Overlap of Dopaminergic, Adrenergic, and Serotoninergic Receptors and Complementarity of Their Subtypes in Primate Prefrontal Cortex
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Signatures of G-Protein-Coupled Receptors A
REVIEW doi:10.1038/nature11896 Molecular signatures of G-protein-coupled receptors A. J. Venkatakrishnan1, Xavier Deupi2, Guillaume Lebon1,3,4,5, Christopher G. Tate1, Gebhard F. Schertler2,6 & M. Madan Babu1 G-protein-coupled receptors (GPCRs) are physiologically important membrane proteins that sense signalling molecules such as hormones and neurotransmitters, and are the targets of several prescribed drugs. Recent exciting developments are providing unprecedented insights into the structure and function of several medically important GPCRs. Here, through a systematic analysis of high-resolution GPCR structures, we uncover a conserved network of non-covalent contacts that defines the GPCR fold. Furthermore, our comparative analysis reveals characteristic features of ligand binding and conformational changes during receptor activation. A holistic understanding that integrates molecular and systems biology of GPCRs holds promise for new therapeutics and personalized medicine. ignal transduction is a fundamental biological process that is comprehensively, and in the process expand the current frontiers of required to maintain cellular homeostasis and to ensure coordi- GPCR biology. S nated cellular activity in all organisms. Membrane proteins at the In this analysis, we objectively compare known structures and reveal cell surface serve as the communication interface between the cell’s key similarities and differences among diverse GPCRs. We identify a external and internal environments. One of the largest and most diverse consensus structural scaffold of GPCRs that is constituted by a network membrane protein families is the GPCRs, which are encoded by more of non-covalent contacts between residues on the transmembrane (TM) than 800 genes in the human genome1. GPCRs function by detecting a helices. -
Emerging Evidence for a Central Epinephrine-Innervated A1- Adrenergic System That Regulates Behavioral Activation and Is Impaired in Depression
Neuropsychopharmacology (2003) 28, 1387–1399 & 2003 Nature Publishing Group All rights reserved 0893-133X/03 $25.00 www.neuropsychopharmacology.org Perspective Emerging Evidence for a Central Epinephrine-Innervated a1- Adrenergic System that Regulates Behavioral Activation and is Impaired in Depression ,1 1 1 1 1 Eric A Stone* , Yan Lin , Helen Rosengarten , H Kenneth Kramer and David Quartermain 1Departments of Psychiatry and Neurology, New York University School of Medicine, New York, NY, USA Currently, most basic and clinical research on depression is focused on either central serotonergic, noradrenergic, or dopaminergic neurotransmission as affected by various etiological and predisposing factors. Recent evidence suggests that there is another system that consists of a subset of brain a1B-adrenoceptors innervated primarily by brain epinephrine (EPI) that potentially modulates the above three monoamine systems in parallel and plays a critical role in depression. The present review covers the evidence for this system and includes findings that brain a -adrenoceptors are instrumental in behavioral activation, are located near the major monoamine cell groups 1 or target areas, receive EPI as their neurotransmitter, are impaired or inhibited in depressed patients or after stress in animal models, and a are restored by a number of antidepressants. This ‘EPI- 1 system’ may therefore represent a new target system for this disorder. Neuropsychopharmacology (2003) 28, 1387–1399, advance online publication, 18 June 2003; doi:10.1038/sj.npp.1300222 Keywords: a1-adrenoceptors; epinephrine; motor activity; depression; inactivity INTRODUCTION monoaminergic systems. This new system appears to be impaired during stress and depression and thus may Depressive illness is currently believed to result from represent a new target for this disorder. -
Dopamine: a Role in the Pathogenesis and Treatment of Hypertension
Journal of Human Hypertension (2000) 14, Suppl 1, S47–S50 2000 Macmillan Publishers Ltd All rights reserved 0950-9240/00 $15.00 www.nature.com/jhh Dopamine: a role in the pathogenesis and treatment of hypertension MB Murphy Department of Pharmacology and Therapeutics, National University of Ireland, Cork, Ireland The catecholamine dopamine (DA), activates two dis- (largely nausea and orthostasis) have precluded wide tinct classes of DA-specific receptors in the cardio- use of D2 agonists. In contrast, the D1 selective agonist vascular system and kidney—each capable of influenc- fenoldopam has been licensed for the parenteral treat- ing systemic blood pressure. D1 receptors on vascular ment of severe hypertension. Apart from inducing sys- smooth muscle cells mediate vasodilation, while on temic vasodilation it induces a diuresis and natriuresis, renal tubular cells they modulate sodium excretion. D2 enhanced renal blood flow, and a small increment in receptors on pre-synaptic nerve terminals influence nor- glomerular filtration rate. Evidence is emerging that adrenaline release and, consequently, heart rate and abnormalities in DA production, or in signal transduc- vascular resistance. Activation of both, by low dose DA tion of the D1 receptor in renal proximal tubules, may lowers blood pressure. While DA also binds to alpha- result in salt retention and high blood pressure in some and beta-adrenoceptors, selective agonists at both DA humans and in several animal models of hypertension. receptor classes have been studied in the treatment of -
Identification Ofa D1 Dopamine Receptor, Not Linked To
Br. J. Pharmacol. (1991), 103, 1928-1934 11--" Macmillan Press Ltd, 1991 Identification of a D1 dopamine receptor, not linked to adenylate cyclase, on lactotroph cells 'Danny F. Schoors, *Georges P. Vauquelin, *Hilde De Vos, fGerda Smets, Brigitte Velkeniers, Luc Vanhaelst & Alain G. Dupont Department of Pharmacology, Medical School, Vrije Universiteit Brussel (V.U.B.), Laarbeeklaan 103, B-1090, Brussels, Belgium; *Protein Chemistry Laboratory, Instituut voor Moleculaire Biologie, V.U.B., Paardenstraat 65, St-Genesius-Rode, Belgium and tDepartment of Experimental Pathology, Medical School, V.U.B., Laarbeeklaan 103, B-1090, Brussels, Belgium 1 We studied the lactotroph cells of the rat by both in vivo and in vitro pharmacological techniques for the presence of D1-receptors. Both approaches revealed the presence of a D2-receptor, stimulated by quinpirole (resulting in an inhibition of prolactin secretion) and blocked by domperidone. 2 Administration of fenoldopam, the most selective Dl-receptor agonist currently available, resulted in a dose-dependent decrease of prolactin secretion in vivo (after pretreatment with a-methyl-p-tyrosine) and in vitro (cultured pituitary cells). This increase was dose-dependently blocked by the selective D1-receptor antagonist, SCH 23390, and although the effect of fenoldopam was less than that obtained by D2-receptor stimulation, these data suggest that a D,-receptor also controls prolactin secretion. 3 In order to detect the location of these dopamine receptors, autoradiographic studies were performed by use of [3H]-SCH 23390 and [3H]-spiperone as markers for D1- and D2-receptors, respectively. Specific binding sites for [3H]-SCH 23390 were demonstrated. Fenoldopam dose-dependently reduced [3H]-SCH 23390 binding, but had no effect on [3H]-spiperone binding. -
Covalent Agonists for Studying G Protein-Coupled Receptor Activation
Covalent agonists for studying G protein-coupled receptor activation Dietmar Weicherta, Andrew C. Kruseb, Aashish Manglikb, Christine Hillera, Cheng Zhangb, Harald Hübnera, Brian K. Kobilkab,1, and Peter Gmeinera,1 aDepartment of Chemistry and Pharmacy, Friedrich Alexander University, 91052 Erlangen, Germany; and bDepartment of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305 Contributed by Brian K. Kobilka, June 6, 2014 (sent for review April 21, 2014) Structural studies on G protein-coupled receptors (GPCRs) provide Disulfide-based cross-linking approaches (17, 18) offer important insights into the architecture and function of these the advantage that the covalent binding of disulfide-containing important drug targets. However, the crystallization of GPCRs in compounds is chemoselective for cysteine and enforced by the active states is particularly challenging, requiring the formation of affinity of the ligand-pharmacophore rather than by the elec- stable and conformationally homogeneous ligand-receptor com- trophilicity of the cross-linking function (19). We refer to the plexes. Native hormones, neurotransmitters, and synthetic ago- described ligands as covalent rather than irreversible agonists nists that bind with low affinity are ineffective at stabilizing an because cleavage may be promoted by reducing agents and the active state for crystallogenesis. To promote structural studies on disulfide transfer process is a reversible chemical reaction the pharmacologically highly relevant class -
Original Research Bethanecol Chloride for Treatment of Clomipramine
REV. HOSP. CLÍN. FAC. MED. S. PAULO 59(6):357-360, 2004 ORIGINAL RESEARCH BETHANECOL CHLORIDE FOR TREATMENT OF CLOMIPRAMINE-INDUCED ORGASMIC DYSFUNCTION IN MALES Márcio Bernik, Antonio Hélio Guerra Vieira and Paula Villela Nunes BERNIK M et al. Bethanecol chloride for treatment of clomipramine-induced orgasmic dysfunction in males. Rev. Hosp. Clin. Fac. Med. S. Paulo 59(6):357-360, 2004. PURPOSE: To investigate whether bethanecol chloride may be an alternative for the clinical management of clomipramine-induced orgasmic dysfunction, reported to occur in up to 96% of male users. METHODS: In this study, 12 fully remitted panic disorder patients, complaining of severe clomipramine-induced ejaculatory delay, were randomly assigned to either bethanecol chloride tablets (20 mg, as needed) or placebo in a randomized, double-blind, placebo-controlled, two-period crossover study. A visual analog scale was used to assess severity of the orgasmic dysfunction. RESULTS: A clear improvement was observed in the active treatment period. No placebo or carry-over effects were observed. CONCLUSION: These findings suggest that bethanecol chloride given 45 minutes before sexual intercourse may be useful for clomipramine-induced orgasmic dysfunction in males. KEYWORDS: Orgasmic dysfunction. Clomipramine. Bethanecol chloride. Panic disorder. Pharmacological treatment. In panic disorder patients, effective clude the following: 1) increased brain side effects such as orgasmic dysfunc- pharmacological treatment with anti- serotonin, particularly affecting 5TH2 tion in up to 20% to 96% of pa- depressants has been shown to greatly and 5HT3 receptors; 2) decreased tients.5,6,13 improve the quality of life, but it is of- dopamine; 3) central blockade of Clomipramine is the imipramine ten associated with the emergence of cholinergic and alpha-1 adrenergic analogue of chlorpromazine. -
Additions and Deletions to the Drug Product List
Prescription and Over-the-Counter Drug Product List 36TH EDITION Cumulative Supplement Number 10 : October 2016 ADDITIONS/DELETIONS FOR PRESCRIPTION DRUG PRODUCT LIST ABACAVIR SULFATE TABLET;ORAL ABACAVIR SULFATE >A> AB STRIDES ARCOLAB LTD EQ 300MG BASE A 091050 001 Oct 28, 2016 Oct NEWA ACETAMINOPHEN; BUTALBITAL TABLET;ORAL BUTALBITAL AND ACETAMINOPHEN >A> AA MIKART INC 300MG;50MG A 207386 001 Nov 15, 2016 Oct NEWA >D> + NEXGEN PHARMA 300MG;50MG A 090956 001 Aug 23, 2011 Oct CTEC >A> AA + 300MG;50MG A 090956 001 Aug 23, 2011 Oct CTEC ACETAMINOPHEN; BUTALBITAL; CAFFEINE CAPSULE;ORAL BUTALBITAL, ACETAMINOPHEN AND CAFFEINE >D> + NEXGEN PHARMA 300MG;50MG;40MG A 040885 001 Nov 16, 2009 Oct CFTG >A> AB + 300MG;50MG;40MG A 040885 001 Nov 16, 2009 Oct CFTG >A> AB NUVO PHARM INC 300MG;50MG;40MG A 207118 001 Oct 28, 2016 Oct NEWA ACETAZOLAMIDE TABLET;ORAL ACETAZOLAMIDE >A> AB HERITAGE PHARMA 125MG A 205530 001 Oct 27, 2016 Oct NEWA >A> AB 250MG A 205530 002 Oct 27, 2016 Oct NEWA ALBUTEROL SULFATE TABLET;ORAL ALBUTEROL SULFATE >A> @ DAVA PHARMS INC EQ 2MG BASE A 072860 002 Dec 20, 1989 Oct CMS1 ALENDRONATE SODIUM TABLET;ORAL ALENDRONATE SODIUM >D> @ SANDOZ EQ 5MG BASE A 075871 001 Apr 22, 2009 Oct CAHN >D> @ EQ 10MG BASE A 075871 002 Apr 22, 2009 Oct CAHN >D> @ EQ 35MG BASE A 075871 004 Apr 22, 2009 Oct CAHN >D> @ EQ 40MG BASE A 075871 003 Apr 22, 2009 Oct CAHN >D> @ EQ 70MG BASE A 075871 005 Apr 22, 2009 Oct CAHN >A> @ UPSHER-SMITH LABS EQ 5MG BASE A 075871 001 Apr 22, 2009 Oct CAHN >A> @ EQ 10MG BASE A 075871 002 Apr 22, 2009 Oct CAHN >A> @ EQ -
Age-Associated Reductions in Cardiac Beta1- and Beta2- Adrenergic Responses Without Changes in Inhibitory G Proteins Or Receptor Kinases
Age-associated reductions in cardiac beta1- and beta2- adrenergic responses without changes in inhibitory G proteins or receptor kinases. R P Xiao, … , E G Lakatta, W J Koch J Clin Invest. 1998;101(6):1273-1282. https://doi.org/10.1172/JCI1335. Research Article While an age-associated diminution in myocardial contractile response to beta-adrenergic receptor (beta-AR) stimulation has been widely demonstrated to occur in the context of increased levels of plasma catecholamines, some critical mechanisms that govern beta-AR signaling must still be examined in aged hearts. Specifically, the contribution of beta- AR subtypes (beta1 versus beta2) to the overall reduction in contractile response with aging is unknown. Additionally, whether G protein-coupled receptor kinases (GRKs), which mediate receptor desensitization, or adenylyl cyclase inhibitory G proteins (Gi) are increased with aging has not been examined. Both these inhibitory mechanisms are upregulated in chronic heart failure, a condition also associated with diminished beta-AR responsiveness and increased circulatory catecholamines. In this study, the contractile responses to both beta1-AR and beta2-AR stimulation were examined in rat ventricular myocytes of a broad age range (2, 8, and 24 mo). A marked age-associated depression in contractile response to both beta-AR subtype stimulation was observed. This was associated with a nonselective reduction in the density of both beta-AR subtypes and a reduction in membrane adenylyl cyclase response to both beta- AR subtype agonists, NaF or forskolin. However, the age-associated diminutions in contractile responses to either beta1- AR or beta2-AR stimulation were not rescued by inhibiting Gi with pertussis toxin treatment. -
Drug and Medication Classification Schedule
KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine -
Volume 19 • Number 3 • 2002
CONTROLLED RELEASE SOCIETY Volume 19 • Number 32 • 2002 NEWSLETTER CRS Updates Entrepeneuer Scientific Tomorrow’s Passing theGavel Passing Spotlight: ALZA www.controlledrelease.org We characterize macromolecules from eighteen different angles. So you don’t have to. Eighteen angles may sound like a lot. But it’s not when Wyatt instruments have helped thousands of scientists, you consider that molecular weights and sizes can’t be from Nobel laureates to members of the National Academy determined accurately from one or two angles. of Sciences to researchers in over 50 countries worldwide. That’s why Wyatt’s multi-angle light scattering systems We also provide unmatched training, service, and deploy the greatest number of detectors over the support, as well as ongoing access to our nine PhD broadest range of angles. In fact, a Wyatt DAWN® scientists with broad expertise in liquid chromatography, instrument directly measures molecular weights polymer chemistry, protein science, biochemistry, and sizes without column calibration or and light scattering. reference standards —with up to 25 times For more information on our more precision than one or full range of instruments, worldwide dealer two angle instruments.* network, applications, and a bibliography No wonder 28 of the of light scattering papers, please call top 30 chemical, pharmaceutical, 805-681-9009, fax us at 805-681-0123, or visit us at and biotechnology companies rely on www.wyatt.com. We’ll show Wyatt instruments, as do all major fed- you how to generate data eral regulatory agencies and national laboratories. so precise, you won’t believe CORPORATION your eyes. *Precision improvement from measuring with Wyatt Multi-Angle Light scattering detectors vs. -
Synergistic Action of 5-HT2A Antagonists and Selective Serotonin Reuptake Inhibitors in Neuropsychiatric Disorders
Neuropsychopharmacology (2003) 28, 402–412 & 2003 Nature Publishing Group All rights reserved 0893-133X/03 $25.00 www.neuropsychopharmacology.org Synergistic Action of 5-HT2A Antagonists and Selective Serotonin Reuptake Inhibitors in Neuropsychiatric Disorders ,1 2 3 2 Gerard J Marek* , Linda L Carpenter , Christopher J McDougle and Lawrence H Price 1Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; 2Department of Psychiatry and Human, Brown Medical School, Mood 3 Disorders Program, Behavior, Butler Hospital, Providence, RI, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA Recently, the addition of drugs with prominent 5-HT2 receptor antagonist properties (risperidone, olanzapine, mirtazapine, and mianserin) to selective serotonin reuptake inhibitors (SSRIs) has been shown to enhance therapeutic responses in patients with major depression and treatment-refractory obsessive–compulsive disorder (OCD). These 5-HT antagonists may also be effective in 2 ameliorating some symptoms associated with autism and other pervasive developmental disorders (PDDs). At the doses used, these drugs would be expected to saturate 5-HT2A receptors. These findings suggest that the simultaneous blockade of 5-HT2A receptors and activation of an unknown constellation of other 5-HT receptors indirectly as a result of 5-HT uptake inhibition might have greater therapeutic efficacy than either action alone. Animal studies have suggested that activation of 5-HT1A and 5-HT2C receptors may counteract the effects of activating 5-HT2A receptors. Additional 5-HT receptors, such as the 5-HT1B/1D/5/7 receptors, may similarly counteract the effects of 5-HT receptor activation. These clinical and preclinical observations suggest that the combination of highly 2A selective 5-HT antagonists and SSRIs, as well as strategies to combine high-potency 5-HT receptor and 5-HT transporter blockade in 2A 2A a single compound, offer the potential for therapeutic advances in a number of neuropsychiatric disorders. -
Structural Features of Β2 Adrenergic Receptor
Mol. Cells 2015; 38(2): 105-111 http://dx.doi.org/10.14348/molcells.2015.2301 Molecules and Cells http://molcells.org Established in 1990 Structural Features of 2 Adrenergic Receptor: Crystal Structures and Beyond Injin Bang, and Hee-Jung Choi* The beta2-adrenergic receptor (2AR) belongs to the G class A, also referred to as rhodopsin type GPCRs. In 2000, the protein coupled receptor (GPCR) family, which is the larg- first GPCR structure was visualized by using bovine rhodopsin est family of cell surface receptors in humans. Extra atten- complexed with 11-cis-retinal and this structure has been used tion has been focused on the human GPCRs because they as an important template for GPCR modeling (Palczewski et al., have been studied as important protein targets for phar- 2000). The overall rhodopsin structure consists of seven trans- maceutical drug development. In fact, approximately 40% membrane (TM) helices and three loop regions at the extracel- of marketed drugs directly work on GPCRs. GPCRs re- lular and the cytoplasmic sides. The ligand binding pocket of spond to various extracellular stimuli, such as sensory rhodopsin is formed by hydrophobic residues from TM5 and signals, neurotransmitters, chemokines, and hormones, to TM6 to stabilize the hydrocarbone backbone of retinal, which is induce structural changes at the cytoplasmic surface, ac- covalently bound to Lys296 of TM7. tivating downstream signaling pathways, primarily through One of the common sequence motifs in rhodopsin type interactions with heterotrimeric G proteins or through G- GPCRs is the D[E]RY motif on TM3, which forms an ionic lock protein independent pathways, such as arrestin.