©2015 Stephen J. Miller ALL RIGHTS RESERVED
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
<I>Stilbosporaceae</I>
Persoonia 33, 2014: 61–82 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X684212 Stilbosporaceae resurrected: generic reclassification and speciation H. Voglmayr1, W.M. Jaklitsch1 Key words Abstract Following the abolishment of dual nomenclature, Stilbospora is recognised as having priority over Prosthecium. The type species of Stilbospora, S. macrosperma, is the correct name for P. ellipsosporum, the type Alnecium species of Prosthecium. The closely related genus Stegonsporium is maintained as distinct from Stilbospora based Calospora on molecular phylogeny, morphology and host range. Stilbospora longicornuta and S. orientalis are described as Calosporella new species from Carpinus betulus and C. orientalis, respectively. They differ from the closely related Stilbospora ITS macrosperma, which also occurs on Carpinus, by longer, tapering gelatinous ascospore appendages and by dis- LSU tinct LSU, ITS rDNA, rpb2 and tef1 sequences. The asexual morphs of Stilbospora macrosperma, S. longicornuta molecular phylogeny and S. orientalis are morphologically indistinguishable; the connection to their sexual morphs is demonstrated by Phaeodiaporthe morphology and DNA sequences of single spore cultures derived from both ascospores and conidia. Both morphs rpb2 of the three Stilbospora species on Carpinus are described and illustrated. Other species previously recognised in systematics Prosthecium, specifically P. acerophilum, P. galeatum and P. opalus, are determined to belong to and are formally tef1 transferred to Stegonsporium. Isolates previously recognised as Stegonsporium pyriforme (syn. Prosthecium pyri forme) are determined to consist of three phylogenetically distinct lineages by rpb2 and tef1 sequence data, two of which are described as new species (S. protopyriforme, S. pseudopyriforme). Stegonsporium pyriforme is lectotypified and this species and Stilbospora macrosperma are epitypified. -
Generic Hyper-Diversity in Stachybotriaceae
Persoonia 36, 2016: 156–246 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X691582 Generic hyper-diversity in Stachybotriaceae L. Lombard1, J. Houbraken1, C. Decock2, R.A. Samson1, M. Meijer1, M. Réblová3, J.Z. Groenewald1, P.W. Crous1,4,5,6 Key words Abstract The family Stachybotriaceae was recently introduced to include the genera Myrothecium, Peethambara and Stachybotrys. Members of this family include important plant and human pathogens, as well as several spe- biodegraders cies used in industrial and commercial applications as biodegraders and biocontrol agents. However, the generic generic concept boundaries in Stachybotriaceae are still poorly defined, as type material and sequence data are not readily avail- human and plant pathogens able for taxonomic studies. To address this issue, we performed multi-locus phylogenetic analyses using partial indoor mycobiota gene sequences of the 28S large subunit (LSU), the internal transcribed spacer regions and intervening 5.8S multi-gene phylogeny nrRNA (ITS), the RNA polymerase II second largest subunit (rpb2), calmodulin (cmdA), translation elongation species concept factor 1-alpha (tef1) and β-tubulin (tub2) for all available type and authentic strains. Supported by morphological taxonomy characters these data resolved 33 genera in the Stachybotriaceae. These included the nine already established genera Albosynnema, Alfaria, Didymostilbe, Myrothecium, Parasarcopodium, Peethambara, Septomyrothecium, Stachybotrys and Xepicula. At the same time the generic names Melanopsamma, Memnoniella and Virgatospora were resurrected. Phylogenetic inference further showed that both the genera Myrothecium and Stachybotrys are polyphyletic resulting in the introduction of 13 new genera with myrothecium-like morphology and eight new genera with stachybotrys-like morphology. -
University of California Santa Cruz Responding to An
UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes. -
Phylogeny and Morphology of Premilcurensis Gen
Phytotaxa 236 (1): 040–052 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.236.1.3 Phylogeny and morphology of Premilcurensis gen. nov. (Pleosporales) from stems of Senecio in Italy SAOWALUCK TIBPROMMA1,2,3,4,5, ITTHAYAKORN PROMPUTTHA6, RUNGTIWA PHOOKAMSAK1,2,3,4, SARANYAPHAT BOONMEE2, ERIO CAMPORESI7, JUN-BO YANG1,2, ALI H. BHAKALI8, ERIC H. C. MCKENZIE9 & KEVIN D. HYDE1,2,4,5,8 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, P. R. China 5Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 6Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 7A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo (RA), Italy 8Botany and Microbiology Department, College of Science, King Saud University, Riyadh, KSA 11442, Saudi Arabia 9Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand *Corresponding author: Dr. Itthayakorn Promputtha, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand. -
Leaf-Inhabiting Genera of the Gnomoniaceae, Diaporthales
Studies in Mycology 62 (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales M.V. Sogonov, L.A. Castlebury, A.Y. Rossman, L.C. Mejía and J.F. White CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales STUDIE S IN MYCOLOGY 62, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR Marianne de Boeij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A. -
Three Species of Neofusicoccum (Botryosphaeriaceae, Botryosphaeriales) Associated with Woody Plants from Southern China
Mycosphere 8(2): 797–808 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/2/4 Copyright © Guizhou Academy of Agricultural Sciences Three species of Neofusicoccum (Botryosphaeriaceae, Botryosphaeriales) associated with woody plants from southern China Zhang M1,2, Lin S1,2, He W2, * and Zhang Y1, * 1Institute of Microbiology, P.O. Box 61, Beijing Forestry University, Beijing 100083, PR China. 2Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, PR China. Zhang M, Lin S, He W, Zhang Y 2017 – Three species of Neofusicoccum (Botryosphaeriaceae, Botryosphaeriales) associated with woody plants from Southern China. Mycosphere 8(2), 797–808, Doi 10.5943/mycosphere/8/2/4 Abstract Two new species, namely N. sinense and N. illicii, collected from Guizhou and Guangxi provinces in China, are described and illustrated. Phylogenetic analysis based on combined ITS, tef1-α and TUB loci supported their separation from other reported species of Neofusicoccum. Morphologically, the relatively large conidia of N. illicii, which become 1–3-septate and pale yellow when aged, can be distinguishable from all other reported species of Neofusicoccum. Phylogenetically, N. sinense is closely related to N. brasiliense, N. grevilleae and N. kwambonambiense. The smaller conidia of N. sinense, which have lower L/W ratio and become 1– 2-septate when aged, differ from the other three species. Neofusicoccum mangiferae was isolated from the dieback symptoms of mango in Guangdong Province. Key words – Asia – endophytes – Morphology– Taxonomy Introduction Neofusicoccum Crous, Slippers & A.J.L. Phillips was introduced by Crous et al. (2006) for species that are morphologically similar to, but phylogenetically distinct from Botryosphaeria species, which are commonly associated with numerous woody hosts world-wide (Arx 1987, Phillips et al. -
(Botryosphaeriales) from Russia
Mycosphere 7 (7): 933–941 (2016) www.mycosphere.org ISSN 2077 7019 Article – special issue Doi 10.5943/mycosphere/si/1b/2 Copyright © Guizhou Academy of Agricultural Sciences Phaeobotryon negundinis sp. nov. (Botryosphaeriales) from Russia 1, 2 2, 3 4 4 5 Daranagama DA , Thambugala KM , Campino B , Alves A , Bulgakov TS , Phillips AJL6, Liu XZ1, Hyde KD2 1. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No 3 1st West Beichen Road, Chaoyang District, Beijing, 100101, People’s Republic of China. 2. Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3. Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, People’s Republic of China 4. Departamento de Biologia, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal. 5. Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Rostov region, Russia 6. University of Lisbon, Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016 Lisbon, Portugal Daranagama DA, Thambugala KM, Campino B, Alves A, Bulgakov TS, Phillips AJL, Liu XZ, Hyde KD 2016 – Phaeobotryon negundinis sp. nov. (Botryosphaeriales) from Russia. Mycosphere 7(7), 933–941, Doi 10.5943/mycosphere/si/1b/2 Abstract A new species of Phaeobotryon was collected from Acer negundo, Forsythia × intermedia and Ligustrum vulgare from European Russia. Morphological and phylogenetic analyses of combined ITS, β-tubulin and EF1-α sequence data revealed that these collections differ from all other species in the genus. Therefore it is introduced here as Phaeobotryon negundinis sp. -
Unusual New Chaetosphaeria Species from New
AtkinsonNew Zealand et al.—New Journal ofspecies Botany, of Chaetosphaeria2007, Vol. 45: 685–706 from New Zealand 685 0028–825X/07/4504–0685 © The Royal Society of New Zealand 2007 Unusual new Chaetosphaeria species from New Zealand: intrafamilial diversity and elucidations of the Chaetosphaeriaceae – Lasiosphaeriaceae relationship (Sordariomycetes, Ascomycotina) TONI J. ATKINSON they lack a peridial tomentum, and have asci with Department of Botany light-refractive, non-amyloid apical rings, without a University of Otago sub-apical globule. Despite the major differences in PO Box 56 spore shape and ascomal wall structure, analyses of Dunedin 9054, New Zealand the LSU and ITS regions of ribosomal DNA suggest [email protected] that genetically all three fall within Chaetosphaeria, near to C. raciborskii, and in a sister clade to the ANDREW N. MILLER type species C. innumera. The placement of these Illinois Natural History Survey species considerably expands current morphologi- Section for Biodiversity cal conceptions of Chaetosphaeria, particularly in Champaign, Illinois, USA terms of ascomal wall appearance and structure, and SABINE M. HUHNDORF confirms the existence of a scolecosporous group Department of Botany within the genus. In the search for morphological The Field Museum characters which mimic genetic relationships, this Chicago, USA study further elucidates the relationship between the Chaetosphaeriaceae and the Lasiosphaeriaceae. DAVID A. ORLOVICH Department of Botany Keywords Chaetosphaeria; Chaetosphaeriaceae; University of Otago Lasiosphaeriaceae; Sordariales; LSU; ITS; systemat- PO Box 56 ics; New Zealand Dunedin 9054, New Zealand Abstract Chaetosphaeria albida, C. bombycina, INTRODUCTION and C. metallicans are described and compared with Consecutive autumn collecting trips to the Oparara other Chaetosphaeria taxa using morphological and Basin, near Karamea, on the South Island’s west molecular methods. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
Two New Endophytic Species of Phyllosticta (Phyllostictaceae, Botryosphaeriales) from Southern China Article
Mycosphere 8(2): 1273–1288 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/2/11 Copyright © Guizhou Academy of Agricultural Sciences Two new endophytic species of Phyllosticta (Phyllostictaceae, Botryosphaeriales) from Southern China Lin S1, 2, Sun X3, He W1, Zhang Y2 1 Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, PR China 2 Institute of Microbiology, P.O. Box 61, Beijing Forestry University, Beijing 100083, PR China 3 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China Lin S, Sun X, He W, Zhang Y 2017 – Two new endophytic species of Phyllosticta (Phyllostictaceae, Botryosphaeriales) from Southern China. Mycosphere 8(2), 1273–1288, Doi 10.5943/mycosphere/8/2/11 Abstract Phyllosticta is an important genus known to cause various leaf spots and fruit diseases worldwide on a large range of hosts. Two new endophytic species of Phyllosticta (P. dendrobii and P. illicii) are described and illustrated from Dendrobium nobile and Illicium verum in China. Phylogenetic analysis based on combined ITS, LSU, tef1-a, ACT and GPDH loci supported their separation from other species of Phyllosticta. Morphologically, P. dendrobii is most comparable with P. aplectri, while the large-sized pycnidia of P. dendrobii differentiate it from P. aplectri. Members of Phyllosticta are first reported from Dendrobium and Illicium. Key words – Asia – Botryosphaeriales – leaf spots – Multilocus phylogeny Introduction Phyllosticta Pers. was introduced by Persoon (1818) and typified by P. convallariae Pers. Many species of Phyllosticta cause leaf and fruit spots on various host plants, such as P. -
Fungal Planet Description Sheets: 400–468
Persoonia 36, 2016: 316– 458 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X692185 Fungal Planet description sheets: 400–468 P.W. Crous1,2, M.J. Wingfield3, D.M. Richardson4, J.J. Le Roux4, D. Strasberg5, J. Edwards6, F. Roets7, V. Hubka8, P.W.J. Taylor9, M. Heykoop10, M.P. Martín11, G. Moreno10, D.A. Sutton12, N.P. Wiederhold12, C.W. Barnes13, J.R. Carlavilla10, J. Gené14, A. Giraldo1,2, V. Guarnaccia1, J. Guarro14, M. Hernández-Restrepo1,2, M. Kolařík15, J.L. Manjón10, I.G. Pascoe6, E.S. Popov16, M. Sandoval-Denis14, J.H.C. Woudenberg1, K. Acharya17, A.V. Alexandrova18, P. Alvarado19, R.N. Barbosa20, I.G. Baseia21, R.A. Blanchette22, T. Boekhout3, T.I. Burgess23, J.F. Cano-Lira14, A. Čmoková8, R.A. Dimitrov24, M.Yu. Dyakov18, M. Dueñas11, A.K. Dutta17, F. Esteve- Raventós10, A.G. Fedosova16, J. Fournier25, P. Gamboa26, D.E. Gouliamova27, T. Grebenc28, M. Groenewald1, B. Hanse29, G.E.St.J. Hardy23, B.W. Held22, Ž. Jurjević30, T. Kaewgrajang31, K.P.D. Latha32, L. Lombard1, J.J. Luangsa-ard33, P. Lysková34, N. Mallátová35, P. Manimohan32, A.N. Miller36, M. Mirabolfathy37, O.V. Morozova16, M. Obodai38, N.T. Oliveira20, M.E. Ordóñez39, E.C. Otto22, S. Paloi17, S.W. Peterson40, C. Phosri41, J. Roux3, W.A. Salazar 39, A. Sánchez10, G.A. Sarria42, H.-D. Shin43, B.D.B. Silva21, G.A. Silva20, M.Th. Smith1, C.M. Souza-Motta44, A.M. Stchigel14, M.M. Stoilova-Disheva27, M.A. Sulzbacher 45, M.T. Telleria11, C. Toapanta46, J.M. Traba47, N. -
A Modern Account of the Genus Phyllosticta
Plant Pathology & Quarantine — Doi 10.5943/ppq/3/2/4 A modern account of the genus Phyllosticta Wulandari NF1, 2*, Bhat DJ3 and To-anun C1* 1Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand. 2Microbiology Division, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong Science Centre, Cibinong, Indonesia. 3Formerly, Department of Botany, Goa University, Goa-403 206, India Wulandari NF, Bhat DJ, To-anun C 2013 – A modern account of the genus Phyllosticta. Plant Pathology & Quarantine 3(2), 145–159, doi 10.5943/ppq/3/2/4 Conidial states of Guignardia are in the genus Phyllosticta. In accordance to nomenclatural decisions of IBC Melbourne 2011, this paper validates species that were in Guignardia but are now accepted in Phyllosticta. The conclusions are arrived based on molecular analyses and morphological examination of holotypes of those species previously described in the genus Guignardia. Thirty-four species of Phyllosticta, viz. P. ampelicida (Engelm.) Aa, P. aristolochiicola R.G. Shivas, Y.P. Tan & Grice, P. bifrenariae O.L. Pereira, Glienke & Crous, P. braziliniae O.L. Pereira, Glienke & Crous, P. candeloflamma (J. Fröhlich & K.D. Hyde) Wulandari, comb. nov., P. capitalensis Henn., P. cavendishii M.H. Wong & Crous, P. citriasiana Wulandari, Gruyter & Crous, P. citribraziliensis C. Glienke & Crous, P. citricarpa (McAlpine) Aa, P. citrichinaensis X.H. Wang, K.D. Hyde & H.Y. Li, P. clematidis (Hsieh, Chen & Sivan.) Wulandari, comb. nov., P. cruenta (Fr.) J. Kickx f., P. cussoniae Cejp, P. ericarum Crous, P. garciniae (Hino & Katumoto) Motohashi, Tak. Kobay. & Yas. Ono., P. gaultheriae Aa, P.