Rapid Evolution of Major Histocompatibility Complex Class I Genes in Primates Generates New Disease Alleles in Humans Via Hitchhiking Diversity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evidence for Differential Alternative Splicing in Blood of Young Boys With
Stamova et al. Molecular Autism 2013, 4:30 http://www.molecularautism.com/content/4/1/30 RESEARCH Open Access Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders Boryana S Stamova1,2,5*, Yingfang Tian1,2,4, Christine W Nordahl1,3, Mark D Shen1,3, Sally Rogers1,3, David G Amaral1,3 and Frank R Sharp1,2 Abstract Background: Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods: RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results: A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. -
A Comprehensive Mapping of the Structure and Gene Organisation in the Sheep MHC Class I Region N
Siva Subramaniam et al. BMC Genomics (2015) 16:810 DOI 10.1186/s12864-015-1992-4 RESEARCH ARTICLE Open Access A comprehensive mapping of the structure and gene organisation in the sheep MHC class I region N. Siva Subramaniam1, EF Morgan1, JD Wetherall1, MJ Stear2,3* and DM Groth1 Abstract Background: The major histocompatibility complex (MHC) is a chromosomal region that regulates immune responsiveness in vertebrates. This region is one of the most important for disease resistance because it has been associated with resistance or susceptibility to a wide variety of diseases and because the MHC often accounts for more of the variance than other loci. Selective breeding for disease resistance is becoming increasingly common in livestock industries, and it is important to determine how this will influence MHC polymorphism and resistance to diseases that are not targeted for selection. However, in sheep the order and sequence of the protein coding genes is controversial. Yet this information is needed to determine precisely how the MHC influences resistance and susceptibility to disease. Methods: CHORI bacterial artificial chromosomes (BACs) known to contain sequences from the sheep MHC class I region were sub-cloned, and the clones partially sequenced. The resulting sequences were analysed and re-assembled to identify gene content and organisation within each BAC. The low resolution MHC class I physical map was then compared to the cattle reference genome, the Chinese Merino sheep MHC map published by Gao, et al. (2010) and the recently available sheep reference genome. Results: Immune related class I genes are clustered into 3 blocks; beta, kappa and a novel block not previously identified in other organisms. -
What Is the Extent of the Role Played by Genetic Factors in Periodontitis?
Perio Insight 4 Summer 2017 www.efp.org/perioinsight DEBATE EXPERT VIEW FOCUS RESEARCH Editor: Joanna Kamma What is the extent of the role played by genetic factors in periodontitis? Discover latest JCP research hile genetic factors are known to play a role in In a comprehensive overview of current knowledge, The Journal of Clinical Periodontology Wperiodontitis, a lot of research still needs to be they outline what is known today and discuss the (JCP) is the official scientific publication done to understand the mechanisms that are involved. most promising lines for future inquiry. of the European Federation of Indeed, the limited extent to which the genetic They note that the phenotypes of aggressive Periodontology (EFP). It publishes factors associated with periodontitis have been periodontitis (AgP) and chronic periodontitis (CP) may research relating to periodontal and peri- identified is “somewhat disappointing”, say Bruno not be as distinct as previously assumed because they implant diseases and their treatment. G. Loos and Deon P.M. Chin, from the Academic share genetic and other risk factors. The six JCP articles summarised in this Centre for Dentistry in Amsterdam. More on pages 2-5 edition of Perio Insight cover: (1) how periodontitis changes renal structures by oxidative stress and lipid peroxidation; (2) gingivitis and lifestyle influences on high-sensitivity C-reactive protein and interleukin 6 in adolescents; (3) the long-term efficacy of periodontal Researchers call regenerative therapies; (4) tooth loss in generalised aggressive periodontitis; (5) the association between diabetes for global action mellitus/hyperglycaemia and peri- implant diseases; (6) the efficacy of on periodontal collagen matrix seal and collagen sponge on ridge preservation in disease combination with bone allograft. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Molecular and Epigenetic Features of Melanomas and Tumor Immune
Seremet et al. J Transl Med (2016) 14:232 DOI 10.1186/s12967-016-0990-x Journal of Translational Medicine RESEARCH Open Access Molecular and epigenetic features of melanomas and tumor immune microenvironment linked to durable remission to ipilimumab‑based immunotherapy in metastatic patients Teofila Seremet1,3*† , Alexander Koch2†, Yanina Jansen1, Max Schreuer1, Sofie Wilgenhof1, Véronique Del Marmol3, Danielle Liènard3, Kris Thielemans4, Kelly Schats5, Mark Kockx5, Wim Van Criekinge2, Pierre G. Coulie6, Tim De Meyer2, Nicolas van Baren6,7 and Bart Neyns1 Abstract Background: Ipilimumab (Ipi) improves the survival of advanced melanoma patients with an incremental long-term benefit in 10–15 % of patients. A tumor signature that correlates with this survival benefit could help optimizing indi- vidualized treatment strategies. Methods: Freshly frozen melanoma metastases were collected from patients treated with either Ipi alone (n: 7) or Ipi combined with a dendritic cell vaccine (TriMixDC-MEL) (n: 11). Samples were profiled by immunohistochemistry (IHC), whole transcriptome (RNA-seq) and methyl-DNA sequencing (MBD-seq). Results: Patients were divided in two groups according to clinical evolution: durable benefit (DB; 5 patients) and no clinical benefit (NB; 13 patients). 20 metastases were profiled by IHC and 12 were profiled by RNA- and MBD-seq. 325 genes were identified as differentially expressed between DB and NB. Many of these genes reflected a humoral and cellular immune response. MBD-seq revealed differences between DB and NB patients in the methylation of genes linked to nervous system development and neuron differentiation. DB tumors were more infiltrated by CD8+ and PD-L1+ cells than NB tumors. -
Identification of Differentially Expressed Genes in Human Bladder Cancer Through Genome-Wide Gene Expression Profiling
521-531 24/7/06 18:28 Page 521 ONCOLOGY REPORTS 16: 521-531, 2006 521 Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling KAZUMORI KAWAKAMI1,3, HIDEKI ENOKIDA1, TOKUSHI TACHIWADA1, TAKENARI GOTANDA1, KENGO TSUNEYOSHI1, HIROYUKI KUBO1, KENRYU NISHIYAMA1, MASAKI TAKIGUCHI2, MASAYUKI NAKAGAWA1 and NAOHIKO SEKI3 1Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Departments of 2Biochemistry and Genetics, and 3Functional Genomics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Received February 15, 2006; Accepted April 27, 2006 Abstract. Large-scale gene expression profiling is an effective CKS2 gene not only as a potential biomarker for diagnosing, strategy for understanding the progression of bladder cancer but also for staging human BC. This is the first report (BC). The aim of this study was to identify genes that are demonstrating that CKS2 expression is strongly correlated expressed differently in the course of BC progression and to with the progression of human BC. establish new biomarkers for BC. Specimens from 21 patients with pathologically confirmed superficial (n=10) or Introduction invasive (n=11) BC and 4 normal bladder samples were studied; samples from 14 of the 21 BC samples were subjected Bladder cancer (BC) is among the 5 most common to microarray analysis. The validity of the microarray results malignancies worldwide, and the 2nd most common tumor of was verified by real-time RT-PCR. Of the 136 up-regulated the genitourinary tract and the 2nd most common cause of genes we detected, 21 were present in all 14 BCs examined death in patients with cancer of the urinary tract (1-7). -
NFKBIL1 Antibody (Center) Blocking Peptide Synthetic Peptide Catalog # Bp10682c
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 NFKBIL1 Antibody (Center) Blocking peptide Synthetic peptide Catalog # BP10682c Specification NFKBIL1 Antibody (Center) Blocking NFKBIL1 Antibody (Center) Blocking peptide - peptide - Background Product Information This gene encodes a divergent member of the Primary Accession Q9UBC1 I-kappa-Bfamily of proteins. Its function has not been determined. The genelies within the major histocompatibility complex (MHC) class NFKBIL1 Antibody (Center) Blocking peptide - Additional Information Iregion on chromosome 6. Multiple transcript variants encodingdifferent isoforms have been found for this gene. [provided byRefSeq]. Gene ID 4795 NFKBIL1 Antibody (Center) Blocking Other Names peptide - References NF-kappa-B inhibitor-like protein 1, Inhibitor of kappa B-like protein, I-kappa-B-like Clancy, R.M., et al. Arthritis Rheum. protein, IkappaBL, Nuclear factor of kappa 62(11):3415-3424(2010)Bailey, S.D., et al. light polypeptide gene enhancer in B-cells Diabetes Care inhibitor-like 1, NFKBIL1, IKBL 33(10):2250-2253(2010)Ucisik-Akkaya, E., et Format al. Mol. Hum. Reprod. Peptides are lyophilized in a solid powder 16(10):770-777(2010)Rose, J.E., et al. Mol. format. Peptides can be reconstituted in Med. 16 (7-8), 247-253 (2010) :Owecki, M.K., solution using the appropriate buffer as et al. Pol. Merkur. Lekarski needed. 28(167):366-370(2010) Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C. Precautions This product is for research use only. Not for use in diagnostic or therapeutic procedures. -
NFKBIL1 Antibody Cat
NFKBIL1 Antibody Cat. No.: 56-654 NFKBIL1 Antibody Confocal immunofluorescent analysis of NFKBIL1 NFKBIL1 Antibody immunohistochemistry analysis in Antibody with MDA-MB435 cell followed by Alexa Fluor formalin fixed and paraffin embedded human brain tissue 488-conjugated goat anti-rabbit lgG (green).Actin filaments followed by peroxidase conjugation of the secondary have been labeled with Alexa Fluor 555 phalloidin antibody and DAB staining. (red).DAPI was used to stain the cell nuclear (blue). Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human HOMOLOGY: Predicted species reactivity based on immunogen sequence: Mouse, Pig This NFKBIL1 antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 327-356 amino acids from the C-terminal region of human NFKBIL1. TESTED APPLICATIONS: IF, IHC-P, WB September 24, 2021 1 https://www.prosci-inc.com/nfkbil1-antibody-56-654.html For WB starting dilution is: 1:1000 APPLICATIONS: For IHC-P starting dilution is: 1:10~50 For IF starting dilution is: 1:10~50 PREDICTED MOLECULAR 43 kDa WEIGHT: Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: NFKBIL1 NF-kappa-B inhibitor-like protein 1, Inhibitor of kappa B-like protein, I-kappa-B-like ALTERNATE NAMES: protein, IkappaBL, Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1, NFKBIL1, IKBL ACCESSION NO.: Q9UBC1 PROTEIN GI NO.: 44888077 GENE ID: 4795 USER NOTE: Optimal dilutions for each application to be determined by the researcher. -
Pharmacodynamic Effects of Seliciclib, an Orally Administered
Cancer Therapy: Clinical Pharmacodynamic Effects of Seliciclib, an Orally Administered Cell Cycle Modulator, in Undifferentiated Nasopharyngeal Cancer Wen-Son Hsieh,4 Ross Soo,1Bee-Keow Peh,2 Thomas Loh,4 Difeng Dong,3 Donny Soh,5 Lim-SoonWong,3,5 Simon Green,6 Judy Chiao,6 Chun-Ying Cui,1Yo k e -F o n g L a i , 4 Soo-Chin Lee,1Benjamin Mow,1 Richie Soong,2 Manuel Salto-Tellez,2 and Boon-Cher Goh1, 2 Abstract Purpose: Cell cycle dysregulation resulting in expression of antiapoptotic genes and uncontrolled proliferation is a feature of undifferentiated nasopharyngeal carcinoma. The pharmacodynamic effects of seliciclib, a cyclin-dependent kinase (CDK) inhibitor, were studied in patients with nasopharyngeal carcinoma. Experimental Design: Patients with treatment-naI«ve locally advanced nasopharyngeal carci- noma received seliciclib at 800 mg or 400 mg twice daily on days1 to 3 and 8 to12.Paired tumor samples obtained at baseline and on day 13 were assessed by light microscopy, immunohisto- chemistry, and transcriptionalprofiling using real-time PCR low-density array consisting of apanel of 380 genes related to cell cycle inhibition, apoptosis, signal transduction, and cell proliferation. Results: At 800 mg bd, one patient experienced grade 3 liver toxicity and another had grade 2 vomiting; no significant toxicities were experienced in 13 patients treated at 400 mg bd. Seven of fourteen evaluable patients had clinical evidence of tumor reduction. Some of these responses were associated with increased tumor apoptosis, necrosis, and decreases in plasma EBV DNA posttreatment. Reduced protein expression of Mcl-1, cyclin D1, phosphorylated retinoblastoma protein pRB (T821), and significant transcriptional down-regulation of genes related to cellular proliferation and survival were shown in some patients posttreatment, indicative of cell cycle modulation by seliciclib, more specifically inhibition of cdk2/cyclin E, cdk7/cyclin H, and cdk9/cyclinT. -
A Comprehensive Transcriptome Analysis of Skeletal Muscles in Two Polish Pig Breeds Differing in Fat and Meat Quality Traits
Genetics and Molecular Biology, 41, 1, 125-136 (2018) Copyright © 2018, Sociedade Brasileira de Genética. Printed in Brazil DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2016-0101 Research Article A comprehensive transcriptome analysis of skeletal muscles in two Polish pig breeds differing in fat and meat quality traits Katarzyna Piórkowska1 , Kacper òukowski3, Katarzyna Ropka-Molik1, Miros»aw Tyra2 and Artur Gurgul1 1Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland. 2Department of Pig Breeding, National Research Institute of Animal Production, Balice, Poland. 3Department of Cattle Breeding, National Research Institute of Animal Production, Balice, Poland. Abstract Pork is the most popular meat in the world. Unfortunately, the selection pressure focused on high meat content led to a reduction in pork quality. The present study used RNA-seq technology to identify metabolic process genes related to pork quality traits and fat deposition. Differentially expressed genes (DEGs) were identified between pigs of Pulawska and Polish Landrace breeds for two the most important muscles (semimembranosus and longissimus dorsi). A total of 71 significant DEGs were reported: 15 for longissimus dorsi and 56 for semimembranosus muscles. The genes overexpressed in Pulawska pigs were involved in lipid metabolism (APOD, LXRA, LIPE, AP2B1, ENSSSCG00000028753 and OAS2) and proteolysis (CST6, CTSD, ISG15 and UCHL1). In Polish Landrace pigs, genes playing a role in biological adhesion (KIT, VCAN, HES1, SFRP2, CDH11, SSX2IP and PCDH17), actin cytoskeletal organisation (FRMD6, LIMK1, KIF23 and CNN1) and calcium ion binding (PVALB, CIB2, PCDH17, VCAN and CDH11) were transcriptionally more active. The present study allows for better understanding of the physiological processes associated with lipid metabolism and muscle fiber organization. -
AB-PN532 PPP1R11-Py64 Antibody Phosphosite-Specific Polyclonal Antibody for Monitoring the Phosphorylation of Human PPP1R11 (HCG V)
AB-PN532 PPP1R11-pY64 Antibody Phosphosite-specific polyclonal antibody for monitoring the phosphorylation of human PPP1R11 (HCG V) Address: 8755 Ash Street, Suite 1 Vancouver, British Columbia, Email: [email protected] Canada V6P 6T3 Phone: 604-323-2547 Target Protein Name Long: Protein phosphatase 1 regulatory subunit 11 HCG V; HCG-V; HCGV; Hemochromatosis candidate gene V protein; inhibitor-3; IPP3; MGC125741; MGC125742; MGC125743; PP1RB; PPP1R11; Protein phosphatase 1 regulatory subunit 11; protein phosphatase 1, regulatory Alias: (inhibitor) subunit 11; protein phosphatase 1, regulatory (inhibitor) subunit 11, isoform 1; Protein phosphatase inhibitor 3; t-complex-associated-testis- expressed 5; TCTE5; TCTEX5 UniProt ID: O60927 Sequence Predicted Mass (KDa): 13953 126 AA; O60927) Observed SDS-PAGE Mass (KDa): 18-23 Immunogen Antibody Immunogen Source: Human PPP1R11 (HCG V) sequence peptide Cat. No.: PE-04ADI99 Antibody Immunogen Sequence: CCI(pY)EKP(bA)C (bA) = beta-alanine Corresponds to amino acid residues C61 to P67; In the PPI_Ypi1 domain. This is Location in Target: the major in vivo phosphorylation site in PPP1R11. Peptide Type: For phosphosite-specific recognition of target. Target Phosphosite: Tyr-64 Production Antibody Host Species: Rabbit Antibody Type: Polyclonal Antibody Ig Isotype Clone Lot: Immunoglobulin G The immunizing peptide was produced by solid phase synthesis on a multipep peptide synthesizer and purified by reverse-phase hplc chromatography. Purity was assessed by analytical hplc and the amino acid sequence confirmed by mass spectrometry analysis. This peptide was coupled to KLH prior to immunization into rabbits. New Zealand White rabbits were subcutaneously Production Method: injected with KLH-coupled immunizing peptide every 4 weeks for 4 months. -
Transcriptional Recapitulation and Subversion Of
Open Access Research2007KaiseretVolume al. 8, Issue 7, Article R131 Transcriptional recapitulation and subversion of embryonic colon comment development by mouse colon tumor models and human colon cancer Sergio Kaiser¤*, Young-Kyu Park¤†, Jeffrey L Franklin†, Richard B Halberg‡, Ming Yu§, Walter J Jessen*, Johannes Freudenberg*, Xiaodi Chen‡, Kevin Haigis¶, Anil G Jegga*, Sue Kong*, Bhuvaneswari Sakthivel*, Huan Xu*, Timothy Reichling¥, Mohammad Azhar#, Gregory P Boivin**, reviews Reade B Roberts§, Anika C Bissahoyo§, Fausto Gonzales††, Greg C Bloom††, Steven Eschrich††, Scott L Carter‡‡, Jeremy E Aronow*, John Kleimeyer*, Michael Kleimeyer*, Vivek Ramaswamy*, Stephen H Settle†, Braden Boone†, Shawn Levy†, Jonathan M Graff§§, Thomas Doetschman#, Joanna Groden¥, William F Dove‡, David W Threadgill§, Timothy J Yeatman††, reports Robert J Coffey Jr† and Bruce J Aronow* Addresses: *Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. †Departments of Medicine, and Cell and Developmental Biology, Vanderbilt University and Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA. ‡McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA. §Department of Genetics and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA. ¶Molecular Pathology Unit and Center for Cancer Research, Massachusetts deposited research General Hospital, Charlestown, MA 02129, USA. ¥Division of Human Cancer Genetics, The Ohio State University College of Medicine, Columbus, Ohio 43210-2207, USA. #Institute for Collaborative BioResearch, University of Arizona, Tucson, AZ 85721-0036, USA. **University of Cincinnati, Department of Pathology and Laboratory Medicine, Cincinnati, OH 45267, USA. ††H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA. ‡‡Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, Massachusetts 02115, USA.