CHRONIC EFFECTS of a MONOAMINE OXIDASE-INHIBITING ANTIDEPRESSANT: DECREASES in FUNCTIONAL A-ADRENERGIC AUTORECEPTORSPRECEDETHEDE

Total Page:16

File Type:pdf, Size:1020Kb

CHRONIC EFFECTS of a MONOAMINE OXIDASE-INHIBITING ANTIDEPRESSANT: DECREASES in FUNCTIONAL A-ADRENERGIC AUTORECEPTORSPRECEDETHEDE 0270-6474/82/0211-1588$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 2, No. 11, pp. 1588-1595 Printed in U.S.A. November 1982 CHRONIC EFFECTS OF A MONOAMINE OXIDASE-INHIBITING ANTIDEPRESSANT: DECREASES IN FUNCTIONAL a-ADRENERGIC AUTORECEPTORSPRECEDETHEDECREASEIN NOREPINEPHRINE-STIMULATED CYCLIC ADENOSINE 3’:WMONOPHOSPHATE SYSTEMS IN RAT BRAIN1 ROBERT M. COHEN,*,” RICHARD P. EBSTEIN,*,3 JOHN W. DALY,* AND DENNIS L. MURPHY* *Clinical Neuropharmacology Branch, National Institute of Mental Health and ‘Laboratory of Bioorganic Chemistry, National Institute of Arthritis, Metabolism and Digestive Diseases, Bethesda, Maryland 20205 Received November 2, 1981; Revised April 9, 1982; Accepted May 7, 1982 Abstract Various antidepressant drugs (monoamine oxidase inhibitors and tricyclics) enhance norepineph- rine availability and lead to adaptive changes in brain noradrenergic systems, namely, decreases in the number of p receptors and in the responsiveness of adenylate cyclase to norepinephrine stimulation. After 21 days of treatment with 1 mg/kg/day of clorgyline, an A-type-selective monoamine oxidase inhibitor, but not after 3 days, there is an increase in norepinephrine release from rat brain microsacs in response to 43 mM KC1 stimulation. Microsacs prepared from 21-day clorgyline-treated animals also show a marked decrease in the inhibition of norepinephrine release caused by the az-selective agonist clonidine. These functional changes in norepinephrine release mechanisms are accompanied by a 53% reduction in brainstem (~2receptor density as measured by [3H]clonidine binding. At the same time, despite findings of a decrease in p receptor number as determined by [3H]dihydroalprenolo1 binding data, no significant decrease in the responses of cyclic adenosine 3’:5’-monophosphate (cyclic AMP) systems to norepinephrine stimulation is observed. Decreases in the cyclic AMP response are observed by day 35 of clorgyline treatment. The results provide direct physiological support for a change in the norepinephrine release mechanism and an effect on autoreceptors, specifically, preceding postsynaptic adaptive changes in the instance of one antidepressant, clorgyline. Difficulties in observing such changes with other antidepressants may result from the multiple nature of cu-adrenergic receptors, especially as measured by radioactive ligand techniques; the lack of a direct relationship between physiological changes and receptors as measured by radioligand techniques; the large doses of monoamine oxidase inhibitors used in some studies; and the possible multiplicity of antidepressant molecular mechanisms. Chronic administration of antidepressants to rats leads (Wolfe et al., 1978; Schweitzer et al., 1979). Several in- to decreases in P-adrenoreceptor numbers and to a de- vestigators have provided evidence that this decrease is crease in the norepinephrine-elicited accumulations of partially mediated through a change in the presynaptic cyclic adenosine 3’:5’-monophosphate (cyclic AMP) (Sul- release mechanisms involving a reduction in local nega- ser et al., 1978). This decrease in norepinephrine respon- tive feedback (Crews and Smith, 1978; Svensson and sivity is believed to be secondary to a preceding persist- Usdin, 1978; Tang et al., 1978; Spyraki and Fibiger, 1980). ence of increased norepinephrine levels in the synapse However, while radioligand binding data demonstrated clear decreases in ,& receptor numbers during antidepres- sant treatment, no analogous changes had been reported ’ We gratefully acknowledge the expert technical assistance of Cath- for az-adrenergic receptors (Bergstrom and Kellar, 1979; erine McLellan and Michelle Dauphin. Rosenblatt et al, 1979; Johnson et al., 1980). Recently, * To whom correspondence should be addressed at Clinical Neuro- pharmacology Branch, National Institute of Mental Health, National Cohen et al. (1982) provided data for a decrease in the Institutes of Health Clinical Center, Building 10, Room 3D41, Bethesda, number of a2-receptors which temporally preceded a MD 20205. reduction in j3 receptor density in the rat cortex during ’ Permanent address: Jerusalem Mental Health Center, Jerusalem, chronic administration of clorgyline, a selective inhibitor P.O.B. 140, Israel. of monoamine oxidase type A (MAO-A) which is a clin- 1588 The Journal of Neuroscience MAO Inhibitors Induce Autoreceptor Changes 1589 ically effective antidepressant agent. These apparent in- acid and unlabeled cyclic AMP (0.25 pmol), and homog- consistencies between reports using different antidepres- enized with a glass pestle. Homogenates were centrifuged sants may result from the existence of multiple Luz-adre- for 10 min at 3,000 rpm. Fifty-microliter aliquots were nergic receptors, some of which may play roles unrelated taken from the supernatant fraction and the radioactivity to presynaptic regulation. Therefore, it is important to was measured to determine the [3H]adenine nucleotide examine directly norepinephrine release and the (~2 re- pool in each sample. The cyclic [“HIAMP formed was ceptor-mediated regulation of this release in the central determined by filtering and washing the remaining su- nervous system during treatment with antidepressants pernatant fraction through Dowex and alumina columns such as clorgyline. A microsac preparation was chosen as described by Salomon et al. (1974). for these observations as the specific (~2receptor agonist Assay for norepinephrine release. Strips of rat cortex clonidine had been demonstrated previously to decrease obtained as described above were homogenized by glass potassium chloride-stimulated norepinephrine release in pestle in 10 vol of Krebs-Ringer buffer at 4°C. The a specific dose-dependent manner (De Langen et al., homogenate was centrifuged at 1,000 x g for 15 min. The 1979). To examine the functional physiology of the p pellet was suspended in 10 vol of buffer with 0.2 pM [3H] receptor, the effect of norepinephrine stimulation on cylic norepinephrine (60 &i) added, and uptake was allowed AMP formation was examined in brain slices. to proceed for 30 min at 37°C. The suspension was centrifuged at 1,000 x g for 5 min at 4°C and the pellet Materials and Methods was resuspended in 10 vol of buffer and centrifuged. The Animals. Six- to 12-week-old male Sprague-Dawley pellet was washed an additional two times in a similar rats (175 to 200 gm) were obtained from Taconic Farms, manner. The final suspension of microsacs from a single Germantown, NY. Half of the animals were implanted cortex was in 10 ml of calcium-free Krebs buffer. Three with Alzet mini osmotic pumps (Alza Corp., Palo Alto, hundred-microliter aliquots of the suspension were added CA) containing concentrations of clorgyline that were to 3 ml of buffer and gently mixed. Two milliliters then adjusted to provide for continuous I-mg/kg/day admin- were layered onto Sephadex GlO columns (polypropylene istration to each animal. This dose is sufficient to produce econo columns) for release experiments which were con- greater than 90% inhibition of MAO-A (Campbell et al., ducted at 25°C. Each column (46 columns from the 1979a, b). Animals were reimplanted every 2 weeks there- cortex of one rat) has a height of 0.75 to 1.0 cm and an after. approximate 0.2 ml/20 set flow rate. The columns were Assay of cyclic AMP generation. Cyclic AMP forma- washed with 5 ml of calcium-free Krebs buffer and the tion was measured by the adenine-prelabeling brain slice eluants were discarded. Columns then were washed with technique as originally described by Shimizu et al. (1969). 2 ml of the medium used for release, with the eluant This procedure results in data which are expressed as collected directly into scintillation vials. The releasing percentages of total radioactive adenine nucleotides pres- eluant consisted of KRB plus varying concentrations of ent as cyclic AMP (percentage of conversion) and are in KC1 (43 mM if not stated), CaC12 (0.05 InM if not stated), good agreement with those obtained from the measure- and various concentrations of drugs (e.g., clonidine (0.01 ments of endogenous levels of cyclic AMP in brain slices. to .lO PM)). Prior to column preparation, aliquots were Briefly, rats were sacrificed by decapitation and the obtained for Lowry protein determination (Lowry et al., brains obtained were placed in ice cold oxygenated 1951) and for initial norepinephrine accumulation. Krebs-Ringer buffer (KRB). The brains were placed onto Assay for a- and ,8-adrenergic receptor binding. For a chilled glass plate for dissection. The brainstem, cere- each treatment group, six frozen (-80°C) brainstem por- bellum, and hypothalamus were removed and stored at tions, approximating the region inclusive of medulla and -80°C for enzyme and receptor assays at a later date. pons, were weighed, thawed, and homogenized using a Small strips of cerebral cortical gray matter obtained Polytron in 10% (w/v) Tris-HCl (50 mM, pH 7.6) at 4°C. with a single edge razor blade from two or three rats were The homogenates were centrifuged at 18,500 x g for 10 placed into a second beaker of buffer. The strips then min at 4°C. The pellets were suspended in 50 vol of were sliced on a cooled block by a McIlwain tissue slicer buffer and centrifuged as before. The resulting pellets set at 260 pm, rotated X30’, and sliced again. The tissue (prepared membranes) were resuspended in 10 vol of slices then were incubated at 37°C for 15 min in 15 ml of buffer and used in the binding assay procedures. buffer. For Scatchard determination (Scatchard, 1949) of (YZ- The preincubated brain slices were transferred to a adrenergic receptor binding, 400~~1 aliquots of the pre- third beaker containing adenine (30 PM) and [ 3H]adenine pared membranes were added in triplicate to tubes con- (20 to 60 &i) and incubated at 37°C for 40 min. The taining the a2-adrenergic agonist [3H]clonidine (final con- buffer was decanted; the slices were washed twice with centrations ranged from 0.2 to 4 times KD) in a total buffer and then collected onto nylon mesh. Equal por- volume of 0.6 ml.
Recommended publications
  • Molecular Signatures of G-Protein-Coupled Receptors A
    REVIEW doi:10.1038/nature11896 Molecular signatures of G-protein-coupled receptors A. J. Venkatakrishnan1, Xavier Deupi2, Guillaume Lebon1,3,4,5, Christopher G. Tate1, Gebhard F. Schertler2,6 & M. Madan Babu1 G-protein-coupled receptors (GPCRs) are physiologically important membrane proteins that sense signalling molecules such as hormones and neurotransmitters, and are the targets of several prescribed drugs. Recent exciting developments are providing unprecedented insights into the structure and function of several medically important GPCRs. Here, through a systematic analysis of high-resolution GPCR structures, we uncover a conserved network of non-covalent contacts that defines the GPCR fold. Furthermore, our comparative analysis reveals characteristic features of ligand binding and conformational changes during receptor activation. A holistic understanding that integrates molecular and systems biology of GPCRs holds promise for new therapeutics and personalized medicine. ignal transduction is a fundamental biological process that is comprehensively, and in the process expand the current frontiers of required to maintain cellular homeostasis and to ensure coordi- GPCR biology. S nated cellular activity in all organisms. Membrane proteins at the In this analysis, we objectively compare known structures and reveal cell surface serve as the communication interface between the cell’s key similarities and differences among diverse GPCRs. We identify a external and internal environments. One of the largest and most diverse consensus structural scaffold of GPCRs that is constituted by a network membrane protein families is the GPCRs, which are encoded by more of non-covalent contacts between residues on the transmembrane (TM) than 800 genes in the human genome1. GPCRs function by detecting a helices.
    [Show full text]
  • Emerging Evidence for a Central Epinephrine-Innervated A1- Adrenergic System That Regulates Behavioral Activation and Is Impaired in Depression
    Neuropsychopharmacology (2003) 28, 1387–1399 & 2003 Nature Publishing Group All rights reserved 0893-133X/03 $25.00 www.neuropsychopharmacology.org Perspective Emerging Evidence for a Central Epinephrine-Innervated a1- Adrenergic System that Regulates Behavioral Activation and is Impaired in Depression ,1 1 1 1 1 Eric A Stone* , Yan Lin , Helen Rosengarten , H Kenneth Kramer and David Quartermain 1Departments of Psychiatry and Neurology, New York University School of Medicine, New York, NY, USA Currently, most basic and clinical research on depression is focused on either central serotonergic, noradrenergic, or dopaminergic neurotransmission as affected by various etiological and predisposing factors. Recent evidence suggests that there is another system that consists of a subset of brain a1B-adrenoceptors innervated primarily by brain epinephrine (EPI) that potentially modulates the above three monoamine systems in parallel and plays a critical role in depression. The present review covers the evidence for this system and includes findings that brain a -adrenoceptors are instrumental in behavioral activation, are located near the major monoamine cell groups 1 or target areas, receive EPI as their neurotransmitter, are impaired or inhibited in depressed patients or after stress in animal models, and a are restored by a number of antidepressants. This ‘EPI- 1 system’ may therefore represent a new target system for this disorder. Neuropsychopharmacology (2003) 28, 1387–1399, advance online publication, 18 June 2003; doi:10.1038/sj.npp.1300222 Keywords: a1-adrenoceptors; epinephrine; motor activity; depression; inactivity INTRODUCTION monoaminergic systems. This new system appears to be impaired during stress and depression and thus may Depressive illness is currently believed to result from represent a new target for this disorder.
    [Show full text]
  • Adrenergic Antagonist
    PHARMACOLOGY Adrenergic antagonist OBJECTIVES: • Describe the different classifications for drugs that can block sympathetic nervous system. •Describe the kinetics, dynamics, uses and side effects of alpha adrenergic drugs. • Identify Difference between selective and non selective alpha blockers. • Know the difference between tamsulosin and other selective alpha receptor blockers. •Identify the different classifications for beta receptors blockers. •Describe the kinetics, dynamics, uses and side effects of beta adrenergic drugs. •Know the preferable drug for diseases as hypertension, glaucoma, arrythmia, myocardial infarction, anxiety, migraine and ect…. • Important. • Extra notes It’s a recall, if you know it you can skip it! Adrenergic receptors Adrenergic receptors Dopaminergic adrenoceptors adrenoceptors α− β− receptors β3 α1 α2 β1 β2 e.g. D1 α1 β2 β1 β3 Post-synaptic excitatory in function (cause inhibitory in function excitatory in In adipose contraction) except in GIT. (cause relaxation) function, present tissue mainly in heart Present mainly in smooth muscles. Contraction of pregnant Relaxation of the uterus ↑ heart rate: ↑ lipolysis uterus. (Delay premature labor) + chronotropic ↑ free fatty effect, Vasoconstriction of skin & Relaxation of skeletal & acids. Tachycardia peripheral blood vessels coronary blood vessels →increased peripheral (vasodilatation) ↑ force of → resistance hypertension. contraction : Relaxation of GIT muscles & urinary bladder’s muscles. + inotropic effect Contraction of GIT sphincter (constipation) & urinary
    [Show full text]
  • M100907, a Serotonin 5-HT2A Receptor Antagonist and Putative Antipsychotic, Blocks Dizocilpine-Induced Prepulse Inhibition Defic
    M100907, a Serotonin 5-HT2A Receptor Antagonist and Putative Antipsychotic, Blocks Dizocilpine-Induced Prepulse Inhibition Deficits in Sprague–Dawley and Wistar Rats Geoffrey B. Varty, Ph.D., Vaishali P. Bakshi, Ph.D., and Mark A. Geyer, Ph.D. a In a recent study using Wistar rats, the serotonergic 5-HT2 1 receptor agonist cirazoline disrupts PPI. As risperidone a receptor antagonists ketanserin and risperidone reduced the and M100907 have affinity at the 1 receptor, a final study disruptive effects of the noncompetitive N-methyl-D- examined whether M100907 would block the effects of aspartate (NMDA) antagonist dizocilpine on prepulse cirazoline on PPI. Risperidone partially, but inhibition (PPI), suggesting that there is an interaction nonsignificantly, reduced the effects of dizocilpine in Wistar between serotonin and glutamate in the modulation of PPI. rats, although this effect was smaller than previously In contrast, studies using the noncompetitive NMDA reported. Consistent with previous studies, risperidone did antagonist phencyclidine (PCP) in Sprague–Dawley rats not alter the effects of dizocilpine in Sprague–Dawley rats. found no effect with 5-HT2 antagonists. To test the hypothesis Most importantly, M100907 pretreatment fully blocked the that strain differences might explain the discrepancy in effect of dizocilpine in both strains; whereas SDZ SER 082 these findings, risperidone was tested for its ability to had no effect. M100907 had no influence on PPI by itself reduce the PPI-disruptive effects of dizocilpine in Wistar and did not reduce the effects of cirazoline on PPI. These and Sprague–Dawley rats. Furthermore, to determine studies confirm the suggestion that serotonin and glutamate which serotonergic receptor subtype may mediate this effect, interact in modulating PPI and indicate that the 5-HT2A the 5-HT2A receptor antagonist M100907 (formerly MDL receptor subtype mediates this interaction.
    [Show full text]
  • Guanfacine Extended Release for ADHD
    Out of the Pipeline p Guanfacine extended release for ADHD Floyd R. Sallee, MD, PhD uanfacine extended release (GXR)— Table 1 α Once-daily a selective -2 adrenergic agonist Guanfacine extended release: GFDA-approved for the treatment formulation may of attention-defi cit/hyperactivity disor- Fast facts improve adherence der (ADHD)—has demonstrated effi cacy Brand name: Intuniv and control for inattentive and hyperactive/impulsive Indication: Attention-defi cit/hyperactivity symptoms across disorder symptom domains in 2 large trials lasting® Dowden Health Media a full day 8 and 9 weeks.1,2 GXR’s once-daily formu- Approval date: September 3, 2009 lation may increase adherence and deliver Availability date: November 2009 consistent control of symptomsCopyright across a For personalManufacturer: use Shire only full day (Table 1). Dosing forms: 1-mg, 2-mg, 3-mg, and 4-mg extended-release tablets Recommended dosage: 0.05 to 0.12 mg/kg Clinical implications once daily GXR exhibits enhancement of noradren- ergic pathways through selective direct receptor action in the prefrontal cortex.3 brain believed to play a major role in at- This mechanism of action is different from tentional and organizational functions that that of other FDA-approved ADHD medi- preclinical research has linked to ADHD.3 cations. GXR can be used alone or in com- The postsynaptic α-2A receptor is bination with stimulants or atomoxetine thought to play a central role in the opti- for treating complex ADHD, such as cases mal functioning of the PFC as illustrated accompanied by oppositional features and by the “inverted U hypothesis of PFC ac- emotional dysregulation or characterized tivation.”4 In this model, cyclic adenos- by partial stimulant response.
    [Show full text]
  • Covalent Agonists for Studying G Protein-Coupled Receptor Activation
    Covalent agonists for studying G protein-coupled receptor activation Dietmar Weicherta, Andrew C. Kruseb, Aashish Manglikb, Christine Hillera, Cheng Zhangb, Harald Hübnera, Brian K. Kobilkab,1, and Peter Gmeinera,1 aDepartment of Chemistry and Pharmacy, Friedrich Alexander University, 91052 Erlangen, Germany; and bDepartment of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305 Contributed by Brian K. Kobilka, June 6, 2014 (sent for review April 21, 2014) Structural studies on G protein-coupled receptors (GPCRs) provide Disulfide-based cross-linking approaches (17, 18) offer important insights into the architecture and function of these the advantage that the covalent binding of disulfide-containing important drug targets. However, the crystallization of GPCRs in compounds is chemoselective for cysteine and enforced by the active states is particularly challenging, requiring the formation of affinity of the ligand-pharmacophore rather than by the elec- stable and conformationally homogeneous ligand-receptor com- trophilicity of the cross-linking function (19). We refer to the plexes. Native hormones, neurotransmitters, and synthetic ago- described ligands as covalent rather than irreversible agonists nists that bind with low affinity are ineffective at stabilizing an because cleavage may be promoted by reducing agents and the active state for crystallogenesis. To promote structural studies on disulfide transfer process is a reversible chemical reaction the pharmacologically highly relevant class
    [Show full text]
  • The Adrenergic Control of Lower Esophageal Sphincter Function: an EXPERIMENTAL MODEL of DENERVATION SUPERSENSITIVITY
    The Adrenergic Control of Lower Esophageal Sphincter Function: AN EXPERIMENTAL MODEL OF DENERVATION SUPERSENSITIVITY Anthony J. DiMarino, Sidney Cohen J Clin Invest. 1973;52(9):2264-2271. https://doi.org/10.1172/JCI107413. To evaluate the adrenergic regulation of lower esophageal sphincter (LES) function, LES pressure, LES relaxation during swallowing, and blood pressure were measured in the anesthetized opossum, Didelphis virginiana, during intravenous administration of alpha and beta adrenergic agonists and antagonists. Studies were done in controls and animals adrenergically denervated with 6-hydroxydopamine. Alpha adrenergic agonists (norepinephrine, phenylephrine) increased LES pressure and blood pressure, whereas a beta adrenergic agonist (isoproterenol) decreased both pressures. Alpha adrenergic antagonism (phentolamine) reduced basal LES pressure by 38.3±3.8% (mean ±SEM) (P < 0.001). Beta adrenergic antagonism (propranolol) had no significant effect on either basal LES pressure or percent of LES relaxation with swallowing. After adrenergic denervation with 6-hydroxydopamine, basal LES pressure was reduced by 22.5±5.3% (P < 0.025) but LES relaxation during swallowing was unaltered. In denervated animals, both LES pressure and blood pressure dose response curves showed characteristics of denervation supersensitivity to alpha but not to beta adrenergic agonists. These studies suggest: (a) a significant portion of basal LES pressure is dependent upon alpha adrenergic stimulation; (b) LES relaxation during swallowing is not an adrenergically mediated response; c( ) the LES pressure response to alpha adrenergic agonists after 6-hydroxydopamine may serve as a model of denervation supersensitivity in the gastrointestinal tract. Find the latest version: https://jci.me/107413/pdf The Adrenergic Control of Lower Esophageal Sphincter Function AN EXPERIMENTAL MODEL OF DENERVATION SUPERSENSITIVITY ANTHoNY J.
    [Show full text]
  • Β2‑Adrenergic Receptor Functionality and Genotype in Two Different Models of Chronic Inflammatory Disease: Liver Cirrhosis and Osteoarthritis
    MOLECULAR MEDICINE REPORTS 17: 7987-7995, 2018 β2‑adrenergic receptor functionality and genotype in two different models of chronic inflammatory disease: Liver cirrhosis and osteoarthritis REYES ROCA1, PABLO ESTEBAN1, PEDRO ZAPATER2,3, MARÍA-DEL-MAR INDA4, ANNA LUCIA CONTE1, LAURA GÓMEZ-ESCOLAR5, HELENA MARTÍNEZ6, JOSÉ F. HORGA3, JOSÉ M. PALAZON5 and ANA M. PEIRÓ3,4 1Occupational Observatory, Miguel Hernández University (UMH) of Elche, 03202 Elche; 2CIBERehd, Carlos III Health Institute, 28029 Madrid; 3Clinical Pharmacology, General Hospital of Alicante; 4Neuropharmacology on Pain (NED) Research Group, ISABIAL-FISABIO, General Hospital of Alicante; 5Liver Unit, General Hospital of Alicante, 03010 Alicante; 6Clinical R&D Area, Bioiberica S.A., 08029 Barcelona, Spain Received June 12, 2017; Accepted September 28, 2017 DOI: 10.3892/mmr.2018.8820 Abstract. The present study was designed to investigate the Introduction functional status of β2 adrenoceptors (β2AR) in two models of chronic inflammatory disease: Liver cirrhosis (LC) and The role of the sympathetic nervous system (SNS) in inflam- osteoarthritis (OA). The β2AR gene contains three single mation is still not completely understood, although it is well nucleotide polymorphisms at amino acid positions 16, 27 and known that disturbed interaction between both contributes to 164. The aim of the present study was to investigate the poten- pathogenic chronic inflammatory diseases (1,2). Evidence for tial influence of lymphocyte β2AR receptor functionality and the possibility of such interaction have been reinforced since genotype in LC and OA patients. Blood samples from cirrhotic the discovery of the expression of beta-2-adrenergic receptor patients (n=52, hepatic venous pressure gradient 13±4 mmHg, (β2AR) on T and B lymphocytes, macrophages, natural killer CHILD 7±2 and MELD 11±4 scores), OA patients (n=30, 84% cells and neutrophils (3-6).
    [Show full text]
  • Discovery of Novel Imidazolines and Imidazoles As Selective TAAR1
    Discovery of Novel Imidazolines and Imidazoles as Selective TAAR1 Partial Agonists for the Treatment of Psychiatric Disorders Giuseppe Cecere, pRED, Discovery Chemistry F. Hoffmann-La Roche AG, Basel, Switzerland Biological Rationale Trace amines are known for four decades Trace Amines - phenylethylamine p- tyramine p- octopamine tryptamine (PEA) Biogenic Amines dopamine norepinephrine serotonin ( DA) (NE) (5-HT) • Structurally related to classical biogenic amine neurotransmitters (DA, NE, 5-HT) • Co-localised & released with biogenic amines in same cells and vesicles • Low concentrations in CNS, rapidly catabolized by monoamine oxidase (MAO) • Dysregulation linked to psychiatric disorders such as schizophrenia & 2 depression Trace Amines Metabolism 3 Biological Rationale Trace Amine-Associated Receptors (TAARs) p-Tyramine extracellular TAAR1 Discrete family of GPCR’s Subtypes TAAR1-TAAR9 known intracellular Gs Structural similarity with the rhodopsin and adrenergic receptor superfamily adenylate Activation of the TAAR1 cyclase receptor leads to cAMP elevation of intracellular cAMP levels • First discovered in 2001 (Borowsky & Bunzow); characterised and classified at Roche in 2004 • Trace amines are endogenous ligands of TAAR1 • TAAR1 is expressed throughout the limbic and monoaminergic system in the brain Borowsky, B. et al., PNAS 2001, 98, 8966; Bunzow, J. R. et al., Mol. Pharmacol. 2001, 60, 1181. Lindemann L, Hoener MC, Trends Pharmacol Sci 2005, 26, 274. 4 Biological Rationale Electrical activity of dopaminergic neurons + p-tyramine
    [Show full text]
  • G Protein-Coupled Receptors: What a Difference a ‘Partner’ Makes
    Int. J. Mol. Sci. 2014, 15, 1112-1142; doi:10.3390/ijms15011112 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review G Protein-Coupled Receptors: What a Difference a ‘Partner’ Makes Benoît T. Roux 1 and Graeme S. Cottrell 2,* 1 Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK; E-Mail: [email protected] 2 Reading School of Pharmacy, University of Reading, Reading RG6 6UB, UK * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-118-378-7027; Fax: +44-118-378-4703. Received: 4 December 2013; in revised form: 20 December 2013 / Accepted: 8 January 2014 / Published: 16 January 2014 Abstract: G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types.
    [Show full text]
  • The Importance of Serotonergic and Adrenergic Receptors for the Induction and Expression of One-Trial Cocaine-Induced Behavioral Sensitization" (2016)
    California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 12-2016 THE IMPORTANCE OF SEROTONERGIC AND ADRENERGIC RECEPTORS FOR THE INDUCTION AND EXPRESSION OF ONE- TRIAL COCAINE-INDUCED BEHAVIORAL SENSITIZATION Krista N. Rudberg California State University - San Bernardino Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Biological Psychology Commons, and the Pharmacology Commons Recommended Citation Rudberg, Krista N., "THE IMPORTANCE OF SEROTONERGIC AND ADRENERGIC RECEPTORS FOR THE INDUCTION AND EXPRESSION OF ONE-TRIAL COCAINE-INDUCED BEHAVIORAL SENSITIZATION" (2016). Electronic Theses, Projects, and Dissertations. 420. https://scholarworks.lib.csusb.edu/etd/420 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. THE IMPORTANCE OF SEROTONERGIC AND ADRENERGIC RECEPTORS FOR THE INDUCTION AND EXPRESSION OF ONE-TRIAL COCAINE- INDUCED BEHAVIORAL SENSITIZATION A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in General/Experimental Psychology by Krista Nicole Rudberg December 2016 THE IMPORTANCE OF SEROTONERGIC AND ADRENERGIC RECEPTORS FOR THE INDUCTION AND EXPRESSION OF ONE-TRIAL COCAINE- INDUCED BEHAVIORAL SENSITIZATION A Thesis Presented to the Faculty of California State University, San Bernardino by Krista Nicole Rudberg December 2016 Approved by: Sanders McDougall, Committee Chair, Psychology Cynthia Crawford, Committee Member Matthew Riggs, Committee Member © 2016 Krista Nicole Rudberg ABSTRACT Addiction is a complex process in which behavioral sensitization may be an important component.
    [Show full text]
  • Pharmacological Approach to Sleep Disturbances in Autism Spectrum Disorders with Psychiatric Comorbidities: a Literature Review
    medical sciences Review Pharmacological Approach to Sleep Disturbances in Autism Spectrum Disorders with Psychiatric Comorbidities: A Literature Review Sachin Relia 1,* and Vijayabharathi Ekambaram 2,* 1 Department of Psychiatry, University of Tennessee Health Sciences Center, 920, Madison Avenue, Suite 200, Memphis, TN 38105, USA 2 Department of Psychiatry, University of Oklahoma Health Sciences Center, 920, Stanton L Young Blvd, Oklahoma City, OK 73104, USA * Correspondence: [email protected] (S.R.); [email protected] (V.E.); Tel.: +1-901-448-4266 (S.R.); +1-405-271-5251 (V.E.); Fax: +1-901-297-6337 (S.R.); +1-405-271-3808 (V.E.) Received: 15 August 2018; Accepted: 17 October 2018; Published: 25 October 2018 Abstract: Autism is a developmental disability that can cause significant emotional, social and behavioral dysfunction. Sleep disorders co-occur in approximately half of the patients with autism spectrum disorder (ASD). Sleep problems in individuals with ASD have also been associated with poor social interaction, increased stereotypy, problems in communication, and overall autistic behavior. Behavioral interventions are considered a primary modality of treatment. There is limited evidence for psychopharmacological treatments in autism; however, these are frequently prescribed. Melatonin, antipsychotics, antidepressants, and α agonists have generally been used with melatonin, having a relatively large body of evidence. Further research and information are needed to guide and individualize treatment for this population group. Keywords: autism spectrum disorder; sleep disorders in ASD; medications for sleep disorders in ASD; comorbidities in ASD 1. Introduction Autism is a developmental disability that can cause significant emotional, social, and behavioral dysfunction. According to the Diagnostic and Statistical Manual (DSM-V) classification [1], autism spectrum disorder (ASD) is characterized by persistent deficits in domains of social communication, social interaction, restricted and repetitive patterns of behavior, interests, or activities.
    [Show full text]