Biological Engineering Curriculum 17 18 15 16 16 16

Total Page:16

File Type:pdf, Size:1020Kb

Biological Engineering Curriculum 17 18 15 16 16 16 Name: ________________ BIOLOGICAL ENGINEERING CURRICULUM MSUID # ________________ (Effective 8/17/2015) Net ID: ________________ Advisor: ________________ 1 CH 1213 CH 1211 **Soc/Beh Sci BIO 1134 MA 1713 EN 1103 ABE 1911 Chemistry I Invst in Chem I Elective (3hr) Biology I Calculus I En Comp I Engr in Life Sci 18 SEMESTER F L F ABE 1921 CH 1223 CH 1221 PH 2213 *Humanities MA 1723 EN 1113 2 Intro to Engr Chemistry II Invst in Chem II Physics I Elective (3hr) Calculus II En Comp II 17 Des S SEMESTER S CH 2501 MA 3123 CH 2503 PH 2223 EM 2413 MA 2733 3 Elem Organic Intro to Stat Elem Organic Physics II Engr Mech I Calculus III 16 Lab Infer SEMESTER F L ABE 4803 *Bio Sci *Engineering EM 2433 MA 2743 4 Biosys Elective (3hr) Elective (3hr) Engr Mech II Calculus IV 15 Simulation SEMESTER S F EM 3213 BCH 4013 ABE 4911 **Soc/Beh MA 3253 ABE 3413 5 Mech of Prin Bio Chem Engr Seminar Elective (3hr) Diff Equations Bio Instrum I 16 Materials SEMESTER F F L ABE 3813 ABE 3303 BIO 3304 *ABE Elective ABE 4423 6 Biophy Prop of Trans in Biol Gen Micro Bio (3hr) Bio Instrum II 16 Mat Env SEMESTER S L S L S L ABE 4323 ABE 4813 *ABE Elective GE 3513 *Engineering 7 Phys Sys in Princ Engr (3 hrs) Tech Writing Elective (3h) 15 BME Design SEMESTER F F F ABE 4833 **Humanities *Engr / Math **Fine Arts EM 3313 8 Pract Engr Elective (3hr) Elective (3h) Elective (3h) Fluid Dynamics 15 Design SEMESTER S S Updated: October 20, 2017 L - Lab Included * Restricted elective course options are listed on the back F - Fall ** Must be on University core cirriculum TOTAL 128 S - Spring Biological Science Electives: Engineering Electives: BIO 2103 - Cell Biology ABE 4523 - Biomedical Materials BIO 3504 - Comparative Anatomy (with Lab) ABE 4613 - Biomechanics BIO 4114 - Cellular Physiology ABE 4723 - Tissue Engineering BIO 4405 - Pothogenic Microbiologyt ABE 4624 - Experimental Methods in Material Research BIO 4413 - Immunology EM 4123 - An Intro to Finite Element Method BIO 4433 - Pinciples of Virology EM 4133 - Mechanics of Composite Materials BIO 4473 - Medical Virology EM 4213 - Advanced Mechanics of Materials BIO 4503 - Vertebrate Embryology ME 3113 - Engineering ANalysis BIO 4504 - Comparative Vertebrate Embryology ME 3533 - Termodynamics BIO 4514 - Animal Physiology ME 4123 - Failure of Engineering Materials ADS 4613 - Physiology of Reproduction ME 4743 - LabCIEW BCH 4113 - Essentials of Molecular Genetics ME 4833 - Intermediate Fluid Mechanics EG 1143 - Graphic COmmunication CSE 4613 - Bio-Computing CSE 4623 - Computational Biology Engineering / Math /Physics Electives: IE 4113 - Human Factor Engineering IE 4173 - Occupational Safety Enigneering MA 3113 - Intro to Linear Algebra IE 4553 - Engineering Law and Ethics MA 3353 Differential Equaion II IE 4733 - Linear Programming MA 4373 - Intro to Partial Differential Equation IE 4743 - Engineering Design Optimization MA 4143 Graph Theory ECE 3714 - Digital Devices and Logic Design MA 4373 - Intro to Partial Differential Equations MA 4313 - Numerical Analysis I PH 2233 Physics III.
Recommended publications
  • Use of Cell Culture in Virology for Developing Countries in the South-East Asia Region © World Health Organization 2017
    USE OF CELL C USE OF CELL U LT U RE IN VIROLOGY FOR DE RE IN VIROLOGY V ELOPING C O U NTRIES IN THE NTRIES IN S O U TH- E AST USE OF CELL CULTURE A SIA IN VIROLOGY FOR R EGION ISBN: 978-92-9022-600-0 DEVELOPING COUNTRIES IN THE SOUTH-EAST ASIA REGION World Health House Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110002, India Website: www.searo.who.int USE OF CELL CULTURE IN VIROLOGY FOR DEVELOPING COUNTRIES IN THE SOUTH-EAST ASIA REGION © World Health Organization 2017 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition.” Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization.
    [Show full text]
  • Technical Glossary
    WBVGL 6/28/03 12:00 AM Page 409 Technical Glossary abortive infection: Infection of a cell where there is no net increase in the production of infectious virus. abortive transformation: See transitory (transient or abortive) transformation. acid blob activator: A regulatory protein that acts in trans to alter gene expression and whose activity depends on a region of an amino acid sequence containing acidic or phosphorylated residues. acquired immune deficiency syndrome (AIDS): A disease characterized by loss of cell-mediated and humoral immunity as the result of infection with human immunodeficiency virus (HIV). acute infection: An infection marked by a sudden onset of detectable symptoms usually followed by complete or apparent recovery. adaptive immunity (acquired immunity): See immunity. adjuvant: Something added to a drug to increase the effectiveness of that drug. With respect to the immune system, an adjuvant increases the response of the system to a particular antigen. agnogene: A region of a genome that contains an open reading frame of unknown function; origi- nally used to describe a 67- to 71-amino acid product from the late region of SV40. AIDS: See acquired immune deficiency syndrome. aliquot: One of a number of replicate samples of known size. a-TIF: The alpha trans-inducing factor protein of HSV; a structural (virion) protein that functions as an acid blob transcriptional activator. Its specificity requires interaction with certain host cel- lular proteins (such as Oct1) that bind to immediate-early promoter enhancers. ambisense genome: An RNA genome that contains sequence information in both the positive and negative senses. The S genomic segment of the Arenaviridae and of certain genera of the Bunyaviridae have this characteristic.
    [Show full text]
  • Biological Engineering (BIOE)
    2021-2022 Academic Catalog BIOE3100 METABOLIC ENGINEERING BIOLOGICAL ENGINEERING An engineering approach to microbiology and bio-based products. As bioengineering continues to grow as a discipline, biomanufacturing (BIOE) using "microbial cell factories" continues to pique the interests of the entrepreneur. Commodity compounds, from amino acids to BIOE2000 FUNDAMENTALS OF BIOLOGICAL ENGINEERING biopolymers, can be manufactured fermentatively. With a growing This course introduces students to the fundamental concepts of list of organismal genome sequences available for analysis and Biological Engineering. Knowledge of thermodynamics and fluid manipulation, organisms ( mainly microorganisms) will be utilized and mechanics is critical for students to solve biological engineering subsequently manipulated by the growing number of molecular biology problems. Students will learn about energy, entropy and enthalpy in their and synthetic biology techniques available. Students will utilize the various forms in a biological setting. Students will also learn basic fluid methods and concepts taught in this course for problem solving in statics and dynamics. These topics will be applied in assignments, exams biotechnology, biomanufacturing and the biopharmaceutical fields. and in the laboratory to solve biomedical and biochemical engineering This course discusses cellular and organismal metabolic networks and problems. Case studies are presented to allow student to put together the mathematical and experimental manipulation of those networks. their
    [Show full text]
  • Journal of Virology
    JOURNAL OF VIROLOGY VOLUME 37 0 NUMBER 1 0 JANUARY 1981 EDITORIAL BOARD Robert R. Wagner, Editor-in-Chief (1982) University of Virginia School of Medicine, Charlottesville Dwight L. Anderson, Editor (1983) Haold S. Ginsberg, Editor (1984) School ofDentistry, Columbia University University of Minnesota, New York, N. Y. Minneapolis David T. Denhardt, Editor (1982) Edward M. Scolnick, Editor (1982) University of Western Ontario National Cancer Institute London, Ontario, Canada Bethesda, Md. David Baltimore (1981) Calderon Howe (1982) Dan S. Ray (1983) Amiya K. Banerjee (1982) Alice S. Huang (1981) M. E. Reichmann (1982) Kenneth I. Berns (1982) Tony Hunter (1983) Bernard E. Reilly (1983) David H. L. Bishop (1982) D. C. Kelly (1982) Wiliam S. Robinson (1983) David Botstein (1982) Thomas J. Kelly, Jr. (1982) Bernard Roizman (1982) Dennis T. Brown (1981) George Khoury (1981) Roland R. Rueckert (1982) Ahmad 1. Bukhari (1981) Jonathan A. King (1981) Norman P. Salzman (1981) Purnell Cboppin (1983) David W. Kingsbury (1982) Joseph Sambrook (1982) John M. Coffin (1983) Daniel Kolakofsky (1983) PrisciUa A. Schaffer (1981) Richard W. Compans (1982) Lloyd M. Kozboff (1982) Sondra Schlesinger (1983) Geoffrey M. Cooper (1981) Robert M. Krug (1983) June R. Scott (1983) Clive Dickson (1981) Robert A. Lazzarini 1981) Phillip A. Sharp (1982) Walter Doerfler (1983) Richard A. Lerner (1981) Aaron J. Shatkin (1982) Harrison Echols (1981) Myron Levine (1982) Saul J. Sllverstein (1982) Elvera Ehrenfeld (1983) Tomas Lindahl (1981) Lee D. Simon (1981) Robert N. Eisenman (1982) Douglas R. Lowy (1983) Kai Simons (1981) Suzanne U. Emerson (1983) Ronald B. Luftig (1981) Patrcia G. Spear (1981) Lynn Enquist (1981) Robert Martin (1981) Mark F.
    [Show full text]
  • BIO 399 Virology Biology (PDF)
    Course and Code Virology Biology 399 Class time: 1:00-2:15 pm, MW Location: Culpin Room Name of Faculty: Dr. Mark S. Davis Contact details: [email protected] Office hours: TBA Course Description Virology is a relatively new discipline in the realm of science. Viruses have been recognized as the causative agents of epidemics from the beginning of human history through early written records or archeological data. In addition, rudimentary vaccinations have occurred for almost one thousand years. However, it is only recently (relatively speaking) that the virus particle and its composition have been identified and studied. Virology, the study of viruses, includes many facets including viral replication, structure, interactions with hosts, evolution/history, epidemiology, and the diseases caused by the agent. This field is vast and any course must be selective in the coverage of the subject. This course is designed for the upper level science major with a background in microbiology and/or genetics. The course objectives are the following: Introduce the students to general viral structure and replication, viral immunology, viral therapy, and the major diseases caused by various viral families. Credit Hour Policy Statement This class meets the federal credit hour policy of: □ Standard lecture – e.g. 1 hour of class with an expected 2 hours of additional student work outside of class each week for approximately 15 weeks for each hour of credit, or a total of 45-75 hours for each credit. □ Other academic activities – e.g. 2 hours of laboratory, studio, or similar activities with an expected 1 hour of additional student work each week for approximately 15 weeks for each hour of credit, or a total of 45-75 hours for each credit.
    [Show full text]
  • Undergraduate Handbook
    Department of Chemical and Biological Engineering Undergraduate Handbook Academic Year 2021-2022 Revised: June 2021 Engineering Biology Certificate Bioengineering & Biotechnology Engineering & Sustainable Entrepreneurship Environmental Management Energy Certificate Studies Certificate Certificate Certificate Energy & Entrepreneurship Environmental & Management Technology The Chemical and Biological Engineering Materials Science Applied Math Certificate Major Certificate Materials & Optimization, Product Dynamics & Engineering Information Engineering Physics Technology Certificate Science & Engineering for New Technologies Table of Contents WHAT IS CHEMICAL AND BIOLOGICAL ENGINEERING? .................................... 2 THE EDUCATION OF A CHEMICAL AND BIOLOGICAL ENGINEER ........................ 3 CERTIFICATE PROGRAMS .............................................................................. 19 INDEPENDENT WORK ................................................................................... 20 GRADUATION REQUIREMENTS ..................................................................... 24 ACADEMIC HONORS ..................................................................................... 24 HONOR SOCIETIES, AWARDS, AND PRIZES .................................................... 25 ADVISING ..................................................................................................... 28 EXTRACURRICULAR ACTIVITIES ..................................................................... 29 POST GRADUATION PLANS ..........................................................................
    [Show full text]
  • The Origin and Evolution of Viruses
    Mini Review Agri Res & Tech: Open Access J Volume 21 Issue 5 - June 2019 Copyright © All rights are reserved by Luka AO Awata DOI: 10.19080/ARTOAJ.2019.21.556181 The Central Question in Virology: The Origin and Evolution of Viruses Luka AO Awata1*, Beatrice E Ifie2, Pangirayi Tongoona2, Eric Danquah2, Samuel Offei2 and Phillip W Marchelo D’ragga3 1Directorate of Research, Ministry of Agriculture and Food Security, South Sudan 2College of Basic and Applied Sciences, University of Ghana, Ghana 3Department of Agricultural Sciences, University of Juba, South Sudan Submission: June 01, 2019; Published: June 12, 2019 *Corresponding author: Luka AO Awata, Directorate of Research, Ministry of Agriculture and Food Security, Ministries Complex, Parliament Road, P.O. Box 33, Juba, South Sudan Abstract Viruses are major threats to both animals and plants worldwide. A virus exists as a set of one or more nucleic acid molecules normally encased in a protective coat of protein or lipoprotein. It is able to replicate itself within suitable host cells, causing diseases to plants and animals. While the three domains of life trace their linages back to a single protein (the Last Universal Cellular Ancestor (LUCA), information on parental molecule from which all viruses descended is inadequate. Structural analyses of capsid proteins suggest that there is no universal viral protein and different types of virions are mostly formed independently. As a result, it is impossible to neither include viruses in the Tree of Life of LUCA nor to draw a universal tree of viruses analogous to the tree of life. Although the concepts on the origin and evolution of viruses are well documented, the structure and biological activities of viruses are paradoxical.
    [Show full text]
  • Dr. Junghae Suh to Be Inducted Into Medical and Biological Engineering Elite
    For further information, contact Charlie Kim Director of Membership & Operations [email protected] February 15, 2021 Dr. Junghae Suh to be inducted into medical and biological engineering elite WASHINGTON, D.C.— The American Institute for Medical and Biological Engineering (AIMBE) has announced the election of Junghae Suh, Ph.D., Vice President; Professor, Gene Therapy Accelerator Unit, Biogen to its College of Fellows. Dr. Suh was nominated, reviewed, and elected by peers and members of the College of Fellows for significant contributions in synthetic virology and biomolecular engineering to design gene delivery technologies for controlled drug delivery. The College of Fellows is comprised of the top two percent of medical and biological engineers in the country. The most accomplished and distinguished engineering and medical school chairs, research directors, professors, innovators, and successful entrepreneurs comprise the College of Fellows. AIMBE Fellows are regularly recognized for their contributions in teaching, research, and innovation. AIMBE Fellows have been awarded the Nobel Prize, the Presidential Medal of Science and the Presidential Medal of Technology and Innovation and many also are members of the National Academy of Engineering, National Academy of Medicine, and the National Academy of Sciences. A formal induction ceremony will be held during AIMBE’s 2021 Annual Event on March 26. Dr. Suh will be inducted along with 174 colleagues who make up the AIMBE Fellow Class of 2021. For more information about the AIMBE Annual Event, please visit www.aimbe.org. AIMBE’s mission is to recognize excellence in, and advocate for, the fields of medical and biological engineering in order to advance society.
    [Show full text]
  • CALL for PAPERS IEEE Transactions on Nanobioscience Thematic Issue: “Nano/Molecular Medicine and Engineering”
    CALL FOR PAPERS IEEE Transactions on Nanobioscience Thematic Issue: “Nano/Molecular Medicine and Engineering” The IEEE Transactions on Nanobioscience will devote a themed issue “Nano/Molecular Medicine and Engineering” to a collection of papers highlighting research and technology development in the field of nano-biotechnology, molecular engineering, micro/nano-fluidics, micro/nano-system integration, nano-biology and nano-medicine. IEEE Nanotechnology Council is sponsoring the 9th IEEE International Conference on Nano/Molecular Medicine and Engineering (IEEE-NANOMED 2015) held on November 15–18, 2015, Honolulu, HI, USA to foster interaction between physicians, scientists, engineers in these emerging areas. Areas of interest include but are not limited to: • Nano and molecular technologies in medical theranostics • Nanotechnology in drug delivery • Biomedical imaging • Bio/nano sensing • Biochips and Bio-MEMS • Biomechatronics • Biological interface • Cells at the nanoscale • Nanomaterials for tissue engineering and biology • Frontiers in nanobiotechnology • Translational medicine Submissions are solicited from conference participants and other researchers in the field for a review paper or a research paper for this themed issue. Manuscripts will be subject to the normal peer review procedures of the IEEE Transactions on Nanobioscience. Follow the guideline (http://tnb.embs.org/forauthors.html), and submit your paper to Manuscript Central at http://mc.manuscriptcentral.com/tnbembs, indicating in the cover letter that you wish the paper to be considered for the Special Issue “Nano/Molecular Medicine and Engineering”. Submission deadline: July 15, 2016 Anticipated publication: November, 2016 Please address all other correspondence regarding this special issue to the Guest Editors: Jin-Woo Kim, Ph.D. Professor, Biological Engineering, Biomedical Engineering, Nanoscience & Engineering University of Arkansas, USA Email: [email protected] Deok-Ho Kim, Ph.D.
    [Show full text]
  • Microbiology Graduate Program
    MICROBIOLOGY GRADUATE PROGRAM MICROBIOLOGY GRADUATE PROGRAM Curriculum Doctoral Program in Microbial Science and Engineering The major components of the training program are required coursework, elective coursework, rotations and thesis research, The Microbiology Graduate Program (http://microbiology.mit.edu)— teaching, training in the ethical conduct of research, and qualifying an interdepartmental and interdisciplinary initiative at MIT exams. —integrates educational resources across the participating departments to build connections among faculty with shared Required Subjects interests and to build an educational community for training 7.492[J] Methods and Problems in 12 students in the study of microbial systems. Microbiology The study of microbes has been critical in our current understanding 7.493[J] Microbial Genetics and Evolution 12 of basic biological processes, evolution, and the functions of the 7.499 Research Rotations in Microbiology biosphere, and has contributed to numerous elds of engineering. 7.571 Quantitative Analysis of Biological 12 Microbes have the amazing ability to grow in extreme conditions, & 7.572 Data to grow slowly or rapidly, and to readily exchange DNA. They are and Quantitative Measurements and essential for life as we know it, but can also be agents of disease. Modeling of Biological Systems They are instrumental in shaping the environment, in evolution, 7.51 Principles of Biochemical Analysis 12 and in modern biotechnology. Microbes are amenable to virtually all modern approaches in science and engineering. As such, or 7.80 Fundamentals of Chemical Biology they provide natural engineering laboratories for creating new capabilities for industry (e.g., pharmaceuticals, chemicals, energy) Elective Subjects and are the foundation of pioneering eorts in synthetic biology, Students must take three elective subjects, totaling 36 units, from i.e., building life from its component parts.
    [Show full text]
  • Virology in the Department of Microbiology at UAB
    Virology in the Department of Microbiology at UAB Uninfected HCMV infected Virus/Host Interactions Sunnie Thompson Richard Whitley Quanjun Li William Britt Allan Zajac Dengue Picornaviridae Herpesviridae Herpesviridae Arenaviridae Reoviridae HCV (HCMV) LCMV Dicistroviridae Togaviridae Therapeutic & Apoptosis Assembly Viral Translation Vaccine Drug Discovery Immunity Immunology Development Inflammation Identification of Host Factors Involved in Viral Amplification 1. 2. Sunnie Thompson Mock Polio 3. VPg Polyprotein AAAAAAA ILF3 kDa Matrin‐3 170- hnRNP U Host Factors 130- Nucleolin 95- P72 72- PABP1 55- IMP1 1. Infect cells with virus hnRNP L 43- PTB 2. Crosslink proteins to viral La RNA in vivo 34- hnRNP K hnRNP G 3. Identify proteins PCBP2 26- hnRNP A2/B1 4. Determine their role in hnRNP C1/C2 1 2 3 4 the viral life cycle RPS25 is essential for translation initiation by the Dicistroviridae and hepatitis C viral IRESs Landry et al. (2009) 23: 2764 CrPV IGR IRES HCV IRES E site Sunnie Thompson Depleon of RPS25 inhibits HCV replicaon in cell culture. RPS25 is not an essenal protein. RPS25 is a good target for anviral or ancancer therapeucs. Schuler et al. (2006) Nat. Sturct. Mol. Biol. 13:1092‐6 Spahn et al. (2001) Science 291:1959‐62 Future Direcons: 1. Can HCV develop escape mutants that no longer require RPS25. 2. Use yeast genecs to idenfy which Rps25p amino acids interact with the IRESs 3. Idenfy inhibitors to RPS25 to develop anvirals Richard Whitley Probe the natural history of human herpes simplex virus infecons to determine Richard
    [Show full text]
  • Evolutionary Virology at 40
    | PERSPECTIVES Evolutionary Virology at 40 Jemma L. Geoghegan* and Edward C. Holmes†,‡,§,**,1 *Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia and †Marie Bashir Institute for Infectious Diseases and Biosecurity, ‡Charles Perkins Centre, §School of Life and Environmental Sciences, and **Sydney Medical School, The University of Sydney, New South Wales 2006, Australia ORCID IDs: 0000-0003-0970-0153 (J.L.G.); 0000-0001-9596-3552 (E.C.H.) ABSTRACT RNA viruses are diverse, abundant, and rapidly evolving. Genetic data have been generated from virus populations since the late 1970s and used to understand their evolution, emergence, and spread, culminating in the generation and analysis of many thousands of viral genome sequences. Despite this wealth of data, evolutionary genetics has played a surprisingly small role in our understanding of virus evolution. Instead, studies of RNA virus evolution have been dominated by two very different perspectives, the experimental and the comparative, that have largely been conducted independently and sometimes antagonistically. Here, we review the insights that these two approaches have provided over the last 40 years. We show that experimental approaches using in vitro and in vivo laboratory models are largely focused on short-term intrahost evolutionary mechanisms, and may not always be relevant to natural systems. In contrast, the comparative approach relies on the phylogenetic analysis of natural virus populations, usually considering data collected over multiple cycles of virus–host transmission, but is divorced from the causative evolutionary processes. To truly understand RNA virus evolution it is necessary to meld experimental and comparative approaches within a single evolutionary genetic framework, and to link viral evolution at the intrahost scale with that which occurs over both epidemiological and geological timescales.
    [Show full text]