Insights Into Giant Armadillo (Priodontes Maximus Kerr, 1792

Total Page:16

File Type:pdf, Size:1020Kb

Insights Into Giant Armadillo (Priodontes Maximus Kerr, 1792 Mammalia 2019; aop Arnaud Leonard Jean Desbiez*, Gabriel Favero Massocato and Danilo Kluyber Insights into giant armadillo (Priodontes maximus Kerr, 1792) reproduction https://doi.org/10.1515/mammalia-2019-0018 Received February 21, 2019; accepted August 20, 2019 Introduction Abstract: This paper presents unique data on the repro- The giant armadillo [Priodontes maximus (Kerr, 1792)], ductive behavior of the rare giant armadillo (Priodontes the largest of living cingulates (Mammalia: Cingulata), maximus), including gestation, inter-birth intervals, can reach up to 150 cm (head to tail) and weigh up to 50 number of offspring and parental care. It also describes kg (Emmons and Feer 1997, Eisenberg and Redford 1999, a potential non-parental infanticide. The study used Desbiez et al. 2019). One of the most striking features of telemetry, camera traps and track observations for over the species is the large scimitar-shaped fore-claws, the 7 years in a 300-km2 area in the central Brazilian Panta- third of which is greatly enlarged and can be as long as nal. Females with young were recorded 5 times. Repro- 20.3 cm (Carter et al. 2016). Giant armadillos are found ductive events did not appear to be seasonal. A 5-month over much of South America – in 11 different countries – gestation period was estimated. Parental care is long, as in habitats ranging from tropical forest to open savanna the offspring is completely dependent on its mother’s milk (Abba and Superina 2010). Although widespread, giant until 6–8 months of age. Weaning was estimated to occur armadillos are rare (Meritt 2006), and are currently clas- at 11–12 months, but the offspring continued to be depend- sified as “Vulnerable” (A2cd) on the International Union ent on its mother’s burrows until 18 months old. Three for Conservation of Nature (IUCN) Red List of Threatened births were recorded over a 6-year period for one individ- Species (Anacleto et al. 2014). ual. The offspring from the first birth recorded was killed Giant armadillos are nocturnal and fossorial, and at 4 weeks of age in a potential infanticide, but 7 months rarely seen, even by local people. All studies confirm after the first birth, a second offspring was born. A third the rarity of the species (Walsh and Gannon 1967, Noss birth was recorded 3 years after the second birth. Results et al. 2004, Silveira et al. 2009, Srbek-Araujo et al. 2009). from this study suggest that the population growth rate of Their large burrows are often the only evidence of their giant armadillos is very low and the species can therefore presence and the focus of several studies (Carter 1983, easily be locally extirpated. Carter and Encarnação 1983, Anacleto 1997, Ceresoli and Fernandez-Duque 2012, Porfirio et al. 2012). The role they Keywords: Cingulata; gestation period; infanticide; inter- play in the ecological community as ecosystem engineers birth interval; parental care. has been described for various biomes (Leite Pitman et al. 2004, Desbiez and Kluyber 2013, Aya-Cuero et al. 2017, Massocato and Desbiez 2017). Despite being the object of quite a number of publications (Superina et al. 2014), the *Corresponding author: Arnaud Leonard Jean Desbiez, Instituto de Conservação de Animais Silvestres (ICAS), Rua Licuala 622, overall life-history data for giant armadillos are lacking, 79046150, Campo Grande, Mato Grosso do Sul, Brazil; Instituto de and reports on the basic reproductive characteristics Pesquisas Ecológicas (IPÊ), Rodovia Dom Pedro I, km 47, 12960-000, (Merrett 1983) are probably inaccurate (Aya-Cuero et al. Nazaré Paulista, São Paulo, Brazil; and Royal Zoological Society 2015, Carter et al. 2016). Despite a misleading picture in of Scotland (RZSS), Murrayfield, Edinburgh, EH12 6TS, UK, e-mail: Gijzen (1965), the species has never bred in captivity (ZIMS [email protected] 2017). The only information on reproduction comes from Gabriel Favero Massocato: Instituto de Conservação de Animais Silvestres (ICAS), Rua Licuala 622, 79046150, Campo Grande, Aya-Cuero et al. (2015), who, using camera traps, obtained Mato Grosso do Sul, Brazil; Instituto de Pesquisas Ecológicas (IPÊ), three records of giant armadillo females with single off- Rodovia Dom Pedro I, km 47, 12960-000, Nazaré Paulista, São spring in Colombia. Paulo, Brazil; and Houston Zoo, 6200 Hermann Park Drive, Houston, Conservation strategies for giant armadillos must be TX 77030, USA based on the characteristics of their ecology and biology Danilo Kluyber: Instituto de Conservação de Animais Silvestres (ICAS), Rua Licuala 622, 79046150, Campo Grande, Mato Grosso do that impact their population dynamics the most. Analy- Sul, Brazil; and Naples Zoo and Caribbean Gardens, 1590 Goodlette- sis of the population growth rate and its determinants is Frank Rd, Naples, FL 34102, USA key to understanding population dynamics, as population Unauthenticated Download Date | 9/14/19 9:15 PM 2 A.L.J. Desbiez et al.: Giant armadillo reproduction growth rate is the key unifying variable that links the that could allow visual identification of the individual in various aspects of a species’ population ecology (Sibly and the future were collected. Skin biopsies were performed to Hone 2002). A basic understanding of a species’ reproduc- allow genetic kinship studies in the future. tive rate is necessary for the assessment of population Armadillos were implanted with intra-abdominal growth rates. This paper presents some of the first data very-high-frequency (VHF) radio transmitters (IMP 310, on the reproductive behavior of giant armadillos, includ- Telonics, Inc., Mesa, AZ, USA – weight = 38.5 g, i.e. 1.28% ing reproductive seasonality, gestation period, inter-birth of armadillo’s body mass) following the surgical proce- intervals, number of offspring and parental care. It also dures proposed by Hernandez et al. (2010). Once all proce- discusses a possible non-parental infanticide. dures were terminated, anesthesia was reversed through an intravenous injection of naloxone (0.04 mg/kg), yohimbine (0.125 mg/kg) and flumazenil (0.025 mg/kg). Animals were released in the same burrow they were cap- Materials and methods tured from. Study area Animal monitoring This study was carried out between July 2010 and July 2017, in a 300-km2 area that includes seven traditionally Animals were monitored for an average of 15 days per managed cattle ranches (19° 16′ 60″ S, 55° 42′ 60″ W) in month. Monitoring was accomplished through VHF telem- the Nhecolândia sub-region of the Brazilian Pantanal. The etry, to find the burrow using the homing-in to the animal landscape is a mosaic of different habitats that include technique (Samuel and Fuller 1994). Once encountered, open grassland, scrub grassland, scrub forest and semi- the burrow location was recorded using a handheld global deciduous forest. The historical mean temperature is positioning system (GPS) device. To allow the identifica- 25.4°C, climate is classified as semi-humid tropical (Aw), tion and the comparison between “regular” burrows and with a hot, rainy season (October to March) and a warm “nesting” burrows (i.e. burrows used to shelter infants), drier season (April to September) during which tempera- the burrow entrance height and width were measured fol- tures may drop due to cold fronts from the South (Soriano lowing the protocol used by Desbiez and Kluyber (2013). 2000). The area lacks permanent watercourses, and there In addition, the amount of sand in front of a burrow was is widespread flooding during the rainy season. Tradi- measured and characterized by the height of the sand tional extensive cattle ranching is practiced in the area, mound (from the soil level to the top of the mound). and there are no paved roads. Hunting and habitat loss Animals were captured and anesthetized under the license is limited, and the overall anthropogenic threats are low. number 27587-8 from the Brazilian Federal Environmental Protection Agency (ICMBIO), which regulates and protects wildlife in the country. Capture and handling We performed active searches by foot or pickup trucks Camera trapping looking for signs (tracks, feces and burrows) of giant arma- dillos that could lead to a burrow in use. Animals were We used camera traps to record the different types of captured using iron funnel traps that were placed in the behavior performed by individuals with and without off- entrance of burrows with evidence of recent activity. We spring near burrow entrances and eventual visits of other captured 26 giant armadillos in the study area, 14 females individuals to those burrows. When burrows in use were (10 adults and four subadults) and 12 males (seven adults, encountered, either through telemetry or active searches, four subadults and one juvenile). Once captured, animals camera traps were placed in front of its entrances and set were temporarily placed in ventilated wooden boxes and to take a succession of pictures (Reconyx® HC-500, Holmen, then anesthetized through an intramuscular injection in WI, USA) or set to video mode (Bushnell® Trophy Camera the hind limbs. The anesthetic protocol was composed of Brown Model, Overland Park, Kansas, USA and Reconyx® butorphanol 10 mg/ml (0.1 mg/kg), detomidine 10 mg/ml XP9, Holmen, WI, USA) as described in Desbiez and Kluyber (0.1 mg/kg) and midazolam 5 mg/ml (0.2 mg/kg) (Kluyber (2013). Camera traps remained set in front of burrows for 2016). While immobilized, information on age, sex, any at least 40 days after the monitored individuals left it (5769 evidences of reproductive activity and any natural marks camera traps/night). Through this method, we were able to Unauthenticated Download Date | 9/14/19 9:15 PM A.L.J. Desbiez et al.: Giant armadillo reproduction 3 record the time an individual entered and exited the burrow of known age. The patterns of coloring and behavioral and estimate the time spent inside and outside the burrow change chronicled were used in an attempt to estimate the in each outing.
Recommended publications
  • The Northern Naked-Tailed Armadillo in the Lacandona Rainforest, Mexico: New Records and Potential Threats Revista Mexicana De Biodiversidad, Vol
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; González-Di Pierro, Ana María; Lombera, Rafael; de la Peña-Cuéllar, Erika; Peña-Mondragón, Juan Luis; Hernández-Ordoñez, Omar; Muench, Carlos; Garmendia, Adriana; Stoner, Kathryn E. The northern naked-tailed armadillo in the Lacandona rainforest, Mexico: new records and potential threats Revista Mexicana de Biodiversidad, vol. 83, núm. 2, 2012, pp. 581-586 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42523421033 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 82: 581-586, 2011 Research note The northern naked-tailed armadillo in the Lacandona rainforest, Mexico: new records and potential threats Armadillo de cola desnuda en la selva lacandona, México: nuevos registros y amenazas potenciales Arturo González-Zamora1,2, Víctor Arroyo-Rodríguez2, Ana María González-Di Pierro2, Rafael Lombera4, Erika de la Peña-Cuéllar2, Juan Luis Peña-Mondragón2, Omar Hernández-Ordoñez2, Carlos Muench2, Adriana Garmendia2 and Kathryn E. Stoner2,3 1División de Posgrado, Instituto de Ecología A.C. Km. 2.5 Carretera antigua a Coatepec No.351. Congregación El Haya, 91070 Xalapa, Veracruz, México. 2Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Ex Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, México.
    [Show full text]
  • Tabbitha Schliesman Tolypeutes Matacus Southern Three-Banded Armadillo
    Tabbitha Schliesman Tolypeutes matacus Southern Three-banded Armadillo Description: The Southern Three-Banded Armadillo, Tolypeutes matacus, is a small creature, about 10- 15 cm tall, 21 – 30 cm long(Eisenburg & Redford, 1999), and 1.00 to 1.59 kg in weight (EOL, 2014). The outer shell of the Southern Three-Banded Armadillo ranges from light brownish-yellow to blackish-brown in coloring. This armadillo is comprised of three parts: a head, body, and an immobile, stout tail that are heavily armored with a leathery, think shell(Ellis, 1999). This leathery armor covers the entire animal, except for the belly and ears, when walking and/or standing. The skin of the front and rear portions of the Southern Three-Banded Armadillo are not attached to the middle section, allowing the animal to roll into a tight ball(EOL, 2014). Other features that make the Southern Three-Banded Southern Three Banded-Armadillo, Tolypeutes Armadillo distinct are the third and fourth claws of matacus, (Smith, 2007). the hind feet that look like hooves, while the front feet have only three sharp powerful claws(Superina, 2009). Southern Three-Banded Armadillos have a long pink tongue that is usually sticky. Their heads are long, and are unique to each armadillo; like humans’ fingerprints, researchers have used their head patterns while tracking them to identify which individual armadillo they are researching(HZ, 2011). Ecology: Southern Three-Banded Armadillos are native to north central Argentina, east central Bolivia and multiple sections of Paraguay and south west Brazil. The Southern Three-Banded Armadillo is found mainly in scrub forests and savannahs in these sections of South America.
    [Show full text]
  • Dietary Specialization and Variation in Two Mammalian Myrmecophages (Variation in Mammalian Myrmecophagy)
    Revista Chilena de Historia Natural 59: 201-208, 1986 Dietary specialization and variation in two mammalian myrmecophages (variation in mammalian myrmecophagy) Especializaci6n dietaria y variaci6n en dos mamiferos mirmec6fagos (variaci6n en la mirmecofagia de mamiferos) KENT H. REDFORD Center for Latin American Studies, Grinter Hall, University of Florida, Gainesville, Florida 32611, USA ABSTRACT This paper compares dietary variation in an opportunistic myrmecophage, Dasypus novemcinctus, and an obligate myrmecophage, Myrmecophaga tridactyla. The diet of the common long-nosed armadillo, D. novemcintus, consists of a broad range of invertebrate as well as vertebrates and plant material. In the United States, ants and termites are less important as a food source than they are in South America. The diet of the giant anteater. M. tridactyla, consists almost entirely of ants and termites. In some areas giant anteaters consume more ants whereas in others termites are a larger part of their diet. Much of the variation in the diet of these two myrmecophages can be explained by geographical and ecological variation in the abundance of prey. However, some variation may be due to individual differences as well. Key words: Dasypus novemcinctus, Myrmecophaga tridactyla, Tamandua, food habits. armadillo, giant anteater, ants, termites. RESUMEN En este trabajo se compara la variacion dietaria entre un mirmecofago oportunista, Dasypus novemcinctus, y uno obligado, Myrmecophaga tridactyla. La dieta del armadillo comun, D. novemcinctus, incluye un amplio rango de in- vertebrados así como vertebrados y materia vegetal. En los Estados Unidos, hormigas y termites son menos importantes como recurso alimenticio de los armadillos, de lo que son en Sudamérica. La dieta del hormiguero gigante, M tridactyla, está compuesta casi enteramente por hormigas y termites.
    [Show full text]
  • Range Extension of the Northern Naked-Tailed Armadillo (Cabassous Centralis) in Southern Mexico
    Western North American Naturalist Volume 77 Number 3 Article 10 9-29-2017 Range extension of the northern naked-tailed armadillo (Cabassous centralis) in southern Mexico Rugieri Juárez-López Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Mariana Pérez-López Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Yaribeth Bravata-de la Cruz Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Alejandro Jesús-de la Cruz Universidad Juarez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] Fernando M. Contreras-Moreno Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, [email protected] See next page for additional authors Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Juárez-López, Rugieri; Pérez-López, Mariana; Bravata-de la Cruz, Yaribeth; Jesús-de la Cruz, Alejandro; Contreras-Moreno, Fernando M.; Thornton, Daniel; and Hidalgo-Mihart, Mircea G. (2017) "Range extension of the northern naked-tailed armadillo (Cabassous centralis) in southern Mexico," Western North American Naturalist: Vol. 77 : No. 3 , Article 10. Available at: https://scholarsarchive.byu.edu/wnan/vol77/iss3/10 This Note is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Range extension of the northern naked-tailed armadillo (Cabassous centralis) in southern Mexico Authors Rugieri Juárez-López, Mariana Pérez-López, Yaribeth Bravata-de la Cruz, Alejandro Jesús-de la Cruz, Fernando M.
    [Show full text]
  • Introduction Recent Classifications Regard the Order Pilosa, Anteaters
    Introduction Recent classifications regard the order Pilosa, anteaters and sloths, and order Cingulata, the armadillos, within the superorder Xenarthra meaning “strange joints”. In the past, Pilosa and Cingulata wer regarded as suborders of the order Xenarthra, with the armadillos. Earlier still, both armadillos and pilosans were classified together with pangolins and the aardvark as the order Edentata meaning “toothless”. The orders Pilosa and Cingulata are distinguishable as the cingulatas have an armoured upper body and the pilosa have fur. Studies have concluded that sloths, anteaters, and armadillos diverged at least 75-80 million years ago and that they are as different from one another as are carnivores, bats and primates. The Pilosa are now considered almost exclusively a New World order, however, fossil records indicate that they were once found in Europe and possibly Asia. This order may have been distributed worldwide in the Cretaceous period, but became limited to South America and have remained there for most of their history and evolved into numerous groups. The Pilosa were once far more diverse than they are today; there are known to be 10 times as many fossil as living genera. The superorder is distinguished from all others by what are known as the xenarthrous vertebrae. There are secondary and sometimes even more, articulations between the vertebrae of the lumbar (lower back) series. In other words, consecutive vertebrae connect in more than one place. In addition, the pelvis connects with more of the spine than in other mammals. These adaptations to the spine give support, particularly to the hips. The name Xenarthra refers to this peculiarity of the spine and modem taxonomy places these three groups of animals together, even though they are very different from one another and they are highly specialized.
    [Show full text]
  • The Giant Armadillo of the Gran Chaco
    The Giant Armadillo of the Gran Chaco A giant armadillo Priodontes maximus at the Saenz-Peña Zoo in South America raises up, balancing with its tail, a common posture for this large species. Venezuela The Guianas: Guyana hat’s the size of Texas and Arizona combined, reaches temperatures Suriname French Guiana Wof 115 degrees Fahrenheit, has plants with 15-inch-long thorns, Colombia and houses an armadillo larger than a coffee table? The South American Gran Chaco, where giant armadillos wander freely. The Gran Chaco region covers more than 1 million square kilometers of Argentina, Bolivia, Perú Brazil Paraguay, and Brazil, with approximately 60 percent in Argentina and Bolivia just 7 percent in Brazil. The region is a mosaic of grasslands, savannas, Paraguay • open woodlands, dry thorn forests, and gallery forests that provide a GRAN CHACO 15 range of habitats where some diverse animal species flourish. • In the gallery forests of the humid Chaco, we regularly encounter animals Argentina that are associated with tropical and subtropical forests, like jaguars, owl monkeys, howler monkeys, peccaries, deer, tapirs, and various kinds of eden- tates, a group of mammals that includes sloths, anteaters, and armadillos. The Gran Chaco—from the Quechua Although there are no sloths in the Chaco, we regularly find lesser anteaters 2003 and sometimes come across giant anteaters. Both the nine-banded armadillo, Indian language of Bolivia for “great hunting ground”—crosses four coun- also found in Texas, and the tatu bola, or three-banded armadillo, which you tries and encompasses an area the can see at the Wild Animal Park’s Animal Care Center and the San Diego Zoo’s size of Texas and Arizona combined.
    [Show full text]
  • El Armadillo, Cabassous Centralis (Cingulata: Chlamyphoridae) En Agroecosistemas Con Café De Costa Rica
    El armadillo, Cabassous centralis (Cingulata: Chlamyphoridae) en agroecosistemas con café de Costa Rica Ronald J. Sánchez-Brenes1 & Javier Monge2 1. Universidad Nacional Costa Rica, Sede Regional Chorotega, Centro Mesoamericano de Desarrollo Sostenible del Trópico Seco (CEMEDE-UNA), Nicoya, Costa Rica; [email protected], https://orcid.org/0000-0002-6979-1336 2. Universidad de Costa Rica, Facultad de Ciencias Agroalimentarias, Escuela de Agronomía, Centro de Investigación en Protección de Cultivos, Instituto de Investigaciones Agronómicas, San José, Costa Rica; [email protected], https://orcid.org/0000-0003-1530-5774 Recibido 09-VIII-2019 • Corregido 11-IX-2019 • Aceptado 30-IX-2019 DOI: https://doi.org/10.22458/urj.v11i3.2724 ABSTRACT: “The armadillo, Cabassous centralis (Cingulata: RESUMEN: Introducción: El armadillo Cabassous centralis se clasifica Chlamyphoridae) in a Costa Rican coffee agro-ecosystem”. Introduction: como una especie con Datos Insuficientes que se encuentra desde The rare Cabassous centralis armadillo is classified as a Data Deficient México hasta el norte de América del Sur. Objetivo: Ampliar la distri- species found from Mexico to northern South America). Objective: To bución ecológica de C. centralis. Métodos: Colocamos cuatro cámaras expand the ecological distribution of C. centralis. Methods: We placed trampa en sitios estratégicos como fuentes de alimentación, madrigue- four trap cameras in strategic sites such as food sites, burrows, bodies of ras, cuerpos de agua y transición al bosque secundario, en San Ramón, water and transition to the secondary forest, in San Ramón, Costa Rica. Costa Rica. Resultados: Obtuvimos un registro de C. centralis en la tran- Results: We obtained a record of C.
    [Show full text]
  • (Dasypus) in North America Based on Ancient Mitochondrial DNA
    bs_bs_banner A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA BETH SHAPIRO, RUSSELL W. GRAHAM AND BRANDON LETTS Shapiro, B. Graham, R. W. & Letts, B.: A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA. Boreas. 10.1111/bor.12094. ISSN 0300-9483. The large, beautiful armadillo, Dasypus bellus, first appeared in North America about 2.5 million years ago, and was extinct across its southeastern US range by 11 thousand years ago (ka). Within the last 150 years, the much smaller nine-banded armadillo, D. novemcinctus, has expanded rapidly out of Mexico and colonized much of the former range of the beautiful armadillo. The high degree of morphological similarity between these two species has led to speculation that they might be a single, highly adaptable species with phenotypical responses and geographical range fluctuations resulting from environmental changes. If this is correct, then the biology and tolerance limits for D. novemcinctus could be directly applied to the Pleistocene species, D. bellus. To investigate this, we isolated ancient mitochondrial DNA from late Pleistocene-age specimens of Dasypus from Missouri and Florida. We identified two genetically distinct mitochondrial lineages, which most likely correspond to D. bellus (Missouri) and D. novemcinctus (Florida). Surprisingly, both lineages were isolated from large specimens that were identified previously as D. bellus. Our results suggest that D. novemcinctus, which is currently classified as an invasive species, was already present in central Florida around 10 ka, significantly earlier than previously believed. Beth Shapiro ([email protected]), Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; Russell W.
    [Show full text]
  • Guidelines to Identify Individual Giant Armadillos, Priodontes Maximus (Kerr, 1792), Through Camera Traps
    Edentata 20 (2019): 1–16 DOI: 10.2305/IUCN.CH.2019.Edentata-20-1.2.en Electronic version: ISSN 1852-9208 Print version: ISSN 1413-4411 http://www.xenarthrans.org Guidelines to identify individual giant armadillos, Priodontes maximus (Kerr, 1792), through camera traps Gabriel Fávero MassocatoA,B,D,1 & Arnaud L. J. DesbiezA,C,D A Instituto de Conservação de Animais Silvestres (ICAS), Rua Afonso Lino Barbosa, 142, Chácara Cachoeira, 79040-290, Campo Grande, Mato Grosso do Sul, Brasil B Houston Zoo, 6200 Hermann Park Drive, Houston, Texas 77030, USA C Royal Zoological Society of Scotland (RZSS), Murrayfield, Edinburgh, EH12 6TS, United Kingdom D Instituto de Pesquisas Ecológicas (IPÊ), Rodovia Dom Pedro I, km 47, 12960-000, Nazaré Paulista, São Paulo, Brasil 1 Corresponding author E-mail: [email protected] Abstract Camera trapping is one of the main tools used to advance Priodontes maximus research as it can provide information on the species' presence, densities, relative abundance, home ranges, movement, ac- tivity patterns, habitat use, reproduction, and parental care. Photographic records obtained by camera traps allow the individual identification of P. maximus if properly examined. The aim of this work is to pro- vide researchers with the tools to identify individuals of P. maximus in their regions and stimulate further research and conservation work on the species. We use nine years of camera trap work to present and il- lustrate the different individual identification patterns that can be used to distinguish individuals as well as reproductive status and age class. We describe six different morphological characteristics that can be used for individual identification: cephalic scale pattern, tail markings, light band width and shape above the base of tail, hind limbs, flank scale pattern, and natural marks.
    [Show full text]
  • Nine-Banded Armadillo (Dasypus Novemcinctus) Michael T
    Nine-banded Armadillo (Dasypus novemcinctus) Michael T. Mengak Armadillos are present throughout much of Georgia and are considered an urban pest by many people. Armadillos are common in central and southern Georgia and can easily be found in most of Georgia’s 159 counties. They may be absent from the mountain counties but are found northward along the Interstate 75 corridor. They have poorly developed teeth and limited mobility. In fact, armadillos have small, peg-like teeth that are useful for grinding their food but of little value for capturing prey. No other mammal in Georgia has bony skin plates or a “shell”, which makes the armadillo easy to identify. Just like a turtle, the shell is called a carapace. Only one species of armadillo is found in Georgia and the southeastern U.S. However, 20 recognized species are found throughout Central and South America. These include the giant armadillo, which can weigh up to 130 pounds, and the pink fairy armadillo, which weighs less than 4 ounces. Taxonomy Order Cingulata – Armadillos Family Dasypodidae – Armadillo Nine-banded Armadillo – Dasypus novemcinctus The genus name Dasypus is thought to be derived from a Greek word for hare or rabbit. The armadillo is so named because the Aztec word for armadillo meant turtle-rabbit. The species name novemcinctus refers to the nine movable bands on the middle portion of their shell or carapace. Their common name, armadillo, is derived from a Spanish word meaning “little armored one.” Figure 1. Nine-banded Armadillo. Photo by author, 2014. Status Armadillos are considered both an exotic species and a pest.
    [Show full text]
  • Shotgun Mitogenomics Provides a Reference
    Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for Living Xenarthrans Gillian Gibb, Fabien Condamine, Melanie Kuch, Jacob Enk, Nadia Moraes-Barros, Mariella Superina, Hendrik Poinar, Frédéric Delsuc To cite this version: Gillian Gibb, Fabien Condamine, Melanie Kuch, Jacob Enk, Nadia Moraes-Barros, et al.. Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for Living Xenarthrans. Molecular Biology and Evolution, Oxford University Press (OUP), 2016, 33 (3), pp.621 - 642. 10.1093/molbev/msv250. hal-01879331 HAL Id: hal-01879331 https://hal.archives-ouvertes.fr/hal-01879331 Submitted on 23 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for Living Xenarthrans Gillian C. Gibb,1,2 Fabien L. Condamine,1,3,4 Melanie Kuch,5 Jacob Enk,5 Nadia Moraes-Barros,6,7 Mariella Superina,8 Hendrik N. Poinar,*,5 and Fred eric Delsuc*,1
    [Show full text]
  • The Conservation Game
    From Penguins to Pandas - the conservation game Armadillo Fact Files © RZSS 2014 Armadillos There are 21 species of armadillo. They are divided into 8 groups: dwarf fairy giant hairy long nosed naked tail three banded yellow banded All armadillos have an outer covering of strong bony plates and horny skin. Most of the species can bring their legs in under this covering to protect themselves but it is only the three banded armadillos that can roll up into a tight ball. Most are active at night (nocturnal) and have poor eyesight but very good hearing and sense of smell. They all have large claws on their front feet to dig for insects and for burrowing. There is little known about some species of armadillo. At the time of writing (May 2014), the Royal Zoological Society of Scotland (RZSS) are studying four species - giant, southern naked tail, nine banded and yellow banded. Edinburgh Zoo, owned by RZSS holds 2 species, the larger hairy and the southern three banded. These animals are not on show but are sometimes seen in our animal presentations, such as ‘Animal Antics’. Armadillo in different languages Portuguese: tatu Spanish: armadillo (it means ‘little armoured one’ in Spanish) French: tatou Mandarin Chinese: 犰狳 (qiu yu) 2 Dwarf armadillo 1 species dwarf or pichi (Zaedyus pichiy) Distribution Argentina and Chile Diet insects, spiders and plants Breeding gestation 60 days litter size 1 - 2 Size Length: 26 - 33cm Tail length 10 - 14cm Weight 1 - 1.5kg Interesting facts comes out in daytime unlike most other species, it hibernates over
    [Show full text]