Redalyc.DIVERSITY of SAPROTROPHIC ANAMORPHIC

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.DIVERSITY of SAPROTROPHIC ANAMORPHIC Darwiniana ISSN: 0011-6793 [email protected] Instituto de Botánica Darwinion Argentina Allegrucci, Natalia; Cabello, Marta N.; Arambarri, Angélica M. DIVERSITY OF SAPROTROPHIC ANAMORPHIC ASCOMYCETES FROM NATIVE FORESTS IN ARGENTINA: AN UPDATED REVIEW Darwiniana, vol. 47, núm. 1, 2009, pp. 108-124 Instituto de Botánica Darwinion Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=66912085007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative DARWINIANA 47(1): 108-124. 2009 ISSN 0011-6793 DIVERSITY OF SAPROTROPHIC ANAMORPHIC ASCOMYCETES FROM NATIVE FORESTS IN ARGENTINA: AN UPDATED REVIEW Natalia Allegrucci, Marta N. Cabello & Angélica M. Arambarri Instituto de Botánica Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 1900 La Plata, Provincia de Buenos Aires, Argentina; [email protected] (author for correspondence). Abstract. Allegrucci, N.; M. N. Cabello & A. M. Arambarri. 2009. Diversity of Saprotrophic Anamorphic Ascomy- cetes from native forests in Argentina: an updated review. Darwiniana 47(1): 108-124. Eight regions of native forests have been recognized in Argentina: Chaco forest, Misiones rain forest, Tucumán-Bolivia forest (Yunga), Andean-Patagonian forest, “Monte”, “Espinal”, fluvial forests of the Paraguay, Paraná and Uruguay rivers, and “Talares” in the Pampean region. We reviewed the available data concerning biodiversity of saprotrophic micro-fungi (anamorphic Ascomycota) in those native forests from Argentina, from the earliest collections, done by Spegazzini, to present. Among the above mentioned regions most studies on saprotrophic micro-fungi concentrates on the Andean-Pata- gonian forest, the fluvial forests of the Paraguay, Paraná and Uruguay rivers and the “Talares”, in the Pampean region. There are only a few records of fungal species in other native forests. No record of anamorphic species of Ascomycota was previously available for “Monte” forests. From a comprehen- sive bibliographic review, a total of 344 species were registered, of which 81 (23,5%) are new spe- cies.This work manifests the lack of explorations in important areas of the country, and demonstrates the need to increase those studies. Keywords. Anamorphic Ascomycota, Argentina, biodiversity, forests. Resumen. Allegrucci, N.; M. N. Cabello & A. M. Arambarri. 2009. Diversidad de Ascomycetes Anamórficos Sapró- trofos de los bosques nativos de Argentina: una revisión actual. Darwiniana 47(1):108-124. En Argentina se reconocen ocho regiones de bosques nativos: bosque Andino-Patagónico, Talares de la Región Pampeana, Parque Chaqueño, Selva Misionera, Selva Tucumano-Boliviana, Monte, Espi- nal y Bosques Pluviales de los ríos Paraguay, Paraná y Uruguay. El objetivo de este trabajo ha sido reu- nir y revisar la información sobre la biodiversidad de microhongos saprótrofos (Ascomycetes anamór- ficos) citados en los bosques nativos de Argentina, desde las primeras colecciones de Spegazzini hasta el presente. De las regiones anteriormente mencionadas los bosques Andino-Patagónicos, Bosques Pluviales de los ríos Paraguay, Paraná y Uruguay y recientemente los Talares de la provincia de Bue- nos Aires son aquellos donde se han realizado más exploraciones de microhongos saprótrofos. Por otro lado se obtuvieron muy pocos registros de especies fúngicas del resto de los bosques; para la región de Monte en particular no se han realizado hasta el presente estudios de hongos anamórficos, por lo cual no se cuenta con registros de especies anamórficas de Ascomycetes. Como resultado de una revi- sión bibliográfica exhaustiva, se registraron 344 especies, de las cuales 81 (23,5%) son nuevas espe- cies. Este trabajo pone de manifiesto la falta de exploraciones de áreas de importancia en nuestro país, y muestra la necesidad de incrementar estos estudios. Palabras clave. Argentina, Ascomycetes anamórficos, biodiversidad, bosques. Original recibido el 9 de mayo de 2008; aceptado el 14 de abril de 2009. 108 N. ALLEGRUCCI ET AL. Fungal diversity of native forests from Argentina INTRODUCTION CURRENT DATA ON ANAMORPHIC ASCOMYCOTA IN NATIVE FORESTS Fungi represent some of the most vital orga- nisms on the planet, not only due to the role they Table 1 shows the list of anamorphic Ascomy- perform in ecosystems, but also due to their in- cota species identified in each area of native fo- fluence on man and related activities (Mueller & rests from Argentina. Bills, 2004). However, scarce information on most species is available, and estimations about their number are likely to be significantly diffe- 1. Chaco forest rent. This need to obtain further data on the taxo- nomic biodiversity has greatly influenced evolu- No systematic study on these fungi has been tionary biology. An estimate of 1.5 million fun- carried out. For this reason, knowledge about my- gal species is currently used, though it has been cobiota in this area is poor; only 4 micromycete severely criticized. Data about geographical dis- species were identified. tributions, levels of endemicity and host specifi- city must be taken into account when the whole fungal diversity is evaluated (Muller & Schmit, 2. Misiones rain forest 2007). Functional properties of the ecosystem are sta- Lignolytic and cellulolytic Basidiomycota spe- bilized by fungal species diversity (Kennedy & cies could be found in this forest, though a few Gewin, 1997). In consequence, the response of anamorphic species were identified. These studies microbial biodiversity to certain environmental were done by Spegazzini (1898, 1908, 1919) who conditions is essential to understand the impact described 26 micro fungal species, of which 23 of anthropogenic action on its sustainability were found to be new species. (Turco et al., 1994). Despite the importance of fungi in the above mentioned processes, little attention has been 3. Tucumán-Bolivia forest (Yunga) paid to their role in ecosystems and conserva- tion of biodiversity (Hawksworth, 2001). Unli- Despite the vast diversity of vascular plants in ke agricultural crops, native forests as well as this region, as well as in the Misiones rain forest, soil and water are vital systems with autocon- anamorphic Ascomycota have not been studied servation and autoregulation capacity. They yet. The early collections were performed by Spe- present maximal complexity, covering a wide gazzini (1919) who described 4 species (3 then range of tangible and intangible benefits that described as new species). Catania & Romero are indispensable for life on this planet. Accor- (2006) described Hyphomycetes and Coelomyce- ding to the Forest Department, Ministry of tes species, associated with the bark and wood of Social Development, Argentina in 2002 (modi- Podocarpus paltatorei Pilg. fied by Frangi et al., 2004), eight major forest areas can be characterized in Argentina: 1) Chaco forest, 2) Misiones rain forest, 3) Tucu- 4. Andean Patagonian forest mán-Bolivia forest (Yunga), 4) Andean-Patago- nean forest, 5) “Monte”, 6) “Espinal”, 7) fluvial In these forests, 107 species have been identi- forests that are near the Paraguay, Paraná and fied in soil, dead leaves, ligneous remains, and Uruguay rivers, and 8) “Talares” in the Pampe- water courses. Identification revealed that 27 had an region. The aim of this work was to review been described as new species (Gamundí et al., the available information concerning biodiver- 1977; Godeas et al., 1977; Gamundí et al., 1979; sity of micro-fungi (anamorphic Ascomycota) Arambarri, 1981; Arambarri et al., 1981; Gamun- that live in native forests of Argentina, starting dí et al., 1983; Arambarri & Spinedi, 1984; Gode- from the early collections of Spegazzini to pre- as et al., 1985; Gamundí et al., 1987; Gamundí et sent. al., 1988; Arambarri & Godeas, 1994a and b; 109 DARWINIANA 47(1) 108-124. 2009 Godeas & Arambarri, 1993; Godeas & Aramba- 7. Fluvial forests close to Paraguay, Paraná rri, 1996). and Uruguay rivers Several systematic studies on Hyphomycetes were 5. “Monte” carried out in Río Santiago, province of Buenos Aires. In this area, 71 species isolated from floating deca- No anamorphic species have been identified in ying material were identified; 23 of them were then these forests which represent one of the most arid described as new species (Arambarri et al., 1987a, regions in Argentina. 1987b, 1987c, 1987d, 1989; Arambarri & Cabello, 1990; Cabello, et al., 1990; Cazau, et al., 1990; Aram- barri et al., 1991; Arambarri et al., 1992; Cazau et al., 6. “Espinal” 1993; Cabello et al., 1993; Cabello et al., 1998). Mycobiota of this region is poorly known, though several studies concerning anamorphic 8. “Talares” in the Pampean region fungi in Geoffroea decorticans (Gill. ex Hook. et Arn.) Burkart were carried out; 22 species In this area, 110 species present in soil and dead were identified, 3 of them were discovered to be leaves were identified (Cabello & Arambarri, new species (Bianchinotti, 1992, 1993, 1997, 2002; Elíades et al., 2004; Allegrucci et al., 2005). 1998). Also, Dematiocladium celtidis (Crous et al., 2005) Table 1. List of anamorphic Ascomycota species identified in each area of native forests of Argentina. Abreviations: 1, Chaco forest; 2, Misiones rain forest; 3, Tucumán-Bolivia forest (Yunga); 4, Andean-Patagonean forest; 5, “Monte”; 6, “Espinal”; 7,
Recommended publications
  • Microbial Community of Olives and Its Potential for Biological Control of Olive Anthracnose
    Microbial community of olives and its potential for biological control of olive anthracnose Gilda Conceição Raposo Preto Dissertation presented to the Agricultural School for obtaining a Master's degree in Biotechnological Engineering Supervised by Prof. Dr. Paula Cristina dos Santos Baptista Prof. Dr. José Alberto Pereira Bragança 2016 “The little I know I owe to my ignorance” Orville Mars II Acknowledgment First I would like to thank my supervisor, Professor Dr. Paula Baptista., for your willingness, patience, being a tireless person who always helped me in the best way. Thank you for always required the best of me, and thank you for all your advice and words that helped me in less good times. I will always be grateful. I would like to thank my co-supervisor, Professor Dr. José Alberto Pereira, to be always available for any questions, and all the available help. A very special thank you to Cynthia, for being always there to cheer me up, for all the help and all the advice that I will take with me forever. A big thank you to Gisela, Fátima, Teresa, Nuno, Diogo and Ricardo, because they are simply the best people he could have worked for all the advice, tips and words friends you have given me, thank you. I couldn’t fail to thank those who have always been present in the best and worst moments since the beginning, Diogo, Rui, Cláudia, Sara and Rui. You always believed in me and always gave me on the head when needed, thank you. To Vitor, for never given up and have always been present in the worst moments, for your patience, help and dedication, and because you know always how to cheer me up and make smille.
    [Show full text]
  • Generic Hyper-Diversity in Stachybotriaceae
    Persoonia 36, 2016: 156–246 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X691582 Generic hyper-diversity in Stachybotriaceae L. Lombard1, J. Houbraken1, C. Decock2, R.A. Samson1, M. Meijer1, M. Réblová3, J.Z. Groenewald1, P.W. Crous1,4,5,6 Key words Abstract The family Stachybotriaceae was recently introduced to include the genera Myrothecium, Peethambara and Stachybotrys. Members of this family include important plant and human pathogens, as well as several spe- biodegraders cies used in industrial and commercial applications as biodegraders and biocontrol agents. However, the generic generic concept boundaries in Stachybotriaceae are still poorly defined, as type material and sequence data are not readily avail- human and plant pathogens able for taxonomic studies. To address this issue, we performed multi-locus phylogenetic analyses using partial indoor mycobiota gene sequences of the 28S large subunit (LSU), the internal transcribed spacer regions and intervening 5.8S multi-gene phylogeny nrRNA (ITS), the RNA polymerase II second largest subunit (rpb2), calmodulin (cmdA), translation elongation species concept factor 1-alpha (tef1) and β-tubulin (tub2) for all available type and authentic strains. Supported by morphological taxonomy characters these data resolved 33 genera in the Stachybotriaceae. These included the nine already established genera Albosynnema, Alfaria, Didymostilbe, Myrothecium, Parasarcopodium, Peethambara, Septomyrothecium, Stachybotrys and Xepicula. At the same time the generic names Melanopsamma, Memnoniella and Virgatospora were resurrected. Phylogenetic inference further showed that both the genera Myrothecium and Stachybotrys are polyphyletic resulting in the introduction of 13 new genera with myrothecium-like morphology and eight new genera with stachybotrys-like morphology.
    [Show full text]
  • The Soil Fungal Community of Native Woodland in Andean Patagonian
    Forest Ecology and Management 461 (2020) 117955 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco The soil fungal community of native woodland in Andean Patagonian forest: T A case study considering experimental forest management and seasonal effects ⁎ Ayelen Inés Carrona,b, , Lucas Alejandro Garibaldic, Sebastian Marquezd, Sonia Fontenlaa,b a Laboratorio de Microbiología Aplicada y Biotecnología Vegetal y del Suelo, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue (UNComahue), Argentina b Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) UNComahue – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina c Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural (IRNAD), Sede Andina, Universidad Nacional de Río Negro (UNRN) and CONICET, Argentina d Instituto de Investigación en Biodiversidad y Medio Ambiente (INIBIOMA) UNComahue – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina ARTICLE INFO ABSTRACT Keywords: Forest management can alter soil fungal communities which are important in the regulation of biogeochemical Soil fungal classification cycles and other ecosystem services. The current challenge of sustainable management is that management be Diversity analysis carried out while preserving the bioecological aspects of ecosystems. Mixed Patagonian woodlands are subject to Shrubland management continuous disturbance (fire, wood
    [Show full text]
  • Discussions on Fungal Taxonomy and Nomenclature of Allergic Fungal Rhinosinusitis
    Romanian Journal of Rhinology, Vol. 3, No. 11, July - September 2013 LITERATURE REVIEW Discussions on fungal taxonomy and nomenclature of allergic fungal rhinosinusitis Florin-Dan Popescu Department of Allergology, “Nicolae Malaxa” Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania ABSTRACT There is a significant debate regarding the role of fungi in chronic rhinosinusitis and whether allergic fungal rhinosi- nusitis truly represents an allergic subtype. The diverse nomenclature and heterogeneous taxonomy of fungi involved in the etiopathogenesis of this entity is important to be discussed in order to clarify the organisms detected and in- volved in this complex disease. KEYWORDS: fungi, allergic fungal rhinosinusitis INTRODUCTION flammatory cascade in AFRS is a multifunctional event, requiring the simultaneous occurrence of IgE- Fungal diseases of the nose and sinuses include a mediated sensitivity, specific T-cell HLA receptor ex- diverse spectrum of disease1. Although confusion pression and exposure to specific fungi4. Early recog- exists regarding fungal rhinosinusitis (FRS) classifi- nition of AFRS may be facilitated by screening pa- cation, a commonly accepted system divides FRS into tients with polypoid chronic rhinosinusitis or CRS invasive and noninvasive diseases based on histo- with nasal polyps (CRSwNP) patients for serum spe- pathological evidence of tissue invasion by fungi. cific IgE to molds5. Such specific IgE antibodies are The noninvasive diseases include saprophytic fungal also detectable in nasal lavage fluid and eosinophilic infestation, fungal ball and fungus-related eosinophi- mucin. Sinus mucosa homogenates may be assessed lic FRS (EFRS) that includes allergic fungal rhinosi- for IgE localization by immunohistochemistry and nusitis (AFRS). for antigen-specific IgE to fungal antigens by fluores- cent enzyme immunoassay6.
    [Show full text]
  • The Holomorph of Parasarcopodium (Stachybotryaceae), Introducing P
    Phytotaxa 266 (4): 250–260 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.266.4.2 The holomorph of Parasarcopodium (Stachybotryaceae), introducing P. pandanicola sp. nov. on Pandanus sp. SAOWALUCK TIBPROMMA1,2,3,4,5, SARANYAPHAT BOONMEE2, NALIN N. WIJAYAWARDENE2,3,5, SAJEEWA S.N. MAHARACHCHIKUMBURA6, ERIC H. C. McKENZIE7, ALI H. BAHKALI8, E.B. GARETH JONES8, KEVIN D. HYDE1,2,3,4,5,8 & ITTHAYAKORN PROMPUTTHA9,* 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kun- ming 650201, Yunnan, People’s Republic of China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, P. R. China 5Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 6Department of Crop Sciences, College of Agricultural and Marine Sciences Sultan Qaboos University, P.O. Box 34, AlKhoud 123, Oman 7Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand 8Botany and Microbiology Department, College of Science, King Saud University, Riyadh, KSA 11442, Saudi Arabia 9Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand *Corresponding author: e-mail: [email protected] Abstract Collections of microfungi on Pandanus species (Pandanaceae) in Krabi, Thailand resulted in the discovery of a new species in the genus Parasarcopodium, producing both its sexual and asexual morphs.
    [Show full text]
  • ©2015 Stephen J. Miller ALL RIGHTS RESERVED
    ©2015 Stephen J. Miller ALL RIGHTS RESERVED USE OF TRADITIONAL AND METAGENOMIC METHODS TO STUDY FUNGAL DIVERSITY IN DOGWOOD AND SWITCHGRASS. By STEPHEN J MILLER A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Plant Biology Written under the direction of Dr. Ning Zhang And approved by _____________________________________ _____________________________________ _____________________________________ _____________________________________ _____________________________________ New Brunswick, New Jersey October 2015 ABSTRACT OF THE DISSERTATION USE OF TRADITIONAL AND METAGENOMIC METHODS TO STUDY FUNGAL DIVERSITY IN DOGWOOD AND SWITCHGRASS BY STEPHEN J MILLER Dissertation Director: Dr. Ning Zhang Fungi are the second largest kingdom of eukaryotic life, composed of diverse and ecologically important organisms with pivotal roles and functions, such as decomposers, pathogens, and mutualistic symbionts. Fungal endophyte studies have increased rapidly over the past decade, using traditional culturing or by utilizing Next Generation Sequencing (NGS) to recover fastidious or rare taxa. Despite increasing interest in fungal endophytes, there is still an enormous amount of ecological diversity that remains poorly understood. In this dissertation, I explore the fungal endophyte biodiversity associated within two plant hosts (Cornus L. species) and (Panicum virgatum L.), create a NGS pipeline, facilitating comparison between traditional culturing method and culture- independent metagenomic method. The diversity and functions of fungal endophytes inhabiting leaves of woody plants in the temperate region are not well understood. I explored the fungal biodiversity in native Cornus species of North American and Japan using traditional culturing ii techniques. Samples were collected from regions with similar climate and comparison of fungi was done using two years of collection data.
    [Show full text]
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • Metabolites from Nematophagous Fungi and Nematicidal Natural Products from Fungi As an Alternative for Biological Control
    Appl Microbiol Biotechnol (2016) 100:3799–3812 DOI 10.1007/s00253-015-7233-6 MINI-REVIEW Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes Thomas Degenkolb1 & Andreas Vilcinskas1,2 Received: 4 October 2015 /Revised: 29 November 2015 /Accepted: 2 December 2015 /Published online: 29 December 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Plant-parasitic nematodes are estimated to cause Keywords Phytoparasitic nematodes . Nematicides . global annual losses of more than US$ 100 billion. The num- Oligosporon-type antibiotics . Nematophagous fungi . ber of registered nematicides has declined substantially over Secondary metabolites . Biocontrol the last 25 years due to concerns about their non-specific mechanisms of action and hence their potential toxicity and likelihood to cause environmental damage. Environmentally Introduction beneficial and inexpensive alternatives to chemicals, which do not affect vertebrates, crops, and other non-target organisms, Nematodes as economically important crop pests are therefore urgently required. Nematophagous fungi are nat- ural antagonists of nematode parasites, and these offer an eco- Among more than 26,000 known species of nematodes, 8000 physiological source of novel biocontrol strategies. In this first are parasites of vertebrates (Hugot et al. 2001), whereas 4100 section of a two-part review article, we discuss 83 nematicidal are parasites of plants, mostly soil-borne root pathogens and non-nematicidal primary and secondary metabolites (Nicol et al. 2011). Approximately 100 species in this latter found in nematophagous ascomycetes. Some of these sub- group are considered economically important phytoparasites stances exhibit nematicidal activities, namely oligosporon, of crops.
    [Show full text]
  • Draft Pest Categorisation of Organisms Associated with Washed Ware Potatoes (Solanum Tuberosum) Imported from Other Australian States and Territories
    Nucleorhabdovirus Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories This page is intentionally left blank Contributing authors Bennington JMA Research Officer – Biosecurity and Regulation, Plant Biosecurity Hammond NE Research Officer – Biosecurity and Regulation, Plant Biosecurity Poole MC Research Officer – Biosecurity and Regulation, Plant Biosecurity Shan F Research Officer – Biosecurity and Regulation, Plant Biosecurity Wood CE Technical Officer – Biosecurity and Regulation, Plant Biosecurity Department of Agriculture and Food, Western Australia, December 2016 Document citation DAFWA 2016, Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories. Department of Agriculture and Food, Western Australia, South Perth. Copyright© Western Australian Agriculture Authority, 2016 Western Australian Government materials, including website pages, documents and online graphics, audio and video are protected by copyright law. Copyright of materials created by or for the Department of Agriculture and Food resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the provisions of the Copyright Act 1968, no part may be reproduced or reused for any commercial purposes whatsoever
    [Show full text]
  • Orbilia Fimicola, a Nematophagous Discomycete and Its Arthrobotrys Anamorph
    Mycologia, 86(3), 1994, pp. 451-453. ? 1994, by The New York Botanical Garden, Bronx, NY 10458-5126 Orbilia fimicola, a nematophagous discomycete and its Arthrobotrys anamorph Donald H. Pfister range of fungi observed. In field studies, Angel and Farlow Reference Library and Herbarium, Harvard Wicklow (1983), for example, showed the presence of University, Cambridge, Massachusetts 02138 coprophilous fungi for as long as 54 months. Deer dung was placed in a moist chamber 1 day after it was collected. The moist chamber was main? Abstract: Cultures derived from a collection of Orbilia tained at room temperature and in natural light. It fimicola produced an Arthrobotrys anamorph. This ana? underwent periodic drying. Cultures were derived from morph was identified as A. superba. A discomycete ascospores gathered by fastening ascomata to the in? agreeing closely with 0. fimicola was previously re?side of a petri plate lid which contained corn meal ported to be associated with a culture of A. superba agar (BBL). Germination of deposited ascospores was but no definitive connection was made. In the present observed through the bottom of the petri plate. Cul? study, traps were formed in the Arthrobotrys cultures tures were kept at room temperature in natural light. when nematodes were added. The hypothesis is put Ascomata from the moist chamber collection are de? forth that other Orbilia species might be predators posited of in FH. nematodes or invertebrates based on their ascospore The specimen of Orbilia fimicola was studied and and conidial form. compared with the original description. The mor? Key Words: Arthrobotrys, nematophagy, Orbilia phology of the Massachusetts collection agrees with the original description; diagnostic features are shown in Figs.
    [Show full text]
  • A New Species of <I>Emericella</I> from Tibet, China
    ISSN (print) 0093-4666 © 2013. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/125.131 Volume 125, pp. 131–138 July–September 2013 A new species of Emericella from Tibet, China Li-chun Zhang1, 2 a*, Juan Chen2 , Wen-han Lin1 & Shun-xing Guo2 b* 1 The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100193, People’s Republic of China. 2 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People’s Republic of China * Correspondence to: a [email protected] & b [email protected]* Abstract — Emericella miraensis sp. nov. is described and illustrated. It was isolated from the alpine plant Polygonum macrophyllum var. stenophyllum from Tibet, China, and is characterized by ascospores with star-shaped equatorial crests. The new species is distinguished from other Emericella species with stellate ascospores (e.g., E. variecolor, E. astellata) by its violet ascospores and verrucose spore ornamentation. ITS and β-tubulin sequence analyses also support E. miraensis as a new species. Key words —Aspergillus, endophytic fungi, phylogeny, taxonomy Introduction Berkeley (1857) established Emericella, a teleomorph genus associated with Aspergillus, for the type species E. variecolor Berk. & Broome (Geiser 2009, Peterson 2012). To date, 36 species have been described and recorded worldwide (Kirk et al. 2008). Emericella species are usually isolated from soil (Samson & Mouchacca 1974, Horie et al. 1989, 1990, 1996, 1998, 2000; Stchigel & Guarro 1997) but sometimes also from stored foods, herbal drugs, and grains or occasionally from hypersaline water (Zalar et al. 2008) or living plants (Berbee 2001, Thongkantha et al.
    [Show full text]
  • The Fungi Constitute a Major Eukary- Members of the Monophyletic Kingdom Fungi ( Fig
    American Journal of Botany 98(3): 426–438. 2011. T HE FUNGI: 1, 2, 3 … 5.1 MILLION SPECIES? 1 Meredith Blackwell 2 Department of Biological Sciences; Louisiana State University; Baton Rouge, Louisiana 70803 USA • Premise of the study: Fungi are major decomposers in certain ecosystems and essential associates of many organisms. They provide enzymes and drugs and serve as experimental organisms. In 1991, a landmark paper estimated that there are 1.5 million fungi on the Earth. Because only 70 000 fungi had been described at that time, the estimate has been the impetus to search for previously unknown fungi. Fungal habitats include soil, water, and organisms that may harbor large numbers of understudied fungi, estimated to outnumber plants by at least 6 to 1. More recent estimates based on high-throughput sequencing methods suggest that as many as 5.1 million fungal species exist. • Methods: Technological advances make it possible to apply molecular methods to develop a stable classifi cation and to dis- cover and identify fungal taxa. • Key results: Molecular methods have dramatically increased our knowledge of Fungi in less than 20 years, revealing a mono- phyletic kingdom and increased diversity among early-diverging lineages. Mycologists are making signifi cant advances in species discovery, but many fungi remain to be discovered. • Conclusions: Fungi are essential to the survival of many groups of organisms with which they form associations. They also attract attention as predators of invertebrate animals, pathogens of potatoes and rice and humans and bats, killers of frogs and crayfi sh, producers of secondary metabolites to lower cholesterol, and subjects of prize-winning research.
    [Show full text]