Catalog of the Family Cordylidae

Total Page:16

File Type:pdf, Size:1020Kb

Catalog of the Family Cordylidae Catalog of the Family Cordylidae Harold De Lisle 2016 Cover photo : Platysaurus orientalis, by Nilsroe CC BY-SA 4.0 Back cover : Ouroborus cataphractus in defence posture, by Hardaker Email: [email protected] CONTENTS INTRODUCTION …............................................................................. 1 CATALOG ….......................................................................................... 6 ACKNOWLEGEMENTS …................................................................. 20 REFERENCES . …................................................................................. 21 TAXON INDEX …................................................................................... 32 The Cordylidae is a family of small to medium-sized lizards that occur in southern and eastern Africa. They are commonly known as girdled lizards, spinytail lizards or girdle-tail lizards. Cordylid lizards are diurnal and mainly insectivorous. They are terrestrial, mostly inhabiting crevices in rocky terrain, although at least one species digs burrows and another lives under exfoliating bark on trees, and one genus lives mainly on grassy savannahs. They have short tongues covered with long papillae, flattened heads and bodies. The body scales possess osteoderms and have large, rectangular, scales, arranged in regular rows around the body and tail. Many species have rings of spines on the tail, that aid in wedging the animal into sheltering crevices, and also in dissuading predators. The body is often flattened, and in most species is box-like on cross-section, with lateral fold. The morphology and organization of osteoderms is highly variable in the Cordylidae. High-resolution X- ray Computed Tomography (CT) is ideal for recovering information about individual osteoderm structure, as well as overall arrangement of these features. The images above show just a small part of the variation in armor across the Cordylidae. Courtesy of the AMNH Most species have four limbs, but those in the genus Chamaesaura are almost entirely limbless, with only tiny spikes in place of the hind limbs. The family includes both oviparous and ovoviviparous species. Currently (2016) ten genera are recognized: Chamaesaura , with five species Cordylus, with twenty-one species Hemicordylus , with two species Karusasaurus, with two species Namazonurus, with five species Ninurta, with one species (montotypic) Ouroborus, with one species (montotypic) Platysaurus , with sixteen species Pseudocordylus , with six species Smaug , with eight species The phylogeny of the Cordylidae is shown below (from Pyron et al., 2013) with position of each genus. This Catalog is an attempt to summarize the genus and species taxonomic names of extant and recently extinct cordylid lizards. Several species concepts have been applied to these lizards, and changes in the species level taxonomy have been proposed and many more are to be expected for that reason alone. The systematic arrangement of the catalog is intuitive once a few principles are stated. Subspecific entries for each species are indented. Dates in brackets indicate that these have been subsequently determined from sources external to the original document. Misspellings are generally excluded except where they have been widely used or misinterpreted. Junior subjective synonyms are listed under each valid name. In order to enhance the usefulness of the present list, the type species of each genus has been added keeping in mind the famous quote of Harold Cogger, "Taxonomy is a matter of opinion" (Golay et al., 1993) based, of course, on the evaluation of the best evidence. The taxonomy used herein is my evaluation and we accept full responsibility for its use. We have deliberately omitted most lapsus calami, nomina nuda, nomina dubia, nomina oblita, nomina substituta , etc., from the synonymy because these names are not available for use. The synonymy herein is limited to new descriptions. Entries for species consist of species or subspecies name, genus, author, year of description, publication page, type locality, location of primary (name-bearing) type specimen(s), if known, and known distribution. Type localities are those in the original description, except those in obvious error or those amended subsequently by authoritative sources. Acronyms of type collections employed in the catalogue follow those used by American Museum of Natural History. Abbreviations of museums holding the types are as follows ANSP - Academy of Natural Sciences, Department of Herpetology, 19th and the Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103, USA. BMNH – The Natural History Museum, Department of Zoology, Cromwell Road, London SW7 5BD, United Kingdom. CAS - California Academy of Sciences, Department of Herpetology, Golden Gate Park, San Francisco, California 94118, USA MBL - Museu Bocage, Universidade de Lisboa, Lisbon, Portugal [destroyed by fire in March 1978] MCZ - Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA. MD - Museu Regional do Dundo, Dundo, Luanda-Norte, Angola MNHNP - Museum National dHistoire Naturelle, Laboratoire des Amphibiens et Reptiles, 25 Rue Cuvier, 75005 Paris, France MSNG - Museo Civico di Storia Naturale di Genova Giacomo Doria, Via Brigata Liguria 9, 16121 Genova, Italy. NHMW - Naturhistorisches Museum, Zoologische Abtheilung, Postfach 417, Burgring 7, 1014 Wien, Austria NHRM - Naturhistoriska Rijkmuseet, Section for Vertebrate Zoology, Roslagsvägen 120, Box 50007, 104 05 Stockholm 50, Sweden. NMB - National Museum Bloemfontein, Bloemfontein Central, Bloemfontein, 9301, South Africa NMP – KwaZulu-Natal Museum, Pietermaritzburg 3201, KwaZulu-Natal, South Africa NMZB - National History Museum of Zimbabwe, Bulawayo, Zimbabwe. PEM - Port Elizabeth Museum, Port Elizabeth, Republic of South Africa. QM - Queensland Museum, Gregory Terrace, Fortitude Valley, Brisbane, Queensland 4006, Australia. RMNH - Naturalis (Nationaal Natuurhistorisch Museum; formerly Rijksmuseum van Natuurlijke Historie), Postbus 9517, 2300RA Leiden, The Netherlands SAM - South African Museum, P.O. Box 61, Cape Town 8000, Western Cape Province, South Africa. TMP - Transvaal Museum, P.O. Box 413, Pretoria 0001, Gauteng, South Africa. UTEP - University of Texas at El Paso, Department of Biological Sciences and Centennial Museum, Laboratory for Environmental Biology, 500 W University Ave, El Paso, TX 79968, USA ZMA - Universiteit van Amsterdam, Zoologisch Museum, Plantage Middenlaan 53, Amsterdam: C, Netherlands (now incorporated into NCB Naturalis, Leiden). ZMB - Universität Humboldt, Zoologisches Museum, Invalidenstrasse 43, 10115 Berlin, Germany. ZMH - Zoologisches Institut und Museum, Universität Hamburg, Martin-Luther-King Platz 3, D-2000 Hamburg 13, Germany. Cordylidae Mertens, 1937 Mertens, R. 1937. Reptilien und Amphibien aus dem südlichen Inner-Afrika . Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft , Frankfurt, vol. 435, p. 1–23 Type genus : Cordylus Laurenti, 1768 Chamaesaura Schneider, 1801 Schneider, J.G. 1801. Historiae Amphibiorum naturalis et literariae. Fasciculus secundus continens Crocodilos, Scincos, Chamaesauras, Boas. Pseudoboas, Elapes, Angues. Amphisbaenas et Caecilias., Frommani, Jena. 364 pp. Type species: Lacerta anguina Linnaeus, 1758: 210 Chamaesaura aenea (Fitzinger, 1843) Cricochalcis aenea Fitzinger 1843: 21 Type locality: South Africa Holotype: ZMB 1172 Distribution: South Africa: Northwest, Free State, Eastern Cape, KwaZulu-Natal provinces; Swaziland Chamaesaura anguina Linnaeus, 1758 Chamaesaura anguina anguina (Linnaeus, 1758) Lacerta anguina Linnaeus 1758: 210 Type locality: Cape of Good Hope, South Africa Holotype: BMNH 1946.8.7.98 Distribution: South Africa: Eastern Cape, Western Cape, Gauteng, Mpumalanga, KwaZulu-Natal provinces Chamaesaura anguina oligopholis Laurent, 1964 Chamaesaura anguina oligopholis Laurent, 1964: Type locality: Calonda, Lunda, Angola Holotype: MD ? Distribution: Angola Chamaesaura macrolepis (Cope, 1862) Mancus macrolepis Cope, 1862: 339 Type locality: Umvoti, KwaZulu-Natal, South Africa Syntypes: ANSP 9708-09 Distribution: South Africa: Northwest, Mpumalanga, KwaZulu-Natal provinces; Swaziland; southestern Zimbabwe Chamaesaura miopropus Boulenger, 1895 Chamaesaura miopropus Boulenger, 1895 : 724 Type locality: Fwambo, northeastern Zambia Holotype: BMNH 1946.8.29.49 Distribution: northern Zambia; southern Tanzania, eastern DR Congo Chamaesaura tenuior Günther, 1895 Chamaesaura tenuior Günther, 1895: 524 Type locality: Kampala, Uganda. Syntypes: : BMNH 1946.8.7.95-97 Distribution: Kenya: central highlands; northern Tanzania; eastern Rwanda; southern Uganda; northeastern DR Congo Cordylus Laurenti, 1768 Laurenti, J.N. 1768. Specimen medicum , exhibens synopsin reptilium emendatam cum experimentis circa venena et antidota reptilium austracorum, quod authoritate et consensu. Vienna, Joan. Thomae, 217 pp. Type species : Cordylus verus Laurenti, 1768 Cordylus angolensis (Bocage, 1895) Zonurus angolensis Bocage, 1895: 25 Type locality: Caconda, Huila District, Angola Holotype: MBL (probably lost in fire 1978) Distribution: Angola highlands ., northern Namibia, south- central DR Congo Photo: Xesko Cordylus aridus Mouton & Van Wyk, 1994 Cordylus aridus Mouton & Van Wyk, 1994: 15 Type locality: Farm Botterkraal, Prince Albert District, Western Cape Province, South Africa Holotype: SAM 50901 Distribution: South Africa: Western Cape Province Cordylus beraduccii Broadley & Branch, 2002 Cordylus beraduccii Broadley & Branch, 2002: 22
Recommended publications
  • Herpetofaunal Survey of the Ongeluksnek (Malekgalonyane) Nature Reserve in the Foothills of the Drakensberg, Eastern Cape Province, South Africa
    Herpetology Notes, volume 13: 717-730 (2020) (published online on 25 August 2020) Herpetofaunal survey of the Ongeluksnek (Malekgalonyane) Nature Reserve in the foothills of the Drakensberg, Eastern Cape Province, South Africa Werner Conradie1,2,* Brian Reeves3, Sandile Mdoko3, Lwandiso Pamla3, and Oyama Gxabhu3 Abstract. The results of a herpetofaunal survey of Ongeluksnek Nature Reserve, Eastern Cape Province, South Africa are presented here. Combination of visual encounter survey methods and standard Y-shape trap arrays were used to conduct the survey. A total of 26 species (eight amphibians and 18 reptiles) were recorded, representing 29 quarter-degree grid cell records, of which 62% represented the first records for these units. Furthermore, we document the presence of three species of snakes (Crotaphopeltis hotamboeia, Hemachatus haemachatus and Homoroselaps lacteus) for the first time for the whole degree square of 3028 (approx. 100 km2). This study highlights the need to survey poorly known regions to enable us to understand and document the full distributional extent of species. We also discuss the impact of uncontrolled fires on the absence of grassland specialised species during our survey. Keywords. Amphibia, Reptilia, karroid, conservation, biodiversity, fire Introduction has been done in the southern and western regions (e.g. Branch and Braack, 1987), while the northern and The herpetofaunal richness of South Africa is central areas associated with the former homelands of considered to be amongst the highest in the world the Ciskei and Transkei remained poorly surveyed. In (Branch, 1998; Bates et al., 2014; Du Preez and recent years a series of rapid biodiversity studies has Carruthers, 2017; Tolley et al., 2019).
    [Show full text]
  • Freshwater Fishes
    WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage.
    [Show full text]
  • Selected Body Temperature and Thermoregulatory Behavior in the Sit-And-Wait Foraging Lizard Pseudocordylus Melanotus Melanotus
    Herpetological Monographs, 23 2009, 108–122 E 2009 by The Herpetologists’ League, Inc. SELECTED BODY TEMPERATURE AND THERMOREGULATORY BEHAVIOR IN THE SIT-AND-WAIT FORAGING LIZARD PSEUDOCORDYLUS MELANOTUS MELANOTUS 1,2 SUZANNE MCCONNACHIE ,GRAHAM J. ALEXANDER, AND MARTIN J. WHITING School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa ABSTRACT: We investigated the thermoregulatory abilities and behavior of Pseudocordylus melanotus melanotus (Drakensberg crag lizard) in terms of the relationship between the operative temperature (Te), selected temperature (Tsel), set-point range (Tset) and field active body temperature (field Tsel), exposure to low temperature, body posture and activity. The Te range for P. m. melanotus was about 58 C (23.20 C in winter to 54.94 C in summer). In a laboratory thermal gradient, in a setting that is independent of ecological costs or thermal constraints, lizards maintained Tset (defined as the interquartile range of Tsel, after Hertz et al., 1993) between 29.00 6 0.36 C and 31.78 6 0.16 C in winter and 29.61 6 0.28 C and 32.47 6 0.18 C in summer. The mean Tsel was 30.08 6 0.14 C in winter and 30.99 6 0.11 C in summer. In the field, however, lizards achieved significantly lower Tb, which suggests that the thermal environment limited the Tb that lizards were able to achieve. Lizards were active for significantly longer and selected significantly higher Tb in summer than in winter. During winter, lizards spent a significant amount of time at Tb below their lower critical limiting temperature (defined by loss of righting).
    [Show full text]
  • Foraging Modes of Cordyliform Lizards
    S. AfT. J. Zoo!. 1997.32(1) 9 Foraging modes of cordyliform lizards William E. Cooper, Jr.', Martin J. Whiting' and Johannes H. Van Wyk Department of Zoology, University of Stellenbosch. Stellenbosch. 7600, South Africa Received 27 May 1996; accepted 3 September 1996 The first quantitative data on foraging mode in the cordyliform lizards reveal different foraging behaviours between and within families. All species of cordylids studied (four Cordylus, two Pseudocordylus. and one P/aty­ saurus) are ambush foragers. However, the species of Cordy/us and Pseudocordylus microlepidotus are the most extreme ambushers. These species spent a significantly lower per cent time moving than did all of the other species studied and made significantly fewer movements per minute than Platysaurus capensis and ger­ rhosaurids. In addition, P. microlepidotus made significantly fewer movements per minute than did its congener Pseudocordylus capensis. Possible reasons for the high number of movements per minute in Platysaurus cap­ ensis are discussed. Very limited observations of two gerrhosaurid species show that Cordylosaurus subtBssel­ latus is an active forager and GBrrhosaurus validus forages actively at least some of the time. A tentative hypothesis of the evolution of cordyliform foraging behaviour based on very limited data hints that active foraging is plesiomorphic in the Gerrhosaurini and further that gerrhosaurids may have retained active foraging from the common ancestor of Scincidae and Cordyliformes. Somewhat stronger data suggest that ambush foraging arose in the common ancestor of Cordylidae or Cordylinae. Further study is needed to trace inter- and intrage­ neric changes in foraging mode in cordylids. Current addresses: 1 Department of Biology.
    [Show full text]
  • Nyika and Vwaza Reptiles & Amphibians Checklist
    LIST OF REPTILES AND AMPHIBIANS OF NYIKA NATIONAL PARK AND VWAZA MARSH WILDLIFE RESERVE This checklist of all reptile and amphibian species recorded from the Nyika National Park and immediate surrounds (both in Malawi and Zambia) and from the Vwaza Marsh Wildlife Reserve was compiled by Dr Donald Broadley of the Natural History Museum of Zimbabwe in Bulawayo, Zimbabwe, in November 2013. It is arranged in zoological order by scientific name; common names are given in brackets. The notes indicate where are the records are from. Endemic species (that is species only known from this area) are indicated by an E before the scientific name. Further details of names and the sources of the records are available on request from the Nyika Vwaza Trust Secretariat. REPTILES TORTOISES & TERRAPINS Family Pelomedusidae Pelusios rhodesianus (Variable Hinged Terrapin) Vwaza LIZARDS Family Agamidae Acanthocercus branchi (Branch's Tree Agama) Nyika Agama kirkii kirkii (Kirk's Rock Agama) Vwaza Agama armata (Eastern Spiny Agama) Nyika Family Chamaeleonidae Rhampholeon nchisiensis (Nchisi Pygmy Chameleon) Nyika Chamaeleo dilepis (Common Flap-necked Chameleon) Nyika(Nchenachena), Vwaza Trioceros goetzei nyikae (Nyika Whistling Chameleon) Nyika(Nchenachena) Trioceros incornutus (Ukinga Hornless Chameleon) Nyika Family Gekkonidae Lygodactylus angularis (Angle-throated Dwarf Gecko) Nyika Lygodactylus capensis (Cape Dwarf Gecko) Nyika(Nchenachena), Vwaza Hemidactylus mabouia (Tropical House Gecko) Nyika Family Scincidae Trachylepis varia (Variable Skink) Nyika,
    [Show full text]
  • South Africa Mega Birding Tour I 6Th to 30Th January 2018 (25 Days) Trip Report
    South Africa Mega Birding Tour I 6th to 30th January 2018 (25 days) Trip Report Aardvark by Mike Bacon Trip report compiled by Tour Leader: Wayne Jones Rockjumper Birding Tours View more tours to South Africa Trip Report – RBT South Africa - Mega I 2018 2 Tour Summary The beauty of South Africa lies in its richness of habitats, from the coastal forests in the east, through subalpine mountain ranges and the arid Karoo to fynbos in the south. We explored all of these and more during our 25-day adventure across the country. Highlights were many and included Orange River Francolin, thousands of Cape Gannets, multiple Secretarybirds, stunning Knysna Turaco, Ground Woodpecker, Botha’s Lark, Bush Blackcap, Cape Parrot, Aardvark, Aardwolf, Caracal, Oribi and Giant Bullfrog, along with spectacular scenery, great food and excellent accommodation throughout. ___________________________________________________________________________________ Despite havoc-wreaking weather that delayed flights on the other side of the world, everyone managed to arrive (just!) in South Africa for the start of our keenly-awaited tour. We began our 25-day cross-country exploration with a drive along Zaagkuildrift Road. This unassuming stretch of dirt road is well-known in local birding circles and can offer up a wide range of species thanks to its variety of habitats – which include open grassland, acacia woodland, wetlands and a seasonal floodplain. After locating a handsome male Northern Black Korhaan and African Wattled Lapwings, a Northern Black Korhaan by Glen Valentine
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Sexual Selection and Signalling in the Lizard Platysaurus Minor
    SEXUAL SELECTION AND SIGNALLING IN THE LIZARD PLATYSAURUS MINOR Belinda Ann Lewis A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2006 I declare that this dissertation is my own unaided work. It is being submitted for the degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University. ________________________ Belinda A. Lewis 6th day of December 2006 i ABSTRACT Sexual selection may influence aspects of male morphology associated with territoriality, female choice, aggression and contest success. Attributes that are most commonly selected for include body size, condition, weaponry, endurance and bright coloration. I investigated the relationships between morphology, use of space and home range quality, and access to females. Specifically, I examined the relationships between colour, body size and condition, and whether morphology could predict aggression or contest success. Colour spectral data were analyzed using both traditional measures of colour (hue, chroma, brightness) and principal components. Males with darker, more saturated chests, and more saturated throats, had larger home ranges. Home range quality, as determined by refuge number and prey availability, was associated with blue chests and blue throats and chests, respectively. Males with larger home ranges had higher numbers of associated females and spent more time courting females. Larger males in better condition had darker, more saturated chests. Males in better body condition were also more aggressive. There was a consistent trend for larger males to win more contests, but this relationship was only significant in analyses using traditional measures of colour.
    [Show full text]
  • Description of a New Flat Gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320043814 Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique Article in Zootaxa · September 2017 DOI: 10.11646/zootaxa.4324.1.8 CITATIONS READS 2 531 8 authors, including: William R Branch Jennifer Anna Guyton Nelson Mandela University Princeton University 250 PUBLICATIONS 4,231 CITATIONS 7 PUBLICATIONS 164 CITATIONS SEE PROFILE SEE PROFILE Andreas Schmitz Michael Barej Natural History Museum of Geneva Museum für Naturkunde - Leibniz Institute for Research on Evolution and Biodiver… 151 PUBLICATIONS 2,701 CITATIONS 38 PUBLICATIONS 274 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Monitoring and Managing Biodiversity Loss in South-East Africa's Montane Ecosystems View project Ad hoc herpetofauna observations View project All content following this page was uploaded by Jennifer Anna Guyton on 27 September 2017. The user has requested enhancement of the downloaded file. Zootaxa 4324 (1): 142–160 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4324.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:B4FF9A5F-94A7-4E75-9EC8-B3C382A9128C Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique WILLIAM R. BRANCH1,2,13, JENNIFER A. GUYTON3, ANDREAS SCHMITZ4, MICHAEL F. BAREJ5, PIOTR NASKRECKI6,7, HARITH FAROOQ8,9,10,11, LUKE VERBURGT12 & MARK-OLIVER RÖDEL5 1Port Elizabeth Museum, P.O. Box 13147, Humewood 6013, South Africa 2Research Associate, Department of Zoology, Nelson Mandela University, P.O.
    [Show full text]
  • Notes on the Giant Girdled Lizard Cordylus Giganteus A
    British Herpetological Society Bulletin, No. 10, 1984 NOTES ON THE GIANT GIRDLED LIZARD CORDYLUS GIGANTEUS A. SMITH JOHAN MARAIS 23IA Langton Road, Montclair, Durban, South Africa The giant girdled lizard, Cordylus giganteus, is one of South Africa's largest and most impressive Cordylids. Though abundant and well known where it occurs, very little has been written about this lizard. Very popular in zoo and private collections and, until recently, easily obtainable from dealers in Europe and U.S.A., the species is now protected throughout most of its range, and it is therefore unlikely that many more specimens will reach the "pet trade" in future. COMMON NAME Giant girdled lizard; sungazer; Lord Derby's girdled lizard; and, in Afrikaans, sonkyker ("sun- watcher") ouvolk ("old people") or skurwejan. Cordylus giganteus RANGE North-eastern Orange Free State and adjacent southern Transvaal. Possibly occurs in bordering areas of Lesotho in the east and the Cape Province in the south. Branch and Patterson (1975) stated that the presence of Cordylus giganteus in the southern Transvaal "is now doubtful". This species is, in fact, abundant in that region. Cordylus giganteus has recently been found in Natal. SIZE Largest specimens measured by De Waal (1978) during his survey were as follows: a male measuring 204 + 172 = 376mm and a female measuring 205 + 181 = 386mm. 30 HABITAT Flat or sloping, mixed to sour grassveld where it excavates its own burrow. The flattened oblong burrow entrances are well-worn and may face any direction. The burrows average 2-3 metres in length and from 30-45cm in depth.
    [Show full text]
  • Camera Traps Unravel the Effects of Weather Conditions and Predator Presence on the Activity Levels of Two Lizards
    RESEARCH ARTICLE Some Like It Hot: Camera Traps Unravel the Effects of Weather Conditions and Predator Presence on the Activity Levels of Two Lizards Chris Broeckhoven*☯, Pieter le Fras Nortier Mouton☯ Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa ☯ These authors contributed equally to this work. * [email protected] Abstract It is generally assumed that favourable weather conditions determine the activity levels of lizards, because of their temperature-dependent behavioural performance. Inactivity, how- ever, might have a selective advantage over activity, as it could increase survival by reduc- ing exposure to predators. Consequently, the effects of weather conditions on the activity OPEN ACCESS patterns of lizards should be strongly influenced by the presence of predators. Using remote Citation: Broeckhoven C, Mouton PlFN (2015) Some camera traps, we test the hypothesis that predator presence and weather conditions inter- Like It Hot: Camera Traps Unravel the Effects of act to modulate daily activity levels in two sedentary cordylid lizards, Karusasaurus polyzo- Weather Conditions and Predator Presence on the nus and Ouroborus cataphractus. While both species are closely related and have a fully Activity Levels of Two Lizards. PLoS ONE 10(9): overlapping distribution, the former is a fast-moving lightly armoured lizard, whereas the lat- e0137428. doi:10.1371/journal.pone.0137428 ter is a slow-moving heavily armoured lizard. The significant interspecific difference in anti- Editor: Daniel E. Naya, Universidad de la Republica, predator morphology and consequently differential vulnerability to aerial and terrestrial URUGUAY predators, allowed us to unravel the effects of predation risk and weather conditions on Received: March 16, 2015 activity levels.
    [Show full text]