Computer Intelligent Processing Technologies (Cipts) Tools for Analysing Environmental Data

Total Page:16

File Type:pdf, Size:1020Kb

Computer Intelligent Processing Technologies (Cipts) Tools for Analysing Environmental Data Technical Report No. 2 Computer Intelligent Processing Technologies (CIPTs) Tools for Analysing Environmental Data Prepared by: Earth Observation Sciences Ltd Broadmede, Farnham Business Park Farnham, GU9 8QT, UK January 1998 Cover design: Rolf Kuchling, EEA Legal notice The contents of this report do not necessarily reflect the official opinion of the European Commission or other European Communities institutions. Neither the European Environment Agency nor any person or company acting on the behalf of the Agency is responsible for the use that may be made of the information contained in this report. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int) Cataloguing data can be found a the end of this publication Luxembourg: Office for Official Publications of the European Communities, 1998 ISBN ©EEA, Copenhagen, 1998 All rights reserved, No part of this document or any information appertaining to its content may be used, stored, reproduced or transmitted in any form or by any means, including by photocopying, recording, taping, information storage systems, without the prior permission of the European Environmental Agency. Printed in Printed on recycled and chlorine-free bleached paper European Environment Agency Kongens Nytorv 6 DK-1050 Copenhagen K Denmark Tel: +45 33 36 71 00 Fax: +45 33 36 71 99 E-mail: [email protected] TABLE OF CONTENTS ACKNOWLEDGEMENTS ..............................................................................................................5 FOREWORD........................................................................................................................6 1. SUMMARY ......................................................................................................................7 2. INTRODUCTION.............................................................................................................. 9 2.1. Document Purpose and Scope ............................................................................................ 9 2.2. Roadmap............................................................................................................................ 10 2.3. Gathering Information: Intelligent Agents......................................................................... 12 2.4. Gaining Understanding: Visualisation................................................................................ 12 2.5. Data and Trend Analysis: Quantifying Relationships......................................................... 13 2.6. Estimation and Prediction: Neural Networks .................................................................... 13 2.7. Working with Facts and Rules: Expert Systems................................................................. 14 2.8. Making the Best Decisions: Optimisation Tools ................................................................ 15 2.9. Cost of Applying CIPTs...................................................................................................... 15 3. DATA VISUALISATION .................................................................................................. 17 3.1. Capabilities and Limitations...............................................................................................17 3.1.1. Key Capabilities........................................................................................................... 17 3.1.2. Limitations and Likely Evolution – the Authors’ View ................................................. 22 3.2. Representative Visualisation Tools..................................................................................... 24 3.2.1. Microsoft ExcelTM – a spreadsheet visualisation........................................................... 25 3.2.2. IDLTM – a visualisation development environment........................................................ 26 3.2.3. MacSpinTM – a visualisation package............................................................................ 27 3.2.4. Other Products............................................................................................................ 29 3.3. Environmental Applications ............................................................................................... 29 3.4. References and Bibliography............................................................................................. 35 4. DATA AND TREND ANALYSIS ...................................................................................... 38 4.1. Capabilities and Limitations...............................................................................................38 4.1.1. Key Capabilities........................................................................................................... 39 4.1.2. Limitations and Likely Evolution – the Authors’ View ................................................. 43 4.2. Representative Packages ................................................................................................... 44 4.2.1. MinitabTM – a simple statistical package ...................................................................... 44 4.2.2. S-PlusTM – an object-oriented package ........................................................................ 46 4.2.3. SAS® System: an Advanced Suite of Analysis Tools.................................................... 47 4.2.4. Other Products............................................................................................................ 49 4.3. Environmental Applications ............................................................................................... 49 4.4. References and Bibliography............................................................................................. 55 5. NEURAL NETWORKS .................................................................................................... 56 5.1. Capabilities and Limitations...............................................................................................56 5.1.1. Key Capabilities........................................................................................................... 59 5.1.2. Varieties of Neural Networks ...................................................................................... 61 5.1.3. Limitations and Likely Evolution – the Authors’ View ................................................. 63 5.2. Representative Neural Network Tools............................................................................... 63 5.2.1. NeuralWorks PredictTM Professional – PC Excel version .............................................. 64 5.2.2. DataEngineTM _ – a hybrid NN and neuro-fuzzy expert system................................... 65 5.2.3. Other NN Products ..................................................................................................... 67 5.3. Environmental Examples.................................................................................................... 67 5.4. References and Bibliography............................................................................................. 73 6. EXPERT SYSTEMS ......................................................................................................... 75 6.1. Capabilities and Limitations...............................................................................................75 6.1.1. Key Capabilities........................................................................................................... 79 6.1.2. Limitations and Likely Evolution – the Authors’ View ................................................. 80 6.2. Representative Expert System Tools ................................................................................. 81 6.2.1. CLIPSTM – for constructing Crisp AI systems ................................................................ 81 6.2.2. NEUframeTM – a fuzzy expert system tool.................................................................... 83 3 6.2.3. NeticaTM – a Bayesian network tool ..............................................................................86 6.2.4. Other Products ............................................................................................................89 6.3. Environmental Applications ...............................................................................................89 6.4. References and Bibliography .............................................................................................97 7. OPTIMISATION AND RISK MANAGEMENT................................................................... 98 7.1. Capabilities and Limitations ...............................................................................................98 7.1.1. Key Capabilities .........................................................................................................102 7.1.2. Limitations and Likely Evolution – the Authors’ View................................................102 7.2. Representative Tools........................................................................................................102 7.2.1. Excel SolverTM – General-Purpose, Spreadsheet-based Optimiser............................103 7.2.2. What’s Best!TM – Part of a Flexible Solver Suite..........................................................104 7.2.3. @RISK for ExcelTM – Risk Management and Decision Support Tool...........................106 7.2.4. Other Products ..........................................................................................................108
Recommended publications
  • Panoramas Shoot with the Camera Positioned Vertically As This Will Give the Photo Merging Software More Wriggle-Room in Merging the Images
    P a n o r a m a s What is a Panorama? A panoramic photo covers a larger field of view than a “normal” photograph. In general if the aspect ratio is 2 to 1 or greater then it’s classified as a panoramic photo. This sample is about 3 times wider than tall, an aspect ratio of 3 to 1. What is a Panorama? A panorama is not limited to horizontal shots only. Vertical images are also an option. How is a Panorama Made? Panoramic photos are created by taking a series of overlapping photos and merging them together using software. Why Not Just Crop a Photo? • Making a panorama by cropping deletes a lot of data from the image. • That’s not a problem if you are just going to view it in a small format or at a low resolution. • However, if you want to print the image in a large format the loss of data will limit the size and quality that can be made. Get a Really Wide Angle Lens? • A wide-angle lens still may not be wide enough to capture the whole scene in a single shot. Sometime you just can’t get back far enough. • Photos taken with a wide-angle lens can exhibit undesirable lens distortion. • Lens cost, an auto focus 14mm f/2.8 lens can set you back $1,800 plus. What Lens to Use? • A standard lens works very well for taking panoramic photos. • You get minimal lens distortion, resulting in more realistic panoramic photos. • Choose a lens or focal length on a zoom lens of between 35mm and 80mm.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Name Ankit Patras Address 111 Agricultural and Biotechnology Building, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville TN 37209 Phone 615-963-6007, 615-963-6019/6018 Email [email protected], [email protected] EDUCATION 2005- 2009: Ph.D. Biosystems Engineering: School of Biosystems Engineering, College of Engineering & Architecture, Institute of Food and Health, University College Dublin, Ireland. 2005- 2006: Post-graduate certificate (Statistics & Computing): Department of Statistics and Actuarial Science, School of Mathematical Sciences, University College Dublin, Ireland 2003- 2004: Master of Science (Bioprocess Technology): UCD School of Biosystems Engineering, College of Engineering & Architecture, University College Dublin, Ireland 1998- 2002: Bachelor of Technology (Agricultural and Food Engineering): Allahabad Agriculture Institute, India ACADEMIC POSITIONS Assistant Professor, Food Biosciences: Department of Agricultural and Environmental Research, College of Agriculture, Human and Natural Sciences, Tennessee State University, Nashville, Tennessee 2nd Jan, 2014 - Present • Leading a team of scientist and graduate students in developing a world-class food research centre addressing current issues in human health, food safety specially virus, bacterial and mycotoxins contamination • Developing a world-class research program on improving safety of foods and pharmaceuticals • Develop cutting edge technologies (i.e. optical technologies, bioplasma, power Ultrasound,
    [Show full text]
  • Stereo Panography
    STEREO PANOGRAPHY How I make 360 degree stereoscopic photos Thomas K Sharpless Philadelphia, PA [email protected] WHY SPHERICAL PHOTOGRAPHY? ● Omnidirectional view of a place and time ● Very high resolution possible ● Immersive experience possible WHAT IS A SPHERICAL PHOTO? ● A 360 x 180 degree image ● Processed and stored in a flat format such as equirectangular or cube map. ● Viewed piecewise on a screen using panorama player software with interactive pan and zoom. ● When viewed in a virtual reality headset, you feel that you are inside the picture. SPHERICAL IMAGE FORMATS TOP: 360x180 DEGREE EQUIRECTANGULAR MAP BOTTOM:SIX 90x90 DEGREE CUBE FACES VIEW SPHERICAL PHOTOS ON THE WEB The bathroom panorama, on 360Cities.net Are You Asleep In There? -- Ed Wilcox Same room, different artist, on Roundme.com Now And At The Hour Of Our Death -- Ashley Carrega HOW TO MAKE A SPHERICAL PHOTO ● Use a fish-eye or ultra-wide lens ● Rotate the camera around lens pupil while taking enough photos to cover the sphere ● Use stitching software to combine the photos into a seamless spherical image A PRO PANORAMIC CAMERA SONY A7r FULL FRAME MIRRORLESS CAMERA SIGMA 15 MM 160 DEGREE FISH-EYE LENS A COMPACT PANORAMIC CAMERA SONY ALPHA, SAMYANG 8mm/2.8 160 DEG. FISH-EYE PANORAMIC TRIPOD HEAD NODAL NINJA NN6 WITH MULTI-STOP ROTATOR PANORAMA BUILDING SOFTWARE ESSENTIAL ● PTGui pro ($$) or Hugin (free) ● Adobe Photoshop ($$$) or GIMP (free) VERY USEFUL ● Adobe Lightroom ($$) ● Pano2VR pro ($$) ● Image Magick (free) ESSENTIAL FOR 3D ● sView stereo panorama player (free) ● PT3D stereo stitching helper ($) OMNIDIRECTIONAL STEREO Combines two 19th century innovations: panoramic photos + stereoscopic photos Depends on 21st century digital technology Best viewed on a computer-driven stereopticon, that is, a virtual reality headset OMNISTEREO THEORY An omnistereo photo is a stereo pair of slit-scan panoramas.
    [Show full text]
  • Session Siptool: the 'Signal and Image Processing Tool'
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@CalPoly Session SIPTool: The ‘Signal and Image Processing Tool’ An Engaging Learning Environment Fred DePiero1 Abstract The ‘Signal and Image Processing Tool’ is a With the SIPTool, students create an integrated system multimedia software environment for demonstrating and that includes their processing routine along with developing Signal & Image Processing techniques. It has image/signal acquisition and display. This integrated system been used at CalPoly for three years. A key feature is is a very different result than the ‘haphazard’ line-by-line extensibility via C/C++ programming. The tool has a processing steps that students may or may not successfully minimal learning curve, making it amenable for weekly stumble through in a MatLab environment, as they follow a student projects. The software distribution includes given example. The SIPTool-based implementation is much multimedia demonstrations ready for classroom or more like a complete, commercial product. laboratory use. SIPTool programming assignments strengthen the skills needed for life-long learning by A variety of learning objectives can be readily requiring students to translate mathematical expressions addressed with the SIPTool including: time/frequency into a standard programming language, to create an relationships, 1-D and 2-D Fourier transforms, convolution, integrated processing system (as opposed to simply using correlation, filtering, difference equations, and pole/zero canned processing routines). relationships [1]. Learning objectives associated with image processing can also be presented, such as: gray scale Index Terms Image Processing, Signal Processing, resolution, pixel resolution, histogram equalization, median Software Development Environment, Multimedia Teaching filtering and frequency-domain filtering [2].
    [Show full text]
  • Sigmaplot 11: Now with Total Sigmastat Integration
    SigmaPlot 11: Now with Total SigmaStat Integration Imagine my joy as I discovered a complete package of publication-quality graphics software with analytic and presentation tools John A. Wass, Ph.D., in: Scientific Computing International, Jan/Feb 2009 The SYSTAT people who market this product have thrown me a curve. For years, I have bemoaned the fact that most of the upgrade and development efforts that went into the SigmaPlot/SigmaStat software seemed to be biased to the plot side. When I observed that the new package was merely named SigmaPlot, and I further failed to find SigmaStat integration features (the stuff that connects the two programs), the Figure 1: SigmaPlot graphics and wizards, including the Quick Start natural conclusion seemed to be that the statistical Menu (upper right) and the graph program was jettisoned in favor of the graphics. wizard (bottom center) The above introductory narrative is intended to alert the reader to this editor’s long- time love affair with SigmaStat. It was the first statistical software that I used, (seemingly) the first to make a seamless transition from DOS to Windows, and the very first to offer that wonderful Wizard to we befuddled amateur statisticians. My introduction to SigmaPlot came much later, and use of that was only stimulated when the two became integrated. Later on, a pharmacology menu was added and the usage of the plotting software was greatly extended. Of course, the new version has added further graphics and helps to make an already useful program even easier to use. It is now a complete package of publication-quality graphics software with analytic and presentation tools.
    [Show full text]
  • Towards a Fully Automated Extraction and Interpretation of Tabular Data Using Machine Learning
    UPTEC F 19050 Examensarbete 30 hp August 2019 Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Per Hedbrant Master Thesis in Engineering Physics Department of Engineering Sciences Uppsala University Sweden Abstract Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Teknisk- naturvetenskaplig fakultet UTH-enheten Motivation A challenge for researchers at CBCS is the ability to efficiently manage the Besöksadress: different data formats that frequently are changed. Significant amount of time is Ångströmlaboratoriet Lägerhyddsvägen 1 spent on manual pre-processing, converting from one format to another. There are Hus 4, Plan 0 currently no solutions that uses pattern recognition to locate and automatically recognise data structures in a spreadsheet. Postadress: Box 536 751 21 Uppsala Problem Definition The desired solution is to build a self-learning Software as-a-Service (SaaS) for Telefon: automated recognition and loading of data stored in arbitrary formats. The aim of 018 – 471 30 03 this study is three-folded: A) Investigate if unsupervised machine learning Telefax: methods can be used to label different types of cells in spreadsheets. B) 018 – 471 30 00 Investigate if a hypothesis-generating algorithm can be used to label different types of cells in spreadsheets. C) Advise on choices of architecture and Hemsida: technologies for the SaaS solution. http://www.teknat.uu.se/student Method A pre-processing framework is built that can read and pre-process any type of spreadsheet into a feature matrix. Different datasets are read and clustered. An investigation on the usefulness of reducing the dimensionality is also done.
    [Show full text]
  • Kwame Nkrumah University of Science and Technology, Kumasi
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA Assessing the Social Impacts of Illegal Gold Mining Activities at Dunkwa-On-Offin by Judith Selassie Garr (B.A, Social Science) A Thesis submitted to the Department of Building Technology, College of Art and Built Environment in partial fulfilment of the requirement for a degree of MASTER OF SCIENCE NOVEMBER, 2018 DECLARATION I hereby declare that this work is the result of my own original research and this thesis has neither in whole nor in part been prescribed by another degree elsewhere. References to other people’s work have been duly cited. STUDENT: JUDITH S. GARR (PG1150417) Signature: ........................................................... Date: .................................................................. Certified by SUPERVISOR: PROF. EDWARD BADU Signature: ........................................................... Date: ................................................................... Certified by THE HEAD OF DEPARTMENT: PROF. B. K. BAIDEN Signature: ........................................................... Date: ................................................................... i ABSTRACT Mining activities are undertaken in many parts of the world where mineral deposits are found. In developing nations such as Ghana, the activity is done both legally and illegally, often with very little or no supervision, hence much damage is done to the water bodies where the activities are carried out. This study sought to assess the social impacts of illegal gold mining activities at Dunkwa-On-Offin, the capital town of Upper Denkyira East Municipality in the Central Region of Ghana. The main objectives of the research are to identify factors that trigger illegal mining; to identify social effects of illegal gold mining activities on inhabitants of Dunkwa-on-Offin; and to suggest effective ways in curbing illegal mining activities. Based on the approach to data collection, this study adopts both the quantitative and qualitative approach.
    [Show full text]
  • Full-Text (PDF)
    Vol. 13(6), pp. 153-162, June 2019 DOI: 10.5897/AJPS2019.1785 Article Number: E69234960993 ISSN 1996-0824 Copyright © 2019 Author(s) retain the copyright of this article African Journal of Plant Science http://www.academicjournals.org/AJPS Full Length Research Paper Adaptability and yield stability of bread wheat (Triticum aestivum) varieties studied using GGE-biplot analysis in the highland environments of South-western Ethiopia Leta Tulu1* and Addishiwot Wondimu2 1National Agricultural Biotechnology Research Centre, P. O. Box 249, Holeta, Ethiopia. 2Department of Plant Sciences, College of Agriculture and Veterinary Science, Ambo University. P. O. Box 19, Ambo, Ethiopia. Received 13 February, 2019; Accepted 11 April, 2019 The objectives of this study were to evaluate released Ethiopian bread wheat varieties for yield stability using the GGE biplot method and identify well adapted and high-yielding genotypes for the highland environments of South-western Ethiopia. Twenty five varieties were evaluated in a randomized complete block design with three replications at Dedo and Gomma during the main cropping season of 2016 and at Dedo, Bedelle, Gomma and Manna during the main cropping season of 2017, generating a total of six environments in location-by-year combinations. Combined analyses of variance for grain yield indicated highly significant (p<0.001) mean squares due to environments, genotypes and genotype-by- environment interaction. Yield data were also analyzed using the GGE (that is, G, genotype + GEI, genotype-by-environment interaction) biplot method. Environment explained 73.2% of the total sum of squares, and genotype and genotype X environment interaction explained 7.16 and 15.8%, correspondingly.
    [Show full text]
  • Computer-Assisted Data Treatment in Analytical Chemometrics III. Data Transformation
    Computer-Assisted Data Treatment in Analytical Chemometrics III. Data Transformation aM. MELOUN and bJ. MILITKÝ department of Analytical Chemistry, Faculty of Chemical Technology, University Pardubice, CZ-532 10 Pardubice ъDepartment of Textile Materials, Technical University, CZ-461 17 Liberec Received 30 April 1993 In trace analysis an exploratory data analysis (EDA) often finds that the sample distribution is systematically skewed or does not prove a sample homogeneity. Under such circumstances the original data should often be transformed. The power simple transformation and the Box—Cox transformation improves a sample symmetry and also makes stabilization of variance. The Hines— Hines selection graph and the plot of logarithm of the maximum likelihood function enables to find an optimum transformation parameter. Procedure of data transformation in the univariate data analysis is illustrated on quantitative determination of copper traces in kaolin raw. When exploratory data analysis shows that the i) Transformation for variance stabilization implies sample distribution strongly differs from the normal ascertaining the transformation у = g(x) in which the one, we are faced with the problem of how to analyze variance cf(y) is constant. If the variance of the origi­ the data. Raw data may require re-expression to nal variable x is a function of the type cf(x) = ^(x), produce an informative display, effective summary, the variance cr(y) may be expressed by or a straightforward analysis [1—10]. We may need to change not only the units in which the data are 2 fdg(x)f stated, but also the basic scale of the measurement. <У2(У)= -^ /i(x)=C (1) To change the shape of a data distribution, we must I dx J do more than change the origin and/or unit of mea­ surement.
    [Show full text]
  • Multivariate Data Analysis in Sensory and Consumer Science
    MULTIVARIATE DATA ANALYSIS IN SENSORY AND CONSUMER SCIENCE Garmt B. Dijksterhuis, Ph. D. ID-DLO, Institute for Animal Science and Health Food Science Department Lely stad The Netherlands FOOD & NUTRITION PRESS, INC. TRUMBULL, CONNECTICUT 06611 USA MULTIVARIATE DATA ANALYSIS IN SENSORY AND CONSUMER SCIENCE MULTIVARIATE DATA ANALYSIS IN SENSORY AND CONSUMER SCIENCE F NP PUBLICATIONS FOOD SCIENCE AND NUTRITIONIN Books MULTIVARIATE DATA ANALYSIS, G.B. Dijksterhuis NUTRACEUTICALS: DESIGNER FOODS 111, P.A. Lachance DESCRIPTIVE SENSORY ANALYSIS IN PRACTICE, M.C. Gacula, Jr. APPETITE FOR LIFE: AN AUTOBIOGRAPHY, S.A. Goldblith HACCP: MICROBIOLOGICAL SAFETY OF MEAT, J.J. Sheridan er al. OF MICROBES AND MOLECULES: FOOD TECHNOLOGY AT M.I.T., S.A. Goldblith MEAT PRESERVATION, R.G. Cassens S.C. PRESCOlT, PIONEER FOOD TECHNOLOGIST, S.A. Goldblith FOOD CONCEPTS AND PRODUCTS: JUST-IN-TIME DEVELOPMENT, H.R.Moskowitz MICROWAVE FOODS: NEW PRODUCT DEVELOPMENT, R.V. Decareau DESIGN AND ANALYSIS OF SENSORY OPTIMIZATION, M.C. Gacula, Jr. NUTRIENT ADDITIONS TO FOOD, J.C. Bauernfeind and P.A. Lachance NITRITE-CURED MEAT, R.G. Cassens POTENTIAL FOR NUTRITIONAL MODULATION OF AGING, D.K. Ingram ef al. CONTROLLEDlMODIFIED ATMOSPHERENACUUM PACKAGING, A. L. Brody NUTRITIONAL STATUS ASSESSMENT OF THE INDIVIDUAL, G.E. Livingston QUALITY ASSURANCE OF FOODS, J.E. Stauffer SCIENCE OF MEAT & MEAT PRODUCTS, 3RD ED., J.F. Price and B.S. Schweigert HANDBOOK OF FOOD COLORANT PATENTS, F.J. Francis ROLE OF CHEMISTRY IN PROCESSED FOODS, O.R. Fennema et al. NEW DIRECTIONS FOR PRODUCT TESTING OF FOODS, H.R. Moskowitz ENVIRONMENTAL ASPECTS OF CANCER: ROLE OF FOODS, E.L. Wynder et al.
    [Show full text]
  • Título Del Artículo
    Software for learning and for doing statistics and probability – Looking back and looking forward from a personal perspective Software para aprender y para hacer estadística y probabilidad – Mirando atrás y adelante desde una perspectiva personal Rolf Biehler Universität Paderborn, Germany Abstract The paper discusses requirements for software that supports both the learning and the doing of statistics. It looks back into the 1990s and looks forward to new challenges for such tools stemming from an updated conception of statistical literacy and challenges from big data, the exploding use of data in society and the emergence of data science. A focus is on Fathom, TinkerPlots and Codap, which are looked at from the perspective of requirements for tools for statistics education. Experiences and success conditions for using these tools in various educational contexts are reported, namely in primary and secondary education and pre- service and in-service teacher education. New challenges from data science require new tools for education with new features. The paper finishes with some ideas and experience from a recent project on data science education at the upper secondary level Keywords: software for learning and doing statistics, key attributes of software, data science education, statistical literacy Resumen El artículo discute los requisitos que el software debe cumplir para que pueda apoyar tanto el aprendizaje como la práctica de la estadística. Mira hacia la década de 1990 y hacia el futuro, para identificar los nuevos desafíos que para estas herramientas surgen de una concepción actualizada de la alfabetización estadística y los desafíos que plantean el uso de big data, la explosión del uso masivo de datos en la sociedad y la emergencia de la ciencia de los datos.
    [Show full text]
  • STAT 3304/5304 Introduction to Statistical Computing
    STAT 3304/5304 Introduction to Statistical Computing Statistical Packages Some Statistical Packages • BMDP • GLIM • HIL • JMP • LISREL • MATLAB • MINITAB 1 Some Statistical Packages • R • S-PLUS • SAS • SPSS • STATA • STATISTICA • STATXACT • . and many more 2 BMDP • BMDP is a comprehensive library of statistical routines from simple data description to advanced multivariate analysis, and is backed by extensive documentation. • Each individual BMDP sub-program is based on the most competitive algorithms available and has been rigorously field-tested. • BMDP has been known for the quality of it’s programs such as Survival Analysis, Logistic Regression, Time Series, ANOVA and many more. • The BMDP vendor was purchased by SPSS Inc. of Chicago in 1995. SPSS Inc. has stopped all develop- ment work on BMDP, choosing to incorporate some of its capabilities into other products, primarily SY- STAT, instead of providing further updates to the BMDP product. • BMDP is now developed by Statistical Solutions and the latest version (BMDP 2009) features a new mod- ern user-interface with all the statistical functionality of the classic program, running in the latest MS Win- dows environments. 3 LISREL • LISREL is software for confirmatory factor analysis and structural equation modeling. • LISREL is particularly designed to accommodate models that include latent variables, measurement errors in both dependent and independent variables, reciprocal causation, simultaneity, and interdependence. • Vendor information: Scientific Software International http://www.ssicentral.com/ 4 MATLAB • Matlab is an interactive, matrix-based language for technical computing, which allows easy implementation of statistical algorithms and numerical simulations. • Highlights of Matlab include the number of toolboxes (collections of programs to address specific sets of problems) available.
    [Show full text]