Spectroscopic Properties of Asteroid Families

Total Page:16

File Type:pdf, Size:1020Kb

Spectroscopic Properties of Asteroid Families Cellino et al.: Spectroscopic Properties of Asteroids 633 Spectroscopic Properties of Asteroid Families A. Cellino Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Torino S. J. Bus University of Hawai‘i A. Doressoundiram Observatoire de Paris–Meudon D. Lazzaro Observatório Nacional, Rio de Janeiro Asteroid families have been the target of several dedicated campaigns of spectroscopic obser- vations during the last 10 years. Preliminary studies were mainly devoted to obtain a confirma- tion of the cosmochemical reliability of groupings identified by purely statistical analyses of the distributions of objects in the space of the orbital proper elements. These early attempts led to some spectacular confirmations of the common collisional origin of some families, like that associated with 4 Vesta. Subsequently, spectroscopic investigations started to be mostly focused on the issue of characterizing the overall mineralogical compositions of different families, at the same time looking for possible evidence of thermal differentiation of the original parent bodies and for possible evidence of ongoing space-weathering processes. Spectroscopy has also proven to be crucially needed to identify likely interlopers that can seriously affect the derived size distributions of families and the reconstruction of the original fields of ejection velocity of the fragments. At the same time, spectroscopic properties have been recognized as an invaluable tool to assess the real memberships of families mutually overlapping in the space of proper elements. Moreover, spectroscopic surveys have in general been found to be an excellent comple- ment to conventional family searches purely based on the identification of concentrations of objects in the proper-element space. A challenging unsolved problem comes from the fact that several families have been found to exhibit peculiar spectroscopic properties. This opens up new exciting possibilities for future developments in the interpretation of asteroid taxonomic classes. 1. INTRODUCTION some definite answer could come from spectroscopy. Spec- troscopy was able to find, through the observations per- In the early 1990s, the availability of large datasets of formed by Binzel and Xu (1993), the first spectacular confir- asteroid proper elements (Milani and Knezevic, 1990, 1992) mation of the collisional origin of a family, the one associ- and the simultaneous development of new statistical tech- ated with the large asteroid 4 Vesta (see Fig. 1). In that case, niques for the identification of asteroid families (Zappalà et a spectroscopic check was particularly suitable, due to the al., 1990; Bendjoya et al., 1991; Bendjoya, 1993; Zappalà fact that 4 Vesta was a unique (at that time) case of an object et al., 1994, 1995) promised to open new perspectives for belonging to the V taxonomic class, characterized by spec- the physical studies of these groupings, thought to be the troscopic properties similar to those of basaltic achondrites. direct outcomes of collisional events that occurred in the Subsequently, the activities of spectroscopic monitoring of asteroid belt. Previously, extensive physical studies of fami- families have been steadily increasing. From the point of lies had been prevented or seriously slowed down by strong view of spectroscopy, families provide a unique opportunity discrepancies in the family lists proposed by different au- to obtain information on the inner layers of their parent thors [see the review chapter by Valsecchi et al. (1989) in bodies. As a consequence, intense observational activity has the Asteroids II book], and by cosmochemical inconsisten- been devoted to family members in order to characterize cies in some of the proposed family memberships (Chap- their plausible mineralogical composition. At the same time, man et al., 1989). spectroscopy has been used as a very important tool for In that uncertain situation, the first important goal to be identifying random interlopers within families. These ob- pursued was to find some convincing evidence that the most jects share by chance the same orbital properties as “true” recently identified families could really be considered as family members, but they were not produced by the disrup- “true” collisionally originated groups, and not simply sta- tion of the family’s parent body. Interlopers can be identi- tistical flukes. In this respect, it was immediately clear that fied when they are characterized by spectroscopic properties 633 634 Asteroids III Spectroscopic properties can also be used to enlarge the nominal membership of some families, in cases in which 0.14 some peculiar spectral features can be found to characterize their members. In this way, objects sharing the same feature, but located beyond the nominal family borders, can be added 0.12 to the list of plausible members. A good example of this was given, again, by the quoted spectroscopic observations of the Vesta family by Binzel and Xu (1993). In particular, these 0.1 authors discovered a number of genetically related objects (belonging to the V taxonomic class) well beyond the nomi- nal borders of the family, all along the region separating the 0.08 Proper Eccentricity family from the 3:1 mean-motion resonance with Jupiter (Fig. 1). In this way, it was convincingly shown for the first time that large ejection velocities of the fragments, of the 0.06 order of several hundred meters per second, are possible in family-forming events. 2.3 2.35 2.4 2.45 2.5 Since then, several families have been extensively ob- Proper Semimajor Axis served, including the most important groupings identified by statistical investigations, like Koronis (Binzel et al., 1993), Eos (Doressoundiram et al., 1998a; Zappalà et al., 2000), 0.14 Eunomia (Lazzaro et al., 1999), Veritas (Di Martino et al., 1997), Hoffmeister (Migliorini et al., 1996), Flora (Florczac et al., 1998), Maria (Zappalà et al., 1997), Nysa/Polana 0.12 (Doressoundiram et al., 1998b; Cellino et al., 2001), and Hygiea (Mothé-Diniz et al., 2001). In addition to the above specific campaigns, a major observational contribution has 0.1 also been produced by the SMASS (Xu et al., 1995) and SMASSII (Bus, 1999) surveys. The infrared JHK spectro- photometry performed by Veeder et al. (1995) for members of the Eos, Koronis, and Maria families also deserves a men- Proper Inclination 0.08 tion in this context. The general results of these investigations, as well as a number of problems they were expected to solve, are briefly 0.06 summarized in the following sections. 2.3 2.35 2.4 2.45 2.5 2. STATE OF THE ART Proper Semimajor Axis A first point deserves mention here. Spectroscopy of as- Fig. 1. Plot of the asteroids located around the family of Vesta teroids has profited in recent years from improvements in in the space of the proper elements. Crosses indicate family mem- instrumental performance because of the availability of bers. Open circles identify the basaltic objects found by Binzel larger telescopes and increasingly better CCDs. Wide spec- and Xu (1993). Filled squares indicate the basaltic objects not tral windows have been sampled, with an extension of the belonging to the nominal family identified by the same authors traditional wavelength range of the classical UBVRI pho- in the region between the family and the border of the 3:1 mean- tometry toward longer wavelengths in the near-IR (see Bus motion resonance with Jupiter. et al., 2002). However, this does not mean that, on average, the wavelength coverage in single observing campaigns has been steadily increasing. In most cases, spectra have been incompatible with those of their family. For instance, an S- obtained for asteroid families in the interval from 5000 Å type object belonging to a family of C-type members should up to 9,500–10,000 Å. This means that, with respect to the be considered as a very likely interloper. The presence of older spectrophotometric investigations based on UBV fil- interlopers and their plausible numbers can be predicted in ters, something has been generally lost at the ultraviolet end purely statistical terms (Migliorini et al., 1995), but it is of the obtained spectra, whereas the longest wavelengths clear that direct observations can quantify not only how covered have been rarely beyond 1 µm. This is all because many nominal members are actual interlopers, but they can of the limitations of the instruments. Although this did not also identify which ones. In turn, this is very useful for in- prevent the observers from obtaining important results, as we vestigations concerning the physical properties of the fami- shall see, it is important to stress that in several cases family lies (size distributions, ejection velocity fields, etc.) de- investigations suffered from a less than ideal coverage of the scribed in Zappalà et al. (2002). spectra, mainly around the region of the silicate absorption Cellino et al.: Spectroscopic Properties of Asteroids 635 bands around 1 µm and beyond, or shortward of 5000 Å, an ing from a differentiated parent body has been found. A important region for objects belonging to the “primitive” possible exception might be a tentative association of the taxonomic classes (C, B, F, and G). Bellona and Phaeo groupings, whose members belong to In spite of the above limitations, spectroscopy of families the S and X taxonomic classes respectively. This possible has produced a wealth of useful data in recent years. A sum- association has been proposed by Bus (1999), but it is not mary of the current situation is given in Table 1, listing for firmly established, being at most a tentative conjecture ac- each family (ordered according to the proper semimajor cording to the same author. Another tentative candidate axis of the lowest-numbered member) the number of mem- might be the Lydia family, but in this case the evidence is bers observed spectroscopically, the identified interlopers also quite weak. (by purely spectroscopic means; this does not include inter- As a general rule, spectroscopic properties turn out to be lopers already known on the basis of taxonomic classifica- fairly homogeneous among members of the same family.
Recommended publications
  • 2016 Publication Year 2020-12-21T10:07:06Z
    Publication Year 2016 Acceptance in OA@INAF 2020-12-21T10:07:06Z Title Spectral characterization of V-type asteroids - II. A statistical analysis Authors IEVA, Simone; DOTTO, Elisabetta; Lazzaro, D.; PERNA, Davide; Fulvio, D.; et al. DOI 10.1093/mnras/stv2510 Handle http://hdl.handle.net/20.500.12386/29033 Journal MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Number 455 MNRAS 455, 2871–2888 (2016) doi:10.1093/mnras/stv2510 Spectral characterization of V-type asteroids – II. A statistical analysis S. Ieva,1‹ E. Dotto,1 D. Lazzaro,2 D. Perna,3 D. Fulvio4 and M. Fulchignoni3 1INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Roma), Italy 2Observatorio Nacional, Rua General Jose´ Cristino, 77 – Sao˜ Cristov´ ao,˜ Rio de Janeiro – RJ-20921-400, Brazil 3LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cite,´ 5 place Jules Janssen, F-92195 Meudon, France 4Departamento de Fis´ıca, Pontif´ıcia Universidade Catolica´ do Rio de Janeiro, Rua Marques de Sao˜ Vicente 225, Rio de Janeiro 22451-900, Brazil Downloaded from https://academic.oup.com/mnras/article/455/3/2871/2892629 by guest on 06 November 2020 Accepted 2015 October 23. Received 2015 October 22; in original form 2015 August 9 ABSTRACT In recent years, several small basaltic V-type asteroids have been identified all around the main belt. Most of them are members of the Vesta dynamical family, but an increasingly large number appear to have no link with it. The question that arises is whether all these basaltic objects do indeed come from Vesta.
    [Show full text]
  • Asteroid Family Ages. 2015. Icarus 257, 275-289
    Icarus 257 (2015) 275–289 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Asteroid family ages ⇑ Federica Spoto a,c, , Andrea Milani a, Zoran Knezˇevic´ b a Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy b Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia c SpaceDyS srl, Via Mario Giuntini 63, 56023 Navacchio di Cascina, Italy article info abstract Article history: A new family classification, based on a catalog of proper elements with 384,000 numbered asteroids Received 6 December 2014 and on new methods is available. For the 45 dynamical families with >250 members identified in this Revised 27 April 2015 classification, we present an attempt to obtain statistically significant ages: we succeeded in computing Accepted 30 April 2015 ages for 37 collisional families. Available online 14 May 2015 We used a rigorous method, including a least squares fit of the two sides of a V-shape plot in the proper semimajor axis, inverse diameter plane to determine the corresponding slopes, an advanced error model Keywords: for the uncertainties of asteroid diameters, an iterative outlier rejection scheme and quality control. The Asteroids best available Yarkovsky measurement was used to estimate a calibration of the Yarkovsky effect for each Asteroids, dynamics Impact processes family. The results are presented separately for the families originated in fragmentation or cratering events, for the young, compact families and for the truncated, one-sided families. For all the computed ages the corresponding uncertainties are provided, and the results are discussed and compared with the literature. The ages of several families have been estimated for the first time, in other cases the accu- racy has been improved.
    [Show full text]
  • The Solar System
    5 The Solar System R. Lynne Jones, Steven R. Chesley, Paul A. Abell, Michael E. Brown, Josef Durech,ˇ Yanga R. Fern´andez,Alan W. Harris, Matt J. Holman, Zeljkoˇ Ivezi´c,R. Jedicke, Mikko Kaasalainen, Nathan A. Kaib, Zoran Kneˇzevi´c,Andrea Milani, Alex Parker, Stephen T. Ridgway, David E. Trilling, Bojan Vrˇsnak LSST will provide huge advances in our knowledge of millions of astronomical objects “close to home’”– the small bodies in our Solar System. Previous studies of these small bodies have led to dramatic changes in our understanding of the process of planet formation and evolution, and the relationship between our Solar System and other systems. Beyond providing asteroid targets for space missions or igniting popular interest in observing a new comet or learning about a new distant icy dwarf planet, these small bodies also serve as large populations of “test particles,” recording the dynamical history of the giant planets, revealing the nature of the Solar System impactor population over time, and illustrating the size distributions of planetesimals, which were the building blocks of planets. In this chapter, a brief introduction to the different populations of small bodies in the Solar System (§ 5.1) is followed by a summary of the number of objects of each population that LSST is expected to find (§ 5.2). Some of the Solar System science that LSST will address is presented through the rest of the chapter, starting with the insights into planetary formation and evolution gained through the small body population orbital distributions (§ 5.3). The effects of collisional evolution in the Main Belt and Kuiper Belt are discussed in the next two sections, along with the implications for the determination of the size distribution in the Main Belt (§ 5.4) and possibilities for identifying wide binaries and understanding the environment in the early outer Solar System in § 5.5.
    [Show full text]
  • Observations from Orbiting Platforms 219
    Dotto et al.: Observations from Orbiting Platforms 219 Observations from Orbiting Platforms E. Dotto Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino M. A. Barucci Observatoire de Paris T. G. Müller Max-Planck-Institut für Extraterrestrische Physik and ISO Data Centre A. D. Storrs Towson University P. Tanga Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino and Observatoire de Nice Orbiting platforms provide the opportunity to observe asteroids without limitation by Earth’s atmosphere. Several Earth-orbiting observatories have been successfully operated in the last decade, obtaining unique results on asteroid physical properties. These include the high-resolu- tion mapping of the surface of 4 Vesta and the first spectra of asteroids in the far-infrared wave- length range. In the near future other space platforms and orbiting observatories are planned. Some of them are particularly promising for asteroid science and should considerably improve our knowledge of the dynamical and physical properties of asteroids. 1. INTRODUCTION 1800 asteroids. The results have been widely presented and discussed in the IRAS Minor Planet Survey (Tedesco et al., In the last few decades the use of space platforms has 1992) and the Supplemental IRAS Minor Planet Survey opened up new frontiers in the study of physical properties (Tedesco et al., 2002). This survey has been very important of asteroids by overcoming the limits imposed by Earth’s in the new assessment of the asteroid population: The aster- atmosphere and taking advantage of the use of new tech- oid taxonomy by Barucci et al. (1987), its recent extension nologies. (Fulchignoni et al., 2000), and an extended study of the size Earth-orbiting satellites have the advantage of observing distribution of main-belt asteroids (Cellino et al., 1991) are out of the terrestrial atmosphere; this allows them to be in just a few examples of the impact factor of this survey.
    [Show full text]
  • Color Study of Asteroid Families Within the MOVIS Catalog David Morate1,2, Javier Licandro1,2, Marcel Popescu1,2,3, and Julia De León1,2
    A&A 617, A72 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832780 & © ESO 2018 Astrophysics Color study of asteroid families within the MOVIS catalog David Morate1,2, Javier Licandro1,2, Marcel Popescu1,2,3, and Julia de León1,2 1 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Tenerife, Spain e-mail: [email protected] 2 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 3 Astronomical Institute of the Romanian Academy, 5 Cu¸titulde Argint, 040557 Bucharest, Romania Received 6 February 2018 / Accepted 13 March 2018 ABSTRACT The aim of this work is to study the compositional diversity of asteroid families based on their near-infrared colors, using the data within the MOVIS catalog. As of 2017, this catalog presents data for 53 436 asteroids observed in at least two near-infrared filters (Y, J, H, or Ks). Among these asteroids, we find information for 6299 belonging to collisional families with both Y J and J Ks colors defined. The work presented here complements the data from SDSS and NEOWISE, and allows a detailed description− of− the overall composition of asteroid families. We derived a near-infrared parameter, the ML∗, that allows us to distinguish between four generic compositions: two different primitive groups (P1 and P2), a rocky population, and basaltic asteroids. We conducted statistical tests comparing the families in the MOVIS catalog with the theoretical distributions derived from our ML∗ in order to classify them according to the above-mentioned groups. We also studied the background populations in order to check how similar they are to their associated families.
    [Show full text]
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 51: DECEMBER 13-19 Presented by The Earthrise Institute # 51 Authored by Alan Hale COMET OF THE WEEK: The Great Comet of 1680 Perihelion: 1680 December 18.49, q = 0.006 AU The Great Comet of 1680 over Rotterdam in The Netherlands, during late December 1680 as painted by the Dutch artist Lieve Verschuier. This particular comet was undoubtedly one of the brightest comets of the 17th Century, but it is also one of the most important comets in history from a scientific perspective, and perhaps even from the perspective of overall human history. While there were certainly plenty of superstitions attached to the comet’s appearance, the scientific investigations made of it were among the beginnings of the era in European history we now call The Enlightenment, and indeed, in a sense the Great Comet of 1680 can perhaps be considered as one of the sparks of that era. The significance began with the comet’s discovery, which was made on the morning of November 14, 1680, by a German astronomer residing in Coburg, Gottfried Kirch – the first comet ever to be discovered by means of a telescope. It was already around 4th magnitude at that time, and located near the star Regulus in the constellation Leo; from that point it traveled eastward and brightened rapidly, being closest to Earth (0.42 AU) on November 30. By that time it was a conspicuous naked-eye object with a tail 20 to 30 degrees long, and it remained visible for another week before disappearing into morning twilight.
    [Show full text]
  • An Anisotropic Distribution of Spin Vectors in Asteroid Families
    Astronomy & Astrophysics manuscript no. families c ESO 2018 August 25, 2018 An anisotropic distribution of spin vectors in asteroid families J. Hanuš1∗, M. Brož1, J. Durechˇ 1, B. D. Warner2, J. Brinsfield3, R. Durkee4, D. Higgins5,R.A.Koff6, J. Oey7, F. Pilcher8, R. Stephens9, L. P. Strabla10, Q. Ulisse10, and R. Girelli10 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 Via Capote Observatory, Thousand Oaks, CA 91320, USA 4 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA 5 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia 6 980 Antelope Drive West, Bennett, CO 80102, USA 7 Kingsgrove, NSW, Australia 8 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 9 Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA 10 Observatory of Bassano Bresciano, via San Michele 4, Bassano Bresciano (BS), Italy Received x-x-2013 / Accepted x-x-2013 ABSTRACT Context. Current amount of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes.
    [Show full text]
  • Asteroid Family Identification 613
    Bendjoya and Zappalà: Asteroid Family Identification 613 Asteroid Family Identification Ph. Bendjoya University of Nice V. Zappalà Astronomical Observatory of Torino Asteroid families have long been known to exist, although only recently has the availability of new reliable statistical techniques made it possible to identify a number of very “robust” groupings. These results have laid the foundation for modern physical studies of families, thought to be the direct result of energetic collisional events. A short summary of the current state of affairs in the field of family identification is given, including a list of the most reliable families currently known. Some likely future developments are also discussed. 1. INTRODUCTION calibrate new identification methods. According to the origi- nal papers published in the literature, Brouwer (1951) used The term “asteroid families” is historically linked to the a fairly subjective criterion to subdivide the Flora family name of the Japanese researcher Kiyotsugu Hirayama, who delineated by Hirayama. Arnold (1969) assumed that the was the first to use the concept of orbital proper elements to asteroids are dispersed in the proper-element space in a identify groupings of asteroids characterized by nearly iden- Poisson distribution. Lindblad and Southworth (1971) cali- tical orbits (Hirayama, 1918, 1928, 1933). In interpreting brated their method in such a way as to find good agree- these results, Hirayama made the hypothesis that such a ment with Brouwer’s results. Carusi and Massaro (1978) proximity could not be due to chance and proposed a com- adjusted their method in order to again find the classical mon origin for the members of these groupings.
    [Show full text]
  • 1950 Da, 205, 269 1979 Va, 230 1991 Ry16, 183 1992 Kd, 61 1992
    Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H. Burbine Index More Information 356 Index 1950 DA, 205, 269 single scattering, 142, 143, 144, 145 1979 VA, 230 visual Bond, 7 1991 RY16, 183 visual geometric, 7, 27, 28, 163, 185, 189, 190, 1992 KD, 61 191, 192, 192, 253 1992 QB1, 233, 234 Alexandra, 59 1993 FW, 234 altitude, 49 1994 JR1, 239, 275 Alvarez, Luis, 258 1999 JU3, 61 Alvarez, Walter, 258 1999 RL95, 183 amino acid, 81 1999 RQ36, 61 ammonia, 223, 301 2000 DP107, 274, 304 amoeboid olivine aggregate, 83 2000 GD65, 205 Amor, 251 2001 QR322, 232 Amor group, 251 2003 EH1, 107 Anacostia, 179 2007 PA8, 207 Anand, Viswanathan, 62 2008 TC3, 264, 265 Angelina, 175 2010 JL88, 205 angrite, 87, 101, 110, 126, 168 2010 TK7, 231 Annefrank, 274, 275, 289 2011 QF99, 232 Antarctic Search for Meteorites (ANSMET), 71 2012 DA14, 108 Antarctica, 69–71 2012 VP113, 233, 244 aphelion, 30, 251 2013 TX68, 64 APL, 275, 292 2014 AA, 264, 265 Apohele group, 251 2014 RC, 205 Apollo, 179, 180, 251 Apollo group, 230, 251 absorption band, 135–6, 137–40, 145–50, Apollo mission, 129, 262, 299 163, 184 Apophis, 20, 269, 270 acapulcoite/ lodranite, 87, 90, 103, 110, 168, 285 Aquitania, 179 Achilles, 232 Arecibo Observatory, 206 achondrite, 84, 86, 116, 187 Aristarchus, 29 primitive, 84, 86, 103–4, 287 Asporina, 177 Adamcarolla, 62 asteroid chronology function, 262 Adeona family, 198 Asteroid Zoo, 54 Aeternitas, 177 Astraea, 53 Agnia family, 170, 198 Astronautica, 61 AKARI satellite, 192 Aten, 251 alabandite, 76, 101 Aten group, 251 Alauda family, 198 Atira, 251 albedo, 7, 21, 27, 185–6 Atira group, 251 Bond, 7, 8, 9, 28, 189 atmosphere, 1, 3, 8, 43, 66, 68, 265 geometric, 7 A- type, 163, 165, 167, 169, 170, 177–8, 192 356 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H.
    [Show full text]
  • The Three-Dimensional Structure of the Zodiacal Dust Bands
    ICARUS 127, 461±484 (1997) ARTICLE NO. IS975704 The Three-Dimensional Structure of the Zodiacal Dust Bands William T. Reach Universities Space Research Association and NASA Goddard Space Flight Center, Code 685, Greenbelt, Maryland 20771, and Institut d'Astrophysique Spatiale, BaÃtiment 121, Universite Paris XI, 91405 Orsay Cedex, France E-mail: [email protected] Bryan A. Franz General Sciences Corporation, NASA Goddard Space Flight Center, Code 970.1, Greenbelt, Maryland 20771 and Janet L. Weiland Hughes STX, NASA Goddard Space Flight Center, Code 685.9, Greenbelt, Maryland 20771 Received July 18, 1996; revised January 2, 1997 model, the dust is distributed among the asteroid family mem- Using observations of the infrared sky brightness by the bers with the same distributions of proper orbital inclination Cosmic Background Explorer (COBE)1 Diffuse Infrared Back- and semimajor axis but a random ascending node. In the mi- ground Experiment (DIRBE) and Infrared Astronomical Satel- grating model, particles are presumed to be under the in¯uence lite (IRAS), we have created maps of the surface brightness of Poynting±Robertson drag, so that they are distributed Fourier-®ltered to suppress the smallest (, 18) structures and throughout the inner Solar System. The migrating model is the large-scale background (.158). Dust bands associated with better able to match the parallactic variation of dust-band lati- the Themis, Koronis, and Eos families are readily evident. A tude as well as the 12- to 60-mm spectrum of the dust bands. dust band associated with the Maria family is also present. The The annual brightness variations can be explained only by the parallactic distances to the emitting regions of the Koronis, migrating model.
    [Show full text]
  • Aas 14-267 Design of End-To-End Trojan Asteroid
    AAS 14-267 DESIGN OF END-TO-END TROJAN ASTEROID RENDEZVOUS TOURS INCORPORATING POTENTIAL SCIENTIFIC VALUE Jeffrey Stuart,∗ Kathleen Howell,y and Roby Wilsonz The Sun-Jupiter Trojan asteroids are celestial bodies of great scientific interest as well as potential natural assets offering mineral resources for long-term human exploration of the solar system. Previous investigations have addressed the auto- mated design of tours within the asteroid swarm and the transition of prospective tours to higher-fidelity, end-to-end trajectories. The current development incorpo- rates the route-finding Ant Colony Optimization (ACO) algorithm into the auto- mated tour generation procedure. Furthermore, the potential scientific merit of the target asteroids is incorporated such that encounters with higher value asteroids are preferentially incorporated during sequence creation. INTRODUCTION Near Earth Objects (NEOs) are currently under consideration for manned sample return mis- sions,1 while a recent NASA feasibility assessment concludes that a mission to the Trojan asteroids can be accomplished at a projected cost of less than $900M in fiscal year 2015 dollars.2 Tour concepts within asteroid swarms allow for a broad sampling of interesting target bodies either for scientific investigation or as potential resources to support deep-space human missions. However, the multitude of asteroids within the swarms necessitates the use of automated design algorithms if a large number of potential mission options are to be surveyed. Previously, a process to automatically and rapidly generate sample tours within the Sun-Jupiter L4 Trojan asteroid swarm with a mini- mum of human interaction has been developed.3 This scheme also enables the automated transition of tours of interest into fully optimized, end-to-end trajectories using a variety of electrical power sources.4,5 This investigation extends the automated algorithm to use ant colony optimization, a heuristic search algorithm, while simultaneously incorporating a relative ‘scientific importance’ ranking into tour construction and analysis.
    [Show full text]
  • Origin of the Near-Earth Asteroid Phaethon and the Geminids Meteor Shower
    University of Central Florida STARS Faculty Bibliography 2010s Faculty Bibliography 1-1-2010 Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower J. de León H. Campins University of Central Florida K. Tsiganis A. Morbidelli J. Licandro Find similar works at: https://stars.library.ucf.edu/facultybib2010 University of Central Florida Libraries http://library.ucf.edu This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation de León, J.; Campins, H.; Tsiganis, K.; Morbidelli, A.; and Licandro, J., "Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower" (2010). Faculty Bibliography 2010s. 92. https://stars.library.ucf.edu/facultybib2010/92 A&A 513, A26 (2010) Astronomy DOI: 10.1051/0004-6361/200913609 & c ESO 2010 Astrophysics Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower J. de León1,H.Campins2,K.Tsiganis3, A. Morbidelli4, and J. Licandro5,6 1 Instituto de Astrofísica de Andalucía-CSIC, Camino Bajo de Huétor 50, 18008 Granada, Spain e-mail: [email protected] 2 University of Central Florida, PO Box 162385, Orlando, FL 32816.2385, USA e-mail: [email protected] 3 Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece 4 Departement Casiopée: Universite de Nice - Sophia Antipolis, Observatoire de la Cˆote d’Azur, CNRS 4, 06304 Nice, France 5 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Spain 6 Department of Astrophysics, University of La Laguna, 38205 La Laguna, Tenerife, Spain Received 5 November 2009 / Accepted 26 January 2010 ABSTRACT Aims.
    [Show full text]