Artificial Insemination in the Human*

Total Page:16

File Type:pdf, Size:1020Kb

Artificial Insemination in the Human* Artificial Insemination in the Human* JOHN A BOARD, M.D. Professor of Obstetrics and Gynecology, Medical College of Virginia, Richmond, Virginia The idea that impregnation might occur with­ tion using the husband's semen has not resulted out coitus has aroused interest since ancient times. in pregnancy. In the second century AD., there was recorded When Rh incompatibility has already resulted a hypothetical discussion concerning a woman who in the birth of an erythroblastotic infant, and partic­ had been inseminated by semen previously de­ ularly when the husband is homozygous Rh posi­ posited in the bath water in which she bathed. In tive, insemination of the wife with semen from an 1322, an Arab used artificial insemination with Rh negative donor will prevent the recurrence of horses. A wad of wool was introduced into the erythroblastosis. Fortunately, the availability of vagina of a mare and left overnight. It was then Rho (D) immune globulin (human) has dramati­ held over the nostrils of a stallion, and with this cally reduced the number of Rh negative women stimulus the stallion ejaculated on a cloth held who have been sensitized, and this is becoming in readiness. The ejaculated material was then a less common indication for artificial insemination. introduced into the vagina of a mare, which foaled When the husband has a family history of after the appropriate length of time. genetic disease which makes fatherhood inadvis­ During the 1700's, isolated instances of hu­ able or when the couple has had affected offspring man artificial insemination were reported, almost indicating abnormal recessive genes with the likeli­ always using the husband's semen. In the United hood of producing serious congenital defects in States, human artificial insemination using donor's subsequent pregnancies, artificial insemination with semen was first practiced by Dr. Robert L Dick­ donor's semen may be used. Examples of this are inson in 1890. His work was initially done in Tay-Sachs disease, and cases where both husband secrecy, although subsequently he did much to and wife have AS hemoglobin. train others in the technique and to gain public The presence of agglutinating antibodies acceptance of the procedure. against the husband's sperm but not against donor sperm may occur in a woman with prolonged and Artificial Insemination Using Donor's Sperm. otherwise unexplained infertility · (Dukes and The most common indication for artificial insemina­ Franklin, 1968). The test for this is not an absolute tion using donor's semen is sterility of the hus­ one, as some women who agglutinate their husband's band. This may be manifest as total azoospermia sperm have been of high fertility. In a situation or severe oligospermia, demonstrated on repeated where antibodies are present, in some cases the examinations. The husband should, of course, have use of condom for a time to protect against repeated a thorough medical and urologic examination to be exposure to antigen will result in disappearance of certain that his sterility is not secondary to a treat­ agglutinating antibodies followed by pregnancy. able condition. Considerable judgment is required Where condom therapy fails, artificial insemination to decide when to treat cases of oligospermia this using donor's sperm which are not agglutinated way. In most instances, this is done when ap­ by the wife's antibodies may be used. The ABO propriate medical therapy has failed to improve relationship to infertility is even more unclear, the quality of the ejaculate and artificial insemina- although there seems to be a statistically significant effect when an ABO incompatibility exists and the husband is a "secretor," in which case donor * Presented at the 43rd Annual McGuire Lecture Series, December 2, 1971, at the Medical College of Vir­ semen from a male of appropriate blood type may ginia, Richmond. result in pregnancy. MCV QUARTERLY .8(1): 13-18, 1972 13 14 BOARD: ARTIFICIAL INSEMINATION IN THE HUMAN Donor insemination has special emotional ovary hyperemia test to predict the time of ovula­ connotations, and both husband and wife should tion. This test is said to be capable of determining be aware of the possible emotional effect of the the time of ovulation within six to twelve hours procedure on their future relationship. Both hus­ (Farris, 1948). More recently, the use of rapid band and wife should be reasonably well-adjusted radio immunoassay procedures for LH, in order to individuals, and they should feel that they have a detect the pre-ovulatory LH peak, has been sug­ stable marriage. It is extremely important not to do gested as an aid in timing the deposition of sperm, this procedure to "save the marriage" as this is whether it be by natural or artificial means. far too big a job to place upon the shoulders of an Kleegman has found there is a sex differentia­ individual who weighs only seven pounds or so. tion in infants related to the time of artificial in­ Both husband and wife should have a desire for semination and ovulation (Kleegman, 1967). She children, and the man should not feel that he is utilized basal temperatures somewhat to determine being coerced into this procedure in order to pro­ the time of ovulation, but put more emphasis on vide fulfillment of his wife's maternal instincts. mittelschmerz (sometimes elicited with a "bounce In most cases, it is advisable to wait for a while test") and mucorrhea. Using this as evidence of after the husband has found out about his sterility ovulation, she has noted that exposure 2-24 hours problem before carrying out artificial insemination before ovulation was more likely to result in a because he will need time to recover from the male infant and that exposure 36 or more hours shock that such news is to every man. When it has before ovulation or 2-8 hours after ovulation was been decided to use insemination with donor's se­ more likely to result in a female infant. She was men, both husband and wife should sign a consent able to predict sex in 77% of cases utilizing this form. method. She also noted that men who have severe In the past when there was no shortage of oligospermia but whose wives have still become babies for adoption, we did not encourage artificial pregnant, have a preponderance of female chil­ insemination, but did it only when the couple dren and that rhythm failures with conception oc­ specifically requested it, feeling that adoption curring on cycle days 4 to 7 usually result in solved two social problems, that is, providing a fam­ female infants. Certain other investigators have been ily to the child and a child to the family. With the unable to reduplicate this accuracy in prediction recent increase in therapeutic abortions, the supply (Cohen, 1966), but in fairness to Kleegman, it of infants for possible adoption has so dwindled should be noted that most have used only basal that artificial insemination is more often mentioned temperature as an index of ovulation and have not to the couple as a solution to their infertility or relied on mittelschmerz or cervical mucus changes. genetic problems. Aside from suggesting the avail­ Most of the donors which we use are either ability of donor's semen to such couples, we do medical students or house officers, who are married not try to encourage this where either partner and are already fathers of normal children. These expresses any hesitancy. men report no knowledge of hereditary disease A fertility investigation is done for each couple and are of above average intelligence, If the wife seeking artificial insemination, if this has not been has Rh negative blood, an Rh negative donor is previously accomplished. As a minimum, patency also chosen. We do not make any effort to match of the wife's fallopian tubes is established by a blood types otherwise, because any good laboratory Rubin's test using carbon dioxide, and an endo­ could readily establish the fact that the woman's metrial biopsy is done to confirm ovulation. The husband is not the father of the child by utilizing patient is also instructed to begin keeping basal other blood groups such as the MN, Kidd, Duffy, temperature charts, in order that the most optimal and Kell which establish a "fingerprint." We make time for insemination may be selected. After re­ an effort to match donor to husband by somatic viewing temperature charts for several months, a type, skin, hair, and eye coloration, but this is not day is selected. This day will likely be one or two always possible. We would not, however, use a days prior to the basal temperature rise. It has short, black-haired donor of Mediterranean origin been our practice to perform insemination once a for a couple where both husband and wife were tall, month for the first three months, and if pregnancy blonde, and fair-skinned. has not occurred in this time, then to perform sev­ Our experience has been entirely with fresh eral at two-day intervals until the temperature rise semen, and the donor is instructed to obtain a has definitely occurred. Some physicians use a rat specimen by masturbation into a clean glass con- BOARD: ARTIFICIAL INSEMINATION IN THE HUMAN 15 tainer shortly before the couple's appointment. The By this time, active sperm should be well on their donor then delivers the semen to a designated way up the female reproductive tract and any lethal point, and it is then transferred to the patient area activity in the seminal plasma would be of no con­ by other personnel. It is important that the donor sequence. not deliver the specimen himself to this office, in When a woman has somewhat irregular ovula­ order to exclude the possibility that he and the tion, she is given an injection of 5000 international recipients might meet.
Recommended publications
  • THE PHYSIOLOGY and ECOPHYSIOLOGY of EJACULATION Tropical and Subtropical Agroecosystems, Vol
    Tropical and Subtropical Agroecosystems E-ISSN: 1870-0462 [email protected] Universidad Autónoma de Yucatán México Lucio, R. A.; Cruz, Y.; Pichardo, A. I.; Fuentes-Morales, M. R.; Fuentes-Farias, A.L.; Molina-Cerón, M. L.; Gutiérrez-Ospina, G. THE PHYSIOLOGY AND ECOPHYSIOLOGY OF EJACULATION Tropical and Subtropical Agroecosystems, vol. 15, núm. 1, 2012, pp. S113-S127 Universidad Autónoma de Yucatán Mérida, Yucatán, México Available in: http://www.redalyc.org/articulo.oa?id=93924484010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Tropical and Subtropical Agroecosystems, 15 (2012) SUP 1: S113 – S127 REVIEW [REVISIÓN] THE PHYSIOLOGY AND ECOPHYSIOLOGY OF EJACULATION [FISIOLOGÍA Y ECOFISIOLOGÍA DE LA EYACULACIÓN] R. A. Lucio1*, Y. Cruz1, A. I. Pichardo2, M. R. Fuentes-Morales1, A.L. Fuentes-Farias3, M. L. Molina-Cerón2 and G. Gutiérrez-Ospina2 1Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala-Puebla km 1.5 s/n, Loma Xicotencatl, 90062, Tlaxcala, Tlax., México. 2Depto. Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D.F., México. 3Laboratorio de Ecofisiologia Animal, Departamento de Fisiologia, Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzicuaro s/n, Colonia Nueva Esperanza 58337, Morelia, Mich., México * Corresponding author ABSTRACT RESUMEN Different studies dealing with ejaculation view this Diferentes estudios enfocados en la eyaculación, process as a part of the male copulatory behavior.
    [Show full text]
  • A Rapid and Effective Nonsurgical Artificial Insemination Protocol Using
    Transgenic Res (2015) 24:775–781 DOI 10.1007/s11248-015-9887-3 TECHNICAL REPORT A rapid and effective nonsurgical artificial insemination protocol using the NSETTM device for sperm transfer in mice without anesthesia Barbara J. Stone . Kendra H. Steele . Angelika Fath-Goodin Received: 27 January 2015 / Accepted: 3 June 2015 / Published online: 12 June 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Artificial insemination (AI) is an assisted Introduction reproductive technique that is implemented success- fully in humans as a fertility treatment, performed Artificial insemination (AI) is used to assist in extensively for commercial breeding of livestock, and reproduction by directly delivering motile sperm to is also successful in laboratory rodents. AI in the the female reproductive tract. Artificial insemination mouse may be especially useful for breeding of in mice can be useful as an alternative to breeding for transgenic or mutant mice with fertility problems, strains which are not easily bred due to physical or expansion of mouse colonies, and as an alternative to behavioral issues. The techniques of AI and in vitro in vitro fertilization. Nonsurgical AI techniques for the fertilization (IVF) can both be used to generate viable mouse have been described previously but are not embryos. Development after AI simply continues in often implemented due to technical difficulties. Here the recipient female, while embryos generated from we compare various protocols for preparation of CD1 IVF must be transferred to a pseudopregnant recipient. recipients prior to AI for naı¨ve (in estrus), ovulation- AI or IVF can be used to generate embryos after induced, and superovulated females.
    [Show full text]
  • INTRAUTERINE INSEMINATION of HUSBAND's SEMEN Departments
    INTRAUTERINE INSEMINATION OF HUSBAND'S SEMEN B. N. BARWIN Departments of Physiology and Midwifery & Gynaecology, The Queen's University of Belfast, Northern Ireland (Received 11 th January 1973) Summary. Fifty patients with primary infertility were treated by intra- uterine insemination of the husband's semen which had been stored. Thirty patients had sperm counts of greater than 20 \m=x\106/ml with 50% motility and twenty patients had oligospermia (<20 \m=x\106/ml). The technique of storage of semen is reported and the intrauterine method described. The r\l=o^\leof the buffer solution is discussed in over- coming the complications of intrauterine insemination. A success rate of 70% is reported in the normospermic group and 55% in the oligo- spermic group over nine cycles of intrauterine insemination of husband's semen. INTRODUCTION One of the main problems confronting the gynaecologist in the investigation of infertility is the consistent finding of immotile spermatozoa, spermatozoa of low motility and low sperm count in the cervical mucus or semen (Scott, 1968). There was considerable controversy among earlier workers in the field that the sperm count was substandard if it fell below 60 106/ml but MacLeod (1962) has carried out considerable research in this field and it is now generally accepted that true oligospermia is represented by counts of less than 20 IO6/ ml provided the motility is good. SUBJECTS AND METHODS Selection of cases Fifty couples with primary infertility of between 3 and 14 years' duration were selected. The age distribution was between 24 and 41 years. In all cases, the wives had been subjected to a full clinical investigation.
    [Show full text]
  • Prevention of Infections in an Artificial Insemination Program
    SPERM ONLY PLEASE: Prevention of infections in an artificial insemination program Carin Huyser Reproductive and Endocrine Unit Department Ob/Gyn University of Pretoria Steve Biko Academic Hospital South Africa [email protected] ESHRE Campus workshop Genk Belgium, 15 December 2009 1 CONTENT I. Introduction Infection and contamination control Environment Staff Supplies Patients & specimens II. Aim Origin & prevention III. Prevalence (origin) of pathogens in ART Bacteria and STIs Viruses Interaction STI & HIV IV. Risk reduction (prevention) Screening & counselling Semen washing Validation of specimens ART procedure: IUI versus IVF/ICSI V. Discussion & Conclusion VI. Acknowledgements 2 I. INTRODUCTION ‘Semen contains vitality & heredity, not germs ’: seminal discourse in the AIDS era 1. Infection and contamination control in ART laboratory 2-4: Environment (inside & outside of lab e.g. Pseudomona spp. in water, fungal spores in air) Staff (individuals & techniques) Facilities & supplies (equipment, eg. cryostorage tanks; media) PatientsPatients & & specimens specimens 1. Khan et al . J Health Popul Nutr 2006; 24 :195-200; 2. Englert et al . Hum Reprod Update 2004; 10 :149-162; 3. Elder, Baker & Ribes. Infections, 3 Infertility and Assisted Reproduction 2005; 4. Magli et al . Hum Reprod 2008; 23 :1253-1262 I. INTRODUCTION Infection and contamination control in ART laboratory 1: Patients & specimens (semen ) Prevalence of pathogens (origin) Risk reduction (prevent) BBV+ BBV+ Fig 1: Prediction of reproductive potential 1. Elder, Baker & Ribes. Infections, Infertility and Assisted Reproduction. 2005 4 I. INTRODUCTION Infection and contamination control in ART laboratory 2: Patients & specimens (semen ) Prevalence of pathogens (origin) Risk reduction (prevent) BBV+/- BBV+/- Fig 1: Prediction of reproductive potential 1.
    [Show full text]
  • The Artificial Way
    SPOTLIGHT Breeding Rhinos for the future The Artificial way BY FELIX PATTON aptive breeding programmes have many decades about the husbandry and had some spectacular successes in reproductive needs of captive Black and 310 Csaving species and reintroducing Indian rhinos, when applied to White them into the wild. All rhino species Number of oestrous cycles rhinos, it has been unsuccessful. The are at risk from poaching, disease and non-reproducing White rhino main problem has been the absence of or natural disaster. Developing captive female in captivity can exhibit. erratic nature of oestrous cycle activity in populations is an essential safeguard to over half of the females in the European avoid extinction but breeding success has and North American Species Survival been limited. If a female rhino does not Program. get pregnant, her uterus starts to develop White rhino females in the wild irreversible problems, such as cysts To date, captive reproduction in usually experience short intervals and tumours. Can the failure to become the White rhino has been poor. Despite between successive births, even as pregnant be overcome? the wealth of knowledge acquired over little as 18 months. This indicates that pregnancy and lactation are the most common endocrine profile with possibly as few as 30 oestrous cycles per reproductive life span. Ultrasound technology for use in rhinoceros has been A reproducing female White rhino in used in well over 150 reproductive assessments in more captivity may produce up to nine calves. With a pregnancy of 16 months and than 70 rhinos with the result that the causes of poor subsequent lactation of approximately captive performance are now known.
    [Show full text]
  • Artificial Insemination
    Ch36-A03309.qxd 1/23/07 5:16 PM Page 539 Section 6 Infertility and Recurrent Pregnancy Loss Chapter Artificial Insemination 36 Ashok Agarwal and Shyam S. R. Allamaneni INTRODUCTION widely available, the terms homologous artificial insemination and heterologous artificial insemination were used to differentiate Artificial insemination is an assisted conception method that can these two alternative sources. However, the use of these bio- be used to alleviate infertility in selected couples. The rationale medical terms in this manner is at variance with their scientific behind the use of artificial insemination is to increase the gamete meaning, where they denote different species or organisms (as in, density near the site of fertilization.1 The effectiveness of artificial e.g., homologous and heterologous tissue grafts). insemination has been clearly established in specific subsets of In the latter half of the 20th century, the terms artificial infertile patients such as those with idiopathic infertility, infertility insemination, donor (AID) and artificial insemination, husband related to a cervical factor, or a mild male factor infertility (AIH) found common use. However, the widespread use of the (Table 36-1).2,3 An accepted advantage of artificial insemination acronym AIDS for acquired immunodeficiency syndrome resulted is that it is generally less expensive and invasive than other in the replacement of AID with therapeutic donor insemination assisted reproductive technology (ART) procedures.4 (TDI). An analogous alternative term for AIH has not evolved, This chapter provides a comprehensive description of probably in part because of the increasingly common situation indications for artificial insemination, issues to consider before where the woman’s partner is not her legal husband.
    [Show full text]
  • In Vitro Fertilization and Artificial Insemination: Ethical Consideration
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 1997 In Vitro Fertilization and Artificial Insemination: Ethical Consideration Joseph Ibegbulem Ekweariri Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Philosophy Commons Recommended Citation Ekweariri, Joseph Ibegbulem, "In Vitro Fertilization and Artificial Insemination: Ethical Consideration" (1997). Dissertations. 3716. https://ecommons.luc.edu/luc_diss/3716 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1997 Joseph Ibegbulem Ekweariri LOYOLA UNIVERSITY OF CHICAGO IN VITRO FERTILIZATION AND ARTIFICIAL INSEMINATION: ETHICAL CONSIDERATION A DISSERTATION SUBMITTED TO THEFACULTYOFTHEGRADUATESCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHILOSOPHY BY JOSEPH IBEGBULEM EKWEARIRI CHICAGO, ILLINOIS MAY, 1997 Copyright by Joseph Ibegbulem Ekweariri, 1997 All rights reserved. ACKNOWLEDGMENTS I thank you God for my life; even when ill-health threatened my studies and this work you sustained me throughout. Many people contributed to the success of this work in different capacities. I wish to thank them. I am grateful to my dissertation committee: Prof. David T. Ozar, the Chairman of the committee and director of my dissertation, Prof. Richard Westley, and Prof. John Langan S.J. I wish to thank all my professors at Loyola University, especially Prof. Kenneth Thompson, the director of the ~raduate School of Philosophy and Max Caproni Asst.
    [Show full text]
  • The Moral Problem of Artificial Insemination
    The Linacre Quarterly Volume 55 | Number 1 Article 8 February 1988 The orM al Problem of Artificial Insemination Carlo Caffarra Follow this and additional works at: http://epublications.marquette.edu/lnq Recommended Citation Caffarra, Carlo (1988) "The orM al Problem of Artificial Insemination," The Linacre Quarterly: Vol. 55: No. 1, Article 8. Available at: http://epublications.marquette.edu/lnq/vol55/iss1/8 The Moral Problem of Artificial Insemination Msgr. Carlo Caffarra Monsignor Caffarra is the director of the John Paul II Institute/or Studies on Marriage and the Family at the Pontifical Lateran Unil'er.l'itr. Original/r fJuhlish ed in Scienza E Origine Della Vita, thefcll/o\\'ing article was translated and edited hI' ReI'. Edward J. Barer. S. T. D. If one wants to deal with the casuistry of artificial insemination (AI). it is necessary to bring forth certain theological and anthropological presuppositions on the basis of which individual instances of AI are judged. Section I: Theological and Anthropological Presuppositions. I. The fundamental starting point consists of certain foundational affirmations regarding the origin of the human person. 1.1 The mystery of the origin of every human person has its roots in the very mystery of God. The origin of a human person. as a matter of fact. is not some kind of chance biological happening. but is the result of a creative act. that is. a deliberate and free choice on the part of God to do something He is no way obliged to do. Every human person is known and willed by God I) in a totally special.
    [Show full text]
  • The Protection of the Human Embryo in Vitro
    Strasbourg, 19 June 2003 CDBI-CO-GT3 (2003) 13 STEERING COMMITTEE ON BIOETHICS (CDBI) THE PROTECTION OF THE HUMAN EMBRYO IN VITRO Report by the Working Party on the Protection of the Human Embryo and Fetus (CDBI-CO-GT3) Table of contents I. General introduction on the context and objectives of the report ............................................... 3 II. General concepts............................................................................................................................... 4 A. Biology of development ....................................................................................................................... 4 B. Philosophical views on the “nature” and status of the embryo............................................................ 4 C. The protection of the embryo............................................................................................................... 8 D. Commercialisation of the embryo and its parts ................................................................................... 9 E. The destiny of the embryo ................................................................................................................... 9 F. “Freedom of procreation” and instrumentalisation of women............................................................10 III. In vitro fertilisation (IVF).................................................................................................................. 12 A. Presentation of the procedure ...........................................................................................................12
    [Show full text]
  • Artificial Insemination Instructions
    Artificial Insemination Instructions There are basically 3 ways of doing an at-home insemination: 1. The so-called Turkey Baster Method, though it is smarter to use a needle-less syringe than a turkey baster. 2. Insemination using a Cervical Cap, Diaphragm or Soft Cup. 3. Using a Cervical Cap with Access Tube, such as the Oligiosperma Cup (needs to be purchased through a doctor). This is a cervical cap with a tube for adding sperm after the cup is in place. TURKEY BASTER METHOD (NEEDLELESS SYRINGE) Supplies needed: • Needle-less Syringe • Collection Cup • Saline without additives or preservatives (Optional) • Tube to attach to syringe (Optional) The syringe should have a plunger, not a bulb end (not the mini turkey baster!). All syringes work pretty much the same way. You can attach a catheter (thin tube) to the syringe but you don't need to and it may waste more of the semen to use one. 1. Have the male ejaculate into a clean, sterile plastic collection cup (if using fresh semen). You'll probably have the best luck getting the semen out of a collection cup since you could suck a baggy or condom up into the syringe and block the opening. You can use a tiny bit of saline, without additives/preservatives, to help get as much sperm as possible into the syringe, but you don't need to worry too much about leaving a little behind. If you are using frozen sperm, you need to ask the sperm bank for directions on thawing. 2. Draw back on the syringe once with nothing but air, then push the air out again.
    [Show full text]
  • Screening for Sexually Transmitted Infection Pathogens in Semen Samples
    Peeling.qxd 3/31/2005 11:38 AM Page 73 CANADIAN STI BEST PRACTICE LABORATORY GUIDELINES Screening for sexually transmitted infection pathogens in semen samples RW Peeling PhD1, J Embree MD2 RW Peeling, J Embree. Screening for sexually transmitted Dépistage des MTS dans les échantillons de infection pathogens in semen samples. Can J Infect Dis Med sperme Microbiol 2005;16(2):73-76. La transmission des MTS (maladies transmissibles sexuellement) entre un The transmission of sexually transmitted infection (STI) pathogens donneur infecté et la receveuse d’un don de sperme lors d’une fécondation from an infected donor to the recipient of a semen donation in assisted artificielle peut entraîner non seulement une infection aiguë chez la mère conception may result not only in acute infection but also in long- et l’enfant, mais également des problèmes de fertilité à long terme. Le term reproductive complications or adverse outcomes of pregnancy, dépistage des bactéries Chlamydia trachomatis et Neisseria gonorrhoeae, en including infection of the offspring. Screening for bacterial STI cause dans les MTS, est fortement recommandé parce que ces agents pathogens, Chlamydia trachomatis and Neisseria gonorrhoeae is strongly pathogènes peuvent provoquer de graves complications au niveau de recommended because these pathogens can cause serious reproduc- l’appareil reproducteur des receveuses et infecter le bébé. Le dépistage de tive complications in the recipients of semen donations and infection ces agents pathogènes doit être effectué à l’aide des méthodes les plus in their offspring. Screening for these pathogens should be performed sensibles, comme les tests d’amplification de l’acide nucléique.
    [Show full text]
  • Assisted Reproduction in Developing Countries—Facing up to the Issues
    1 Progress, No. 63 No. 63 2003 UNDP/UNFPA/WHO/World Assisted reproduction in developing Bank Special Programme of Research, Development and countriesfacing up to the issues Research Training in Human Reproduction (HRP) For millions of couples around the Attitudes to assisted reproduction are Department of Reproductive world, the inability to have children is very much influenced by the specific Health and Research, a personal tragedy. For a significant cultural and social context. Manipula- World Health Organization, proportion of them, the private agony tion of sperm, oocytes and embryos Geneva, Switzerland is compounded by a social stigma, raises numerous questions to which which can have serious and far-reach- there are no easy answers, and which Launched by the World Health ing consequences. It is not surprising often arouse strong emotions. The Organization in 1972, the UNDP/ therefore that the demand for as- article on page 5 outlines some of the UNFPA/WHO/World Bank sisted reproductive technologies ethical and legal issues surrounding Special Programme of (ART) is growing in all regions. But the use of ART, which need to be Research, Development and how can the provision of these tech- discussed openly by all involved par- Research Training in Human nologieswhich are expensive and ties wherever such services are made Reproduction is a global have a success rate of less than available. programme of technical 30%be justified in developing coun- cooperation. It promotes, tries with poorly developed health In the 25 years since the birth of the coordinates, supports, conducts, services that are still struggling with first baby resulting from in vitro ferti- and evaluates research on infectious and chronic diseases, such lization, there have been tremendous reproductive health, with as tuberculosis, malaria and HIV/ advances in scientific techniques and particular reference to the needs AIDS? medical applications of ART.
    [Show full text]