted to minerals stable at higher temperatures – Solid state chemical reactions are accelerated 8 Metamorphism • Increased Pressure (and stresses) – Increased Confining Pressure as rocks are buried – Compression at convergent plate boundary or – Sheared as plates slide past each other Types of Metamorphism Regional: Widespread changes in temperature and pressure bring about changes in rocks due to tectonic forces Contact: Intrusion of magma against colder rocks (affected area is proportional to the size and temperature of the intrusion but always only a local phenomenon) Deformational: Changes in rocks associated with faulting and folding (regional or local) 9 Regional Metamorphism Contact Metamorphism 10 Contact Metamorphism adjacent to a Granite Intrusion Contact Metamorphism of Limestone 11 Contact Metamorphism of Sandstones & Shales Deformational Metamorphism 12 Types of Metamorphism (cont.) Burial: Changes in a rock due to the gradual changes in T and P due to successive burial (regional) Impact: Changes due to rapid increase in pressure (only localized) Plate Tectonics and Metamorphism 13 Plate Tectonics and Metamorphism Metamorphic Reactions Mineralogical changes (e.g., clay to mica): Many complicated reactions — depend on pressure, temperature, composition Common metamorphic minerals include amphiboles, garnet, mica, staurolite, and kyanite Textural changes: recrystallization (grain boundaries more compact) and foliation (preferred orientation of minerals) 14 How Much Can a Rock Change? The amount of change during metamorphism depends on: • grade of metamorphism • duration of metamorphism • composition of the rock 15 Changes in Texture Grain size • Recrystallization • Mineral size can either decrease or increase Orientation of minerals • Recrystallization • Directed stress will orient minerals: – Lineation – Foliation GraniteGranite 16 GneissGneiss Granite Gneiss 17 Metamorphic Foliation 18 Metamorphic Foliation Direction of Compressive Forces 19 Slaty metamorphic cleavage Regional stresses Slate with Foliation and Relict Bedding 20 Slaty Cleavage Formation of Slaty Cleavage 21 Classification of Foliated Rocks Metamorphism of Shale (and the classification of metamorphic rocks) Shale: Fine grained Clay (and quartz) • Minerals stable under low T&P (atmospheric) •Compaction due to accumulation of sediment • Fissility along laminations • Water bound in crystalline structure of clay 22 Metamorphism of Shale 1: Low Grade MetamorphismÆSlate • Fine grained Mica, (Chlorite and Quartz) • Low grade metamorphic T&P (Water is expelled from crystalline structure of clay) • Minerals stable under low grade metamorphic conditions • Slaty Cleavage due to realignment of platy minerals Slate 23 Metamorphism of Shale 2: Medium-Grade Metamorphism Æ Phillite • Courser grained Mica and quartz • Medium-grade metamorphic T&P Causes minerals to grow • Slaty cleavage becomes rippled and rock has a sheen Phyllite 24 Metamorphism of Shale 3: Medium to High-Grade Metamorphism Æ Schist •Course grained Mica and Quartz • Medium-grade metamorphic T&P Causes minerals to grow • Minerals stable under medium grade metamorphic conditions appear: Garnet, amphibole and biotite • Schistosity due to alignment of platy and needle- like minerals Schist 25 Schist in Thin Section 26 Metamorphism of Shale 4: High-Grade Metamorphism Æ Gneiss • Course grained Feldspar, Quartz, Amphibole, Biotite •High-grade metamorphic T&P Causes minerals to separate into bands • Minerals stable under high grade metamorphic conditions appear: feldspar • Gneissic banding bands of dark and light minerals Gneiss 27 Metamorphism of Shale 5: Very High-Grade Metamorphism and partial meltingÆ Migmatite • Silica rich minerals melt first (quartz and feldspar) • Forming silicic magma •Injected into fractures resulting in silicic veins if intrusive igneous rock 28 Migmatite Quartzite 29 Quartzite in Thin Section Marble 30 Marble in Thin Section Garnet Porphyroblasts Schist Matrix 31 Stability of Minerals • Most minerals are stable over a relatively narrow range of P and T (e.g., ice unstable above 0°C) • The stability range of different minerals overlap and provide constraints on the metamorphic history of rocks Mineralogic Changes in Metamorphosed Shales 32 Mineralogic Changes in Metamorphosed Shales 33 Mineralogic Changes in Metamorphosed Mafic Rocks Changes in Composition Chemical composition little changed during metamorphism Addition and loss of volatile constituents (H2O, CO2) Non-volatile constituents (anions, cations) redistributed – bulk chemical composition constant Principal changes are in mineral assemblages Mineral assemblage for a given rock composition determined by temperature and pressure 34 • Addition or removal of fluids (and elements) – Water (and other fluids) within rocks and minerals – Moving during metamorphism – Accelerates solid-state chemical reactions and – May change rock composition Metasomatism • Metamorphism with a high water:rock ratio – Metasomatism water:rock ratio 10:1 – 100:1 – Metamorphism water:rock ratio ~ 1:10 • Water acts as a conduit for changes in chemical composition – Fluids can add and remove materials from rock • Metasomatism associated with – Contact metamorphism – Alteration of rocks at mid ocean ridge systems 35 Submarine hot springs Metamorphic Facies • A given set of metamorphic conditions • Each facies is characteristic of particular tectonic environments and will have certain minerals that are diagnostic of those conditions • Therefore, the minerals in a rock can be clues to the (P,T) history of the rock 36 Metamorphic Facies Metamorphic Reactions Prograde: Mineral changes that take place during an increase in temperature Retrograde: Mineral changes that take place during an decrease in temperature 37 38 Plate Setting and Metamorphism 39.
Recommended publications
  • Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes”
    minerals Editorial Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes” Pavel A. Serov Geological Institute of the Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, Russia; [email protected] Magmatism, ore genesis and metamorphism are commonly associated processes that define fundamental features of the Earth’s crustal evolution from the earliest Precambrian to Phanerozoic. Basically, the need and importance of studying the role of metamorphic processes in formation and transformation of deposits is of great value when discussing the origin of deposits confined to varied geological settings. In synthesis, the signatures imprinted by metamorphic episodes during the evolution largely indicate complicated and multistage patterns of ore-forming processes, as well as the polygenic nature of the mineralization generated by magmatic, postmagmatic, and metamorphic processes. Rapid industrialization and expanding demand for various types of mineral raw ma- terials require increasing rates of mining operations. The current Special Issue is dedicated to the latest achievements in geochemistry, mineralogy, and geochronology of ore and metamorphic complexes, their interrelation, and the potential for further prospecting. The issue contains six practical and theoretical studies that provide for a better understanding of the age and nature of metamorphic and metasomatic transformations, as well as their contribution to mineralization in various geological complexes. The first article, by Jiang et al. [1], reports results of the first mineralogical–geochemical Citation: Serov, P.A. Editorial for studies of gem-quality nephrite from the major Yinggelike deposit (Xinjiang, NW China). Special Issue “Ore Genesis and The authors used a set of advanced analytical techniques, that is, electron probe microanaly- Metamorphism: Geochemistry, sis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry Mineralogy, and Isotopes”.
    [Show full text]
  • Expedition 369 Thin Sections, Site U1512
    Site U1512 core descriptions Thin sections THIN SECTION LABEL ID 369-U1512A-5R-4-W 72/75-TSB-TS1 Thin section no.: 1 Observer: CW Unit/subunit: II-a Thin section summary: A silty clay with moderately developed lamination and rare burrows. The sediment sample is moderately sorted and is comprised of silt-sized angular mineral grains including common quartz and trace amounts of feldspar hosted within a clay-rich matrix. Rare grains are sand sized. Other minerals/bioclasts present in common and trace amounts include muscovite mica, biotite mica, tubular bioclast fragments and poorly developed/fragmented radiolarians. Plane-polarized: 43920161 Cross-polarized: 43920141 Sediments and Sedimentary Rock Complete Lithology Name: silty clay Remarks: GRAIN SIZE Gravel Sand Silt Clay Percent 0 5 25 70 COMPOSITION Siliciclastic Calcareous Biosiliceous Mineral grains (%) 94 5 1 Cement (%) 94 5 1 MINERAL GRAIN ROUNDNESS MINERAL GRAIN SORTING angular moderate Mineral grain Abundance Quartz C Microcline feldspar T Clay D Calcite R D=dominant, A=abundant, C=common, R=rare, T=trace 369-U1512A-5R-4-W 72/75-TSB-TS1 Page 1 of 1 Site U1512 core descriptions Thin sections THIN SECTION LABEL ID 369-U1512A-13R-5-W 26/29-TSB-TS2 Thin section no.: 2 Observer: CW Unit/subunit: II-b Thin section summary: A possible sideritic siltstone, with quartz, glauconite, and Fe-oxide. The rock sample is moderately sorted and is comprised of silt-sized siderite grains hosted within a clay-rich matrix. Silt-sized quartz grains are common throughout. Pore spaces are also comprised of quartz cements. The rock sample is likely reworked from a proximal source area on the slope due to the angularity of the grains.
    [Show full text]
  • Geology of the Berne Quadrangle Black Hills South Dakota
    Geology of the Berne Quadrangle Black Hills South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-F Prepared partly on behalf of the U.S. Atomic Energy Commission Geology of the Berne Quadrangle Black Hills South Dakota By JACK A. REDDEN PEGMATITES AND OTHER PRECAMBRIAN ROCKS IN THE SOUTHERN BLACK HILLS GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-F Prepared partly on behalf of the U.S. Atomic Energy Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 CONTENTS Page Page Abstract._ _-------------_-___________-_____________ 343 Pegmatites Continued Introduction.______________________________________ 344 Mineralogy __ _____________-___-___-_-------_--- 378 Previous work__________________________________ 345 Origin.- --___-____-_-_-_---------------------_ 380 Fieldwork and acknowledgments._-_-_--__________ 345 Paleozoic and younger rocks. ________________________ 381 Geologic setting____--__-______________________ ____ 345 Deadwood Formation, __________________________ 381 Metamorphic rocks_________________________________ 347 Englewood Formation.. _ __________--____-_-__--_ 381 Stratigraphic units west of Grand Junction fault___- 347 Pahasapa Limestone- _______-_____.__-----_-- - 381 Vanderlehr Formation.._____________________ 347 Quaternary and Recent deposits. _________________ 382 Biotite-plagioclase gneiss.________________
    [Show full text]
  • Depositional Setting of Algoma-Type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok
    Depositional Setting of Algoma-type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok To cite this version: Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok. Depositional Setting of Algoma-type Banded Iron Formation. Precambrian Research, Elsevier, 2016. hal-02283951 HAL Id: hal-02283951 https://hal-brgm.archives-ouvertes.fr/hal-02283951 Submitted on 11 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Depositional Setting of Algoma-type Banded Iron Formation B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok PII: S0301-9268(16)30108-5 DOI: http://dx.doi.org/10.1016/j.precamres.2016.04.019 Reference: PRECAM 4501 To appear in: Precambrian Research Received Date: 26 September 2015 Revised Date: 21 January 2016 Accepted Date: 30 April 2016 Please cite this article as: B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok, Depositional Setting of Algoma-type Banded Iron Formation, Precambrian Research (2016), doi: http://dx.doi.org/10.1016/j.precamres. 2016.04.019 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Metamorphic Rocks (Lab )
    Figure 3.12 Igneous Rocks (Lab ) The RockSedimentary Cycle Rocks (Lab ) Metamorphic Rocks (Lab ) Areas of regional metamorphism Compressive Compressive Stress Stress Products of Regional Metamorphism Products of Contact Metamorphism Foliated texture forms Non-foliated texture forms during compression during static pressure Texture Minerals Other Diagnostic Metamorphic Protolith Features Rock Name Non-foliated calcite, dolomite cleavage faces of Marble Limestone calcite usually visible quartz quartz grains are Quartzite Quartz Sandstone intergrown Foliated clay looks like shale but Slate Shale breaks into layers muscovite, biotite very fine-grained, but Phyllite Shale has a sheen like satin muscovite, biotite, minerals are large Schist Shale may have garnet enough to see easily, muscovite and biotite grains are parallel to each other feldspar, biotite, has layers of different Gneiss Any protolith muscovite, quartz, minerals garnet amphibole layered black Amphibolite Basalt or Andesite amphibole grains Texture Minerals Other Diagnostic Metamorphic Protolith Features Rock Name Non-foliated calcite, dolomite cleavage faces of Marble Limestone calcite usually visible quartz quartz grains are Quartzite Quartz Sandstone intergrown Foliated clay looks like shale but Slate Shale breaks into layers muscovite, biotite very fine-grained, but Phyllite Shale has a sheen like satin muscovite, biotite, minerals are large Schist Shale may have garnet enough to see easily, muscovite and biotite grains are parallel to each other feldspar, biotite, has layers of different Gneiss Any protolith muscovite, quartz, minerals garnet amphibole layered black Amphibolite Basalt or Andesite amphibole grains Identification of Metamorphic Rocks 12 samples 7 are metamorphic 5 are igneous or sedimentary Protoliths and Geologic History For 2 of the metamorphic rocks: Match the metamorphic rock to its protolith (both from Part One) Write a short geologic history of the sample 1.
    [Show full text]
  • MSA PRESIDENTIAL ADDRESS Metamorphism and the Evolution of Subduction on Earth
    American Mineralogist, Volume 104, pages 1065–1082, 2019 MSA PRESIDENTIAL ADDRESS Metamorphism and the evolution of subduction on Earth MICHAEL BROWN1,* AND TIM JOHNSON2,3 1Laboratory for Crustal Petrology, Department of Geology, University of Maryland, College Park, Maryland 20742, U.S.A. Orcid 0000-0003-2187-616X 2School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Curtin University, GPO Box U1987, Perth, West Australia 6845, Australia. Orcid 0000-0001-8704-4396 3Center for Global Tectonics, State Key Laboratory for Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei Province, 430074, China ABSTRACT Subduction is a component of plate tectonics, which is widely accepted as having operated in a manner similar to the present-day back through the Phanerozoic Eon. However, whether Earth always had plate tectonics or, if not, when and how a globally linked network of narrow plate boundaries emerged are mat- ters of ongoing debate. Earth’s mantle may have been as much as 200–300 °C warmer in the Mesoarchean compared to the present day, which potentially required an alternative tectonic regime during part or all of the Archean Eon. Here we use a data set of the pressure (P), temperature (T), and age of metamorphic rocks from 564 localities that vary in age from the Paleoarchean to the Cenozoic to evaluate the petrogenesis and secular change of metamorphic rocks associated with subduction and collisional orogenesis at convergent plate boundaries. Based on the thermobaric ratio (T/P), metamorphic rocks are classified into three natural groups: high T/P type (T/P > 775 °C/GPa, mean T/P ~1105 °C/GPa), intermediate T/P type (T/P between 775 and 375 °C/GPa, mean T/P ~575 °C/GPa), and low T/P type (T/P < 375 °C/GPa, mean T/P ~255 °C/GPa).
    [Show full text]
  • Metamorphism
    Title page INTRODUCING METAMORPHISM Ian Sanders DUNEDIN EDINBURGH LONDON Contents Contents v Preface ix Acknowledgements x 1 Introduction 1 1.1 What is metamorphism? 1 1.1.1 Protoliths 1 1.1.2 Changes to the minerals 1 1.1.3 Changes to the texture 3 1.1.4 Naming metamorphic rocks 3 1.2 Metamorphic rocks – made under mountains 3 1.2.1 Mountain building 3 1.2.2 Directed stress, pressure and temperature in a mountain’s roots 4 1.2.3 Exhumation of a mountain’s roots 6 1.3 Metamorphism in local settings 6 1.3.1 Contact metamorphism 7 1.3.2 Hydrothermal metamorphism 7 1.3.3 Dynamic metamorphism 9 1.3.4 Shock metamorphism 9 2 The petrography of metamorphic rocks 11 2.1 Quartzite and metapsammite 11 2.1.1 Quartzite 11 2.1.2 Metapsammite 13 2.2 Metapelite 13 2.2.1 Slate 14 2.2.2 Phyllite and low-grade schist 16 2.2.3 Minerals and textures of medium-grade schist 17 2.2.4 The regional distribution of minerals in low- and medium-grade schist 20 2.2.5 Pelitic gneiss and migmatite 22 2.2.6 Metapelite in a contact aureole 23 2.2.7 The significance of Al2SiO5 for inferring metamorphic conditions 23 2.3 Marble 24 2.3.1 Pure calcite marble 24 2.3.2 Impure marble 26 2.3.3 Metasediments with mixed compositions 29 CONTENTS 2.4 Metabasite 30 2.4.1 Six kinds of metabasite from regional metamorphic belts 31 2.4.2 The ACF triangle for minerals in metabasites 36 2.4.3 P–T stability of metabasites, and metamorphic facies 38 vi 2.4.4 A metabasite made by contact metamorphism 40 2.5 Metagranite 41 2.5.1 Granitic gneiss and orthogneiss 41 2.5.2 Dynamic metamorphism
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Metamorphic Rocks.Pdf
    Metamorphism & Metamorphic Rocks (((adapted from Brunkel, 2012) Metamorphic Rocks . Changed rocks- with heat and pressure . But not melted . Change in the solid state . Textural changes (always) . Mineralogy changes (usually) Metamorphism . The mineral changes that transform a parent rock to into a new metamorphic rock by exposure to heat, stress, and fluids unlike those in which the parent rock formed. granite gneiss Geothermal gradient Types of Metamorphism . Contact metamorphism – – Happens in wall rock next to intrusions – HEAT is main metamorphic agent . Contact metamorphism Contact Metamorphism . Local- Usually a zone only a few meters wide . Heat from plutons intruded into “cooler” country rock . Usually forms nonfoliated rocks Types of Metamorphism . Hydrothermal metamorphism – – Happens along fracture conduits – HOT FLUIDS are main metamorphic agent Types of Metamorphism . Regional metamorphism – – Happens during mountain building – Most significant type – STRESS associated with plate convergence & – HEAT associated with burial (geothermal gradient) are main metamorphic agents . Contact metamorphism . Hydrothermal metamorphism . Regional metamorphism . Wide range of pressure and temperature conditions across a large area regional hot springs hydrothermal contact . Regional metamorphism Other types of Metamorphism . Burial . Fault zones . Impact metamorphism Tektites Metamorphism and Plate Tectonics . Fault zone metamorphism . Mélange- chaotic mixture of materials that have been crumpled together Stress (pressure) . From burial
    [Show full text]
  • The Metamorphosis of Metamorphic Petrology
    Downloaded from specialpapers.gsapubs.org on May 16, 2016 The Geological Society of America Special Paper 523 The metamorphosis of metamorphic petrology Frank S. Spear Department of Earth and Environmental Sciences, JRSC 1W19, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590, USA David R.M. Pattison Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada John T. Cheney Department of Geology, Amherst College, Amherst, Massachusetts 01002, USA ABSTRACT The past half-century has seen an explosion in the breadth and depth of studies of metamorphic terranes and of the processes that shaped them. These developments have come from a number of different disciplines and have culminated in an unprece- dented understanding of the phase equilibria of natural systems, the mechanisms and rates of metamorphic processes, the relationship between lithospheric tecton- ics and metamorphism, and the evolution of Earth’s crust and lithospheric mantle. Experimental petrologists have experienced a golden age of systematic investigations of metamorphic mineral stabilities and reactions. This work has provided the basis for the quantifi cation of the pressure-temperature (P-T) conditions associated with various metamorphic facies and eventually led to the development of internally con- sistent databases of thermodynamic data on nearly all important crustal minerals. In parallel, the development of the thermodynamic theory of multicomponent, multi- phase complex systems underpinned development of the major methods of quantita- tive phase equilibrium analysis and P-T estimation used today: geothermobarometry, petrogenetic grids, and, most recently, isochemical phase diagrams. New analytical capabilities, in particular, the development of the electron micro- probe, played an enabling role by providing the means of analyzing small volumes of materials in different textural settings in intact rock samples.
    [Show full text]
  • Petrology of the Metamorphic Rocks
    Petrology of the metamorphic rocks Second Edition Roger Mason London UNWIN HYMAN Boston Sydney Wellington © R. Mason, 1990 This book is copyright under the Berne Convention. No reproduction without permission. All rights reserved. Published by the Academic Division of Unwin Hyman Ltd 15/17 Broadwick Street, London WIV IFP, UK Unwin Hyman Inc. 955 Massachusetts Avenue, Cambridge, MA 02139, USA Allen & Unwin (Australia) Ltd 8 Napier Street, North Sydney, NSW 2060, Australia Allen & Unwin (New Zealand) Ltd in association with the Port Nicholson Press Ltd Compusales Building, 75 Ghuznee Street, Wellington I, New Zealand First published in 1990 British Library Cataioguing in Publication Data Mason, Roger 1941- Petrology of the metamorphic rocks. - 2nd ed. I. Metamorphic rocks. Petrology I. Title 552.4 ISBN 978-0-04-552028-2 ISBN 978-94-010-9603-4 (eBook) DOI 10.1007/978-94-010-9603-4 Library of Congress Cataioging-in-Publication Data Mason, Roger, 1941- Petrology of the metamorphic rocks/Roger Mason. - 2nd ed. p. cm. Includes bibliographical references. 1. Rocks, Metamorphic. I. Title. QE475.A2M394 1990 552·.~c20 90-35106 CIP Typeset in 10 on 12 point Times by Computape (Pickering) Ltd, North Yorkshire Preface There has been a great advance in the understanding of processes of meta­ morphism and of metamorphic rocks since the last edition of this book appeared. Methods for determining temperatures and pressures have become almost routine, and there is a wide appreciation that there is not a single temperature and pressure of metamorphism, but that rocks may preserve, in their minerals, chemistry and textures, traces of their history of burial, heating, deformation and permeation by fluids.
    [Show full text]
  • Thin Section Petrography for Ceramic Glaze Microstructures
    minerals Commentary Breaking Preconceptions: Thin Section Petrography For Ceramic Glaze Microstructures Roberta Di Febo 1,2,3,*, Lluís Casas 4 , Jordi Rius 5, Riccardo Tagliapietra 6 and Joan Carles Melgarejo 7 1 Dept. de Ciències de l’Antiguitat i Edad Mitjana, Facultat de Filosofia i Lletres, Universitat Autònoma de Barcelona (UAB), Edifici B, 08193 Bellaterra, Spain 2 Institut Català d’Arqueologia Clàssica (ICAC), Unitat d’Estudis Arqueomètrics (UEA), Plaça d’en Rovellat, s/n, 43003 Tarragona, Spain 3 U Science Tech, MECAMAT group, University of Vic—Central University of Catalonia, C. De la Laura 13, 08500 Catalonia, Spain 4 Departament de Geologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; [email protected] 5 Institute de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain; [email protected] 6 Renishaw S.p.A Via dei Prati 5, 10044 Pianezza (TO), Italia; [email protected] 7 Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +34-977-249-133 Received: 16 December 2018; Accepted: 12 February 2019; Published: 15 February 2019 Abstract: During the last thirty years, microstructural and technological studies on ceramic glazes have been essentially carried out through the use of Scanning Electron Microscopy (SEM) combined with energy dispersive X-ray analysis (EDX). On the contrary, optical microscopy (OM) has been considered of limited use in solving the very complex and fine-scale microstructures associated with ceramic glazes.
    [Show full text]