Erythrocruorin: a Possible Model (Proteins/Steady State/Photochemical Efficiency) G

Total Page:16

File Type:pdf, Size:1020Kb

Erythrocruorin: a Possible Model (Proteins/Steady State/Photochemical Efficiency) G Proc. Nat. Acad. Sci. USA Vol. 72, No. 11, pp. 4313-4316, November 1975 Biochemistry Kinetics of binding of carbon monoxide to Lumbricus erythrocruorin: A possible model (proteins/steady state/photochemical efficiency) G. M. GIACOMETTI, A. FOCESI*, B. GIARDINA, M. BRUNORI, AND J. WYMAN C.N.R. Center of Molecular Biology, Institutes of Chemistry and Biochemistry, Faculty of Medicine of the University of Rome and the Regina Elena Institute for Cancer Research, Rome, Italy Contributed by J. Wynan, August 18,1975 ABSTRACT This paper represents a kinetic study of the A millimolar stock solution of carbon monoxide was pre- binding of carbon monoxide by Lumbricus erythrocruorin. pared by equilibrating degassed distilled water with gaseous Observations on the quantum yield and the relaxation of the CO at 1 atm (101.3 kPa) of partial pressure at 200. system both to equilibrium and to the steady state realized in The intensity of the photodissociating light, both in the the presence of constant illumination under various condi- flash and in the steady-state (continuous light) experiments, tions are reported. The results, besides indicating the exis- filters. The photolysis tence of at east two types of binding sites, give indications was controlled by the use of neutral as to the behavior of a complex polyfunctional molecule, apparatus was the same as that previously described (4). such as an enzyme, working under steady-state conditions. Kinetic experiments were analyzed with a Hewlett-Pack- ard model 9830 A desk computer. Photochemical efficiency This paper is a sequel to an earlier one on the binding of car- was determined by the "pulse method" previously described bon monoxide by erythrocruorin, the giant respiratory pro- (5). tein of Lumbricus, under steady-state conditions produced by a photodissociating light (1). Both papers are relevant to RESULTS an understanding of the mode of functioning of an enzyme, 1. Flash photolysis experiments for all enzymes operate under steady-state rather than equi- The relaxation after an intense flash, which completely dis- librium conditions, and together the two papers provide a sociates the ligand, was studied under two sets of experimen- touchstone for judging certain of the ideas put forward in a tal conditions: recent communication in these PROCEEDINGS (2). of the protein was com- es- (a) When the initial saturation The results of the earlier paper (1), which represent an plete, Y = 1. In these experiments the range of total concen- sentially static approach to the problem, may be summa- tration of CO extended from 20 IMM to 100 MM, and the con- rized as follows: centration of free CO can be regarded as having been con- (i) The spectral measurements show the absence of any stant throughout the relaxation process, which was approxi- exact isosbestic points in the binding of CO to deoxyerythro- mately first-order in CO concentration. cruorin such as would be expected in the case of a simple (b) When the initial saturation of the protein was low, Y process. 0.2. Here the concentration of free CO decreases during (ii) The shape of the binding curve (or Hill plot) is pro- relaxation, which now appeared as pseudo first order in sites foundly modified under the steady-state conditions pro- concentration. duced by the stationary light, the cooperativity being re- In case a the relaxation was found to be strongly biphasic, duced. being partly fast and partly slow. In case b it was monophas- (Mi) The quantum yield, as determined by the "pulse ic, being all fast and similar to the fast phase observed in method," varies, though not greatly, with the saturation of case a. Both sets of experiments were analyzed in term of a the molecule with CO, passing through a maximum in the second-order rate constant 1'. The results, in terms of 1' as a middle range of saturations. All these observations were function of the percent reaction, are shown in Fig. 1. From shown to be phenomenologically consistent. a the reaction to an analysis of the data it appears that in case The present study, which represents a kinetic approach was about 70% slow, with 1' = (1.9 4 0.6) X 105 M-1 sec-1, the same problem, describes observations on the quantum and 30% fast with 1' = (1.4 I 0.4) X 106. In case b, where yield and the relaxation of the system both to the steady the process was all fast, 1' = 1.5 X 106 M-1 sec-1, the same state and to equilibrium under various conditions. as in case a. MATERIALS AND METHODS 2. Action spectra Earthworm erythrocruorin was prepared as previously de- Action spectra for the fast and slow phases of the reaction scribed (3) and kept at 4°. All experiments were made in 0.2 calculated from the oscillograph traces under conditions a M phosphate buffer at pH 7.4, where the protein is stable in are shown in Fig. 2 and are consistent with the lack of a true its highest degree of aggregation (molecular weight 3.3 X isosbestic point reported earlier (1). From Fig. 2 it is clear 106, corresponding to about 140 hemes per molecule). For that the determination of the relative amounts of fast and each preparation the state of aggregation of the protein was slow components must depend on the observation wave- checked by ultracentrifuge analysis. Protein concentrations length. The figures, 70 and 30%, given above were based on were determined spectrophotometrically using EmM = 113.6 measurements far removed from the point of crossing of the at X = 430 nm for the deoxygenated derivative (3). curves in Fig. 2. It was found that if the intensity of the flash was gradually decreased so that only partial dissociation was * Fellow of Fundacao de Ampero a Pesquisa de Estado de S. Paulo achieved, the results, both as to the relative amounts of the (Brasil). Proc. quimica 73/1178. two components and their rate constants, were unaffected. 4313 Downloaded by guest on September 29, 2021 4314 Biochemistry: Giacometti et al. Proc. Nat. Acad. Sci. USA 72 (1975) A t(B) AAAA 0.5k 10 F A 0 .- *n3 4) x) 2 -0 wA 0 (A) 0 o L 0.5 0 20 40 60 80 100 410 420 430 440 % REACTION (nm) FIG. 1. Dependence of the apparent second-order rate constant 1' for CO combination (ordinates) on the percent reaction V (ab- FIG. 2. Kinetic difference spectra for the fast and slow compo- scissas) as obtained from flash photolysis experiments on CO- nents in the combination of CO with erythrocruorin. Insert shows erythrocruorin starting from: (A) fully saturated erythrocruorin, the oscilloscope trace of a flash photolysis experiment performed CO concentration = 25 mM and protein concentration = 2.8 mM at X = 426.5 nm (see arrow), where the two reactions have opposite (heme); (B) partially saturated erythrocruorin (Y = 0.2), CO con- absorbance changes. Other conditions as in legend of Fig. 1. centration = 0.3 mM and protein concentration = 1.45 mM (heme). Conditions: pH 7.4, 0.2 M phosphate buffer, and about 200. X = 436 nm. (A Y _ 0.2). If the photodissociation is achieved with a brief pulse of light (duration n 100 ,usec), the time course of CO combination in the dark is biphasic, with a ratio of fast to 3. Relaxation kinetics: light-to-dark transition slow sites equal to 30/70 at X = 436 nm (as given in Section A continuous light incident on the protein solution fully sat- 1). If illumination is maintained for a longer time (more urated with carbon monoxide generates a steady state with Y than 1 sec), the recombination in the dark is monophasic and < 1. (1, 6). The relaxation from the steady state in the light corresponds to the slow kinetic component only. When the to equilibrium in the dark when the light was suddenly pulse of light is continued for a finite, intermediate time (in turned off was carefully examined. Under all conditions ex- Fig. 4 it lasted 60 msec) and a steady state is not reached, the plored, the approach to equilibrium was found to corre- recombination in the dark still shows a biphasic behavior, as spond to a simple relaxation process, with a second-order evident from Fig. 4. combination rate constant identical to that observed for the slow phase as reported above (see Fig. 3). This finding indi- 4. Relaxation kinetics: dark-to-light transition cates that the faster sites, which are preferentially populated The opposite relaxation, i.e., the approach to the steady state at low saturation, are the ones that are largely ligand-bound in the light starting from the dark, was also analyzed. Under under steady-state conditions at fairly high saturations, and therefore are not observed. If this is the case, one should expect an enhancement of the relative amount of the fast component by flashing off the ligand still bound under the steady illumination. Such expectation was confirmed by the experiment summarized in Table 1. This also revealed a 2-fold increase in the rate constant of the slow process, which was reduced in ampli- tude, but still present under these conditions (Table 1). Fig. 4 reports the results of an experiment that confirms 0) the findings given above. A solution of fully saturated a, erythrocruorin (Y = 1.0) was subjected to a pulse of light sufficient to photodissociate only a fraction of the total sites Table 1. Enhancement of amount of fast component under stationary illumination* l'(slow) l'(fast) 10-5 10-5 0 x x 0 20 40 60 80 (M-1 sec-') (M-' sec1-) % Slow [CO + HEME] M Flash from the dark 1.9 12 69 FIG.
Recommended publications
  • Families and the Structural Relatedness Among Globular Proteins
    Protein Science (1993), 2, 884-899. Cambridge University Press. Printed in the USA. Copyright 0 1993 The Protein Society -~~ ~~~~ ~ Families and the structural relatedness among globular proteins DAVID P. YEE AND KEN A. DILL Department of Pharmaceutical Chemistry, University of California, San Francisco, California94143-1204 (RECEIVEDJanuary 6, 1993; REVISEDMANUSCRIPT RECEIVED February 18, 1993) Abstract Protein structures come in families. Are families “closely knit” or “loosely knit” entities? We describe a mea- sure of relatedness among polymer conformations. Based on weighted distance maps, this measure differs from existing measures mainly in two respects: (1) it is computationally fast, and (2) it can compare any two proteins, regardless of their relative chain lengths or degree of similarity. It does not require finding relative alignments. The measure is used here to determine the dissimilarities between all 12,403 possible pairs of 158 diverse protein structures from the Brookhaven Protein Data Bank (PDB). Combined with minimal spanning trees and hier- archical clustering methods,this measure is used to define structural families. It is also useful for rapidly searching a dataset of protein structures for specific substructural motifs.By using an analogy to distributions of Euclid- ean distances, we find that protein families are not tightly knit entities. Keywords: protein family; relatedness; structural comparison; substructure searches Pioneering work over the past 20 years has shown that positions after superposition. RMS is a useful distance proteins fall into families of related structures (Levitt & metric for comparingstructures that arenearly identical: Chothia, 1976; Richardson, 1981; Richardson & Richard- for example, when refining or comparing structures ob- son, 1989; Chothia & Finkelstein, 1990).
    [Show full text]
  • The Effects of Temperature on Hemoglobin in Capitella Teleta
    THE EFFECTS OF TEMPERATURE ON HEMOGLOBIN IN CAPITELLA TELETA by Alexander M. Barclay A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Marine Studies Summer 2013 c 2013 Alexander M. Barclay All Rights Reserved THE EFFECTS OF TEMPERATURE ON HEMOGLOBIN IN CAPITELLA TELETA by Alexander M. Barclay Approved: Adam G. Marsh, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: Mark A. Moline, Ph.D. Director of the School of Marine Science and Policy Approved: Nancy M. Targett, Ph.D. Dean of the College of Earth, Ocean, and Environment Approved: James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education ACKNOWLEDGMENTS I extend my sincere gratitude to the individuals that either contributed to the execution of my thesis project or to my experience here at the University of Delaware. I would like to give special thanks to my adviser, Adam Marsh, who afforded me an opportunity that exceeded all of my prior expectations. Adam will say that I worked very independently and did not require much guidance, but he served as an inspiration and a role model for me during my studies. Adam sincerely cares for each of his students and takes the time and thought to tailor his research program to fit each person's interests. The reason that I initially chose to work in Adam's lab was that he expressed a genuine excitement for science and for his lifes work. His enthusiasm resonated with me and helped me to find my own exciting path in science.
    [Show full text]
  • Prediction of the Amount of Secondary Structure in a Globular Protein from Its Aminoacid Compositionj (Helix/Pl-Sheet/Turns) W
    Proc. Nat. Acad. Sci. USA Vol. 70, No. 10, pp. 2809-2813, October 1973 Prediction of the Amount of Secondary Structure in a Globular Protein from Its Aminoacid Compositionj (helix/pl-sheet/turns) W. R. KRIGBAUM AND SARA PARKEY KNLTTTON Gross Chemical Laboratory, Duke University, Durham, North Carolina 27706 Communicated by Walter Gordy, June 22, 1973 ABSTRACT Multiple regression is used to obtain rela- so reference was made to the published crystal structures tionships for predicting the amount of secondary structure where ambiguities arose. Regions not included in the above in a protein molecule from a knowledge of its aminoacid composition. We tested these relations using 18 proteins of categories were termed coil. Assignments of secondary struc- known structure, but omitting the protein to be predicted. tural regions appear in Table 1. Since residues may be assipned Independent predictions were made for the two sub- to more than one category (e.g., the last residues of a helical chains of hemoglobin and insulin. The average errors for region and the first ones of a turn), then percentages do not these 20 chains or subchains are: helix ± 7.1%, p-sheet necessarily add up to 100% for any protein. ± 6.9%, turn ± 4.2%, and coil ± 5.7%. A second set of rela- tions yielding somewhat inferior predictions is given for We recognize at the outset that this data base contains the case in which Asp and Asn, and Glu and Gln, are not errors of at least two types. First, there are some remaining differentiated. Predictions are also listed for 15 proteins uncertainties in the primary structures.
    [Show full text]
  • 82182065.Pdf
    A42 HEMOGLOBINHIEMOGLOBIN AND MYOGLODINISYOGLOBIN M-Poe107 MPos108 LOW TEMPERATURE RECOMBINATION OF MbO, USING FOURIER TIME-RESOLVED X-RAY ABSORPTION SPECTROSCOPY ON A 5 ps TRANSFORM INFRARED SPECTROSCOPY. ((M. Halterman, L. M. Miller, and TIMESCALE. ((M.R. Chance, M.D. Wort, L.M. Miller, E.M. Scheuring, A. Xie, M. R. Chance)) Albert Einstein College of Medicine., Bronx, NY 10461. D.E. Sidelinger)) Albert Einstein Col of Med., Bronx, NY 10461 The binding of oxygen to hemoglobin and myoglobin is one of the most X-ray absorption spectroscopy (XAS) is unmatched in measuring metal-ligand important reactions in human cells. Essential to understanding the binding distances in solution while the dynamics of evolving systems is a subject of process is the study of intermediate states. To date, the intermediate states intense interest in biophysics currently. We report the design and successful involved in carbon monoxide binding are much better understood than those testing of a system for collecting time-resolved XAS data on a 5ps timescale. of oxygen binding. However, recent studies have shown that 02 and CO have The system is based on the use of a germanium energy resolving detector and significantly different rebinding intermediates (M. Chance, et. al., Biochemistry, a fast multichannel scaling (FMS) board, both from Canberra Ind. The output 29, 1990, p. 5537). Vibrational spectroscopic methods have indicated several of a single Ge channel is amplified and connected to the FMS board. The data bands for MbO2 ligand stretching modes (Potter, et. al., Biochemistry, 26, acquisition sequence is controlled by a digital delay generator, which also 1987, p.
    [Show full text]
  • Edinburgh Research Explorer
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Edinburgh Research Explorer Edinburgh Research Explorer Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus Citation for published version: Owen, J, Hedley, BA, Svendsen, C, Wren, J, Jonker, MJ, Hankard, PK, Lister, LJ, Stürzenbaum, SR, Morgan, AJ, Spurgeon, DJ, Blaxter, ML & Kille, P 2008, 'Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus' BMC Genomics, vol. 9, no. 266, pp. -. DOI: 10.1186/1471-2164-9-266 Digital Object Identifier (DOI): 10.1186/1471-2164-9-266 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: BMC Genomics Publisher Rights Statement: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • From Protein Corona to Colloidal Self-Assembly
    From Protein Corona to Colloidal Self-Assembly: The Importance of Protein Size in Protein-Nanoparticle Interactions Laurent Marichal, Jéril Degrouard, Anouchka Gatin, Nolwenn Raffray, Jean-Christophe Aude, Yves Boulard, Sophie Combet, Fabrice Cousin, Stéphane Hourdez, Jean Mary, et al. To cite this version: Laurent Marichal, Jéril Degrouard, Anouchka Gatin, Nolwenn Raffray, Jean-Christophe Aude, et al.. From Protein Corona to Colloidal Self-Assembly: The Importance of Protein Size in Protein-Nanoparticle Interactions. Langmuir, American Chemical Society, 2020, 36, pp.8218-8230. 10.1021/acs.langmuir.0c01334. cea-02883393 HAL Id: cea-02883393 https://hal-cea.archives-ouvertes.fr/cea-02883393 Submitted on 29 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. From Protein Corona to Colloidal Self-Assembly: The Importance of Protein Size in Protein- Nanoparticle Interactions Laurent Marichal a,b *, Jéril Degrouard c, Anouchka Gatin a, Nolwenn Raffray a, Jean-Christophe Aude b, Yves Boulard b, Sophie Combet d, Fabrice Cousin d, Stéphane Hourdez e, Jean Mary e, Jean- Philippe Renault a, Serge Pin a* aUniversité Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France bUniversité Paris-Saclay, CEA, CNRS, I2BC, B3S, 91190 Gif-sur-Yvette, France cUniversité Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France dUniversité Paris-Saclay, Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France eSorbonne Université, CNRS, Lab.
    [Show full text]
  • Molecular Weights of the Blood Pigments of the Invertebrates
    MARCH 4, 1933 NATURE invertebrates possess red blood corpuscles. So far, Letters to the Editor we have only had the opportunity of studying the respiratory proteins from two such species. It is [The Editor does not hold himself responsible for noteworthy that in both cases low sedimentation opinions expressed by his correspondents. Neither constants were found. can he undertake to return, nor to correspond with The constancy of the molecular weights of the the writers of, rejected manuscripts intended for this respiratory blood proteins within various animal or any other part of NATURE. No notice is taken groups becomes still more puzzling when the following of anonymous communications.] facts are taken into consideration. The erythro­ Molecular Weights of the Blood Pigments of the cruorin and the chlorocruorin of the polychoote Invertebrates worms, the erythrocruorin of Planorbis and the hoomocyanin of Calocharis, the erythrocruorin of the BY means of the ultra-centrifugal method, it has polychoote worms and the hoomocyanin of Sepia and recently been shown that the red blood pigment of probably the erythrocruorin of Daphnia and the the annelids is not identical with the hoomoglobin of hoomocyanin of Eupagurus have identical sedimenta­ the vertebrates as was previously assumed, but is a tion constants and therefore probably identical protein more allied to chlorocruorin and hoomocyanin molecular weights. The measurement of the absorp­ with regard to molecular weight'. It was suggested tion of light in the visible part of the spectrum for that a comparative study of the properties of the the blood proteins of the gastropods has further respiratory proteins throughout the animal kingdom shown that the hoomocyanins of Helix, Paludina and might bring to light interesting relationships between Littorina, which have the same molecular weight, the various groups of animals.
    [Show full text]
  • Structure of Ferrous Forms of the Yellow Lupin Leghemoglobin T
    STRUCTURE OF FERROUS FORMS OF THE YELLOW LUPIN LEGHEMOGLOBIN T. N. SAFONO VA, A. V. TEPL YAKO V, G. V. OBMOL 0 VA, A. N. POPOV, I. P. KURANOVA, E. H. HARUTYUNYAN Institute of Crystallography , USSR Academy of Sciences , Moscow Legume hemoglobin - leghemoglobin (Lb) - was discovered by Kubo [ 1 ] in root nodules of leguminous plants. These nodules are a natu- ral nitrogen-fixing system which is a result of the symbiosis of high plants with the bacteria Rhysobium. Lb does not directly take part in nitrogen fi- xation. Possessing very high affinity for oxygen (Pso = 0.05 torr), Lb has a high combination rate constant k = 118 tM-'- sec' and a comparatively fast dissociation rate constant k = 4.4 sec' [2]. These properties mean that Lb may, on the one hand, maintain proper tension of oxygen in nodules and, on the other hand, provide transport of oxygen. In many respects (magnetic susceptibility data, spectroscopic data, etc.) Lb resembles animal hemoglobins and myoglobins. Its molecular weight is about 17000. Lb has the same type of polypeptide chain folding as other hemoglobins. Lb consists of 7 a-helices and a porphyrine group - the heme group (figure 1). We have studied deoxy-Lb and three ferrous complexes of leghemol- gobin with CO, NO and 0,. In nodules Lb was detected only in oxy and deoxy ferrous states. All experimental data sets were collected on a CARD-diffractometer with a multiwire detector at the Institute of Crystallography in Moscow [3]. Experimental data for LbO, were obtained in the atmosphere of argon at -20" C.
    [Show full text]
  • Expression, Purification, and Characterization of Mammalian and Earthworm Hemoglobins
    Expression, Purification, and Characterization of Mammalian and Earthworm Hemoglobins Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jacob James Elmer, B.S. Chemical and Biomolecular Engineering Graduate Program The Ohio State University 2011 Dissertation Committee: Andre F. Palmer, Advisor David Wood Jessica Winter 1 Copyright by Jacob James Elmer 2011 2 Abstract The frequent shortages, risks of disease transmission, and storage issues associated with donated blood illustrate a significant demand for a red blood cell (RBC) substitute. Such a substitute should be able to effectively transport oxygen throughout the body with minimal side effects. Several hemoglobin-based oxygen carriers (HBOCs) have been developed and clinically tested, but they have all caused severe side effects. The problems associated with these HBOCs may all be attributed to removing hemoglobin from the RBC. Therefore, this work focuses on the use of the extracellular hemoglobin of the earthworm Lumbricus terrestris (LtEc) as a new class of HBOC. Since earthworms lack RBCs, their hemoglobin is freely dissolved in the bloodstream and has already adapted to solve many of the challenges facing modern synthetic HBOCs. It has a lower rate of oxidation, avoids harmful side reactions with nitric oxide (NO), and it is extremely stable. We have developed a novel purification technique to highly purify large amounts of LtEc at costs that are comparable to donated blood. The LtEc product also transports oxygen similarly to human blood. Transfusion of LtEc into hamsters does not elicit the harmful side effects observed with other HBOCs and preliminary studies have not revealed any immune or allergic reactions in vivo.
    [Show full text]
  • Harnessing the Evolutionary Information on Oxygen Binding Proteins Through Support Vector Machines Based Modules
    Harnessing the evolutionary information on oxygen binding proteins through Support Vector Machines based modules Citation: Muthukrishnan, Selvaraj and Puri, Munish 2018, Harnessing the evolutionary information on oxygen binding proteins through Support Vector Machines based modules, BMC research notes, vol. 11: 290, pp. 1-8. DOI: http://www.dx.doi.org/10.1186/s13104-018-3383-9 © 2018, The Authors Reproduced by Deakin University under the terms of the Creative Commons Attribution Licence Downloaded from DRO: http://hdl.handle.net/10536/DRO/DU:30113373 DRO Deakin Research Online, Deakin University’s Research Repository Deakin University CRICOS Provider Code: 00113B Muthukrishnan and Puri BMC Res Notes (2018) 11:290 https://doi.org/10.1186/s13104-018-3383-9 BMC Research Notes RESEARCH NOTE Open Access Harnessing the evolutionary information on oxygen binding proteins through Support Vector Machines based modules Selvaraj Muthukrishnan1,2* and Munish Puri2,3* Abstract Objectives: The arrival of free oxygen on the globe, aerobic life is becoming possible. However, it has become very clear that the oxygen binding proteins are widespread in the biosphere and are found in all groups of organisms, including prokaryotes, eukaryotes as well as in fungi, plants, and animals. The exponential growth and availability of fresh annotated protein sequences in the databases motivated us to develop an improved version of “Oxypred” for identifying oxygen-binding proteins. Results: In this study, we have proposed a method for identifying oxy-proteins with two diferent sequence similar- ity cutofs 50 and 90%. A diferent amino acid composition based Support Vector Machines models was developed, including the evolutionary profles in the form position-specifc scoring matrix (PSSM).
    [Show full text]
  • Annelids in Extreme Aquatic Environments: Diversity, Adaptations and Evolution
    diversity Review Annelids in Extreme Aquatic Environments: Diversity, Adaptations and Evolution Christopher J. Glasby 1,2,*, Christer Erséus 3 and Patrick Martin 4 1 Natural Sciences, Museum & Art Gallery Northern Territory, PO Box 4646, Darwin, NT 0801, Australia 2 Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT 0810, Australia 3 Systematics and Biodiversity, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden; [email protected] 4 Royal Belgian Institute of Natural Sciences, Taxonomy and Phylogeny, 29 rue Vautier, B-1000 Brussels, Belgium; [email protected] * Correspondence: [email protected] Abstract: We review the variety of morphological, physiological and behavioral modifications that annelids have acquired to cope with environments either unsuitable for, or on the limits of, survival for most animals. We focus on polychaetes (excluding sipunculans and echiurans) and clitellates (oligochaetes and leeches) and source information mostly from the primary literature. We identified many modifications common to both polychaetes and clitellates, and others that are specific to one or the other group. For example, certain land-adapted polychaetes show reduction in nuchal organs, epidermal ciliation and receptor cells, and other coastal polychaetes use adhesive glands and glue-reinforced tubes to maintain position in surf zones, while oligochaetes, with their simple body plans, appear to be ‘pre-adapted’ to life underground. Modifications common to both groups include the ability to construct protective cocoons, make cryoprotective substances such as Citation: Glasby, C.J.; Erséus, C.; antifreeze and heat shock proteins, develop gills, transform their bodies into a home for symbiotic Martin, P.
    [Show full text]
  • The Evolution of Land Plant Hemoglobins
    Plant Science 191–192 (2012) 71–81 Contents lists available at SciVerse ScienceDirect Plant Science jo urnal homepage: www.elsevier.com/locate/plantsci Review The evolution of land plant hemoglobins a b c a,∗ Consuelo Vázquez-Limón , David Hoogewijs , Serge N. Vinogradov , Raúl Arredondo-Peter a Laboratorio de Biofísica y Biología Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico b Institute of Physiology and Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland c Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA a r t i c l e i n f o a b s t r a c t Article history: This review discusses the evolution of land plant hemoglobins within the broader context of eukaryote Received 13 March 2012 hemoglobins and the three families of bacterial globins. Most eukaryote hemoglobins, including metazoan Received in revised form 24 April 2012 globins and the symbiotic and non-symbiotic plant hemoglobins, are homologous to the bacterial 3/3- Accepted 25 April 2012 fold flavohemoglobins. The remaining plant hemoglobins are homologous to the bacterial 2/2-fold group Available online 4 May 2012 2 hemoglobins. We have proposed that all eukaryote globins were acquired via horizontal gene transfer concomitant with the endosymbiotic events responsible for the origin of mitochondria and chloroplasts. Keywords: Although the 3/3 hemoglobins originated in the ancestor of green algae and plants prior to the emergence Hemoglobin Non-symbiotic of embryophytes at about 450 mya, the 2/2 hemoglobins appear to have originated via horizontal gene Leghemoglobin transfer from a bacterium ancestral to present day Chloroflexi.
    [Show full text]