bioRxiv preprint doi: https://doi.org/10.1101/2020.01.12.903690; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Evaluating crystallographic likelihood functions using numerical quadratures Petrus H. Zwarta;b* and Elliott D. Perrymana;b;c aCenter for Advanced Mathematics in Energy Research Applications, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron road, Berkeley, CA 94720 USA, bMolecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron road, Berkeley, CA 94720 USA, and cThe University of Tennessee at Knoxville, Knoxville, TN 37916 USA. E-mail:
[email protected] Maximum Likelihood, Refinement, Numerical Integration Abstract Intensity-based likelihood functions in crystallographic applications have the poten- tial to enhance the quality of structures derived from marginal diffraction data. Their usage however is complicated by the ability to efficiently compute these targets func- tions. Here a numerical quadrature is developed that allows for the rapid evaluation of intensity-based likelihood functions in crystallographic applications. By using a sequence of change of variable transformations, including a non-linear domain com- pression operation, an accurate, robust, and efficient quadrature is constructed. The approach is flexible and can incorporate different noise models with relative ease. PREPRINT: Acta Crystallographica Section D A Journal of the International Union of Crystallography bioRxiv preprint doi: https://doi.org/10.1101/2020.01.12.903690; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.