Analysis of the Time-Dependent Chemical Evolution of Titan Haze Tholin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) Patent Application Publication (10) Pub. No.: US 2002/0179493 A1 Etter (43) Pub
US 2002O179493A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0179493 A1 Etter (43) Pub. Date: Dec. 5, 2002 (54) PRODUCTION AND USE OF A PREMIUM (52) U.S. Cl. .................... 208/131; 208/108; 208/111.01; FUEL GRADE PETROLEUM COKE 208/142; 208/143; 208/144; 208/145 (75) Inventor: Roger G. Etter, Cardington, OH (US) Correspondence Address: (57) ABSTRACT STANDLEY & GLCREST LLP 495 METRO PLACE SOUTH A premium "fuel-grade' petroleum coke is produced by SUTE 210 modifying petroleum coking technology. Coking process DUBLIN, OH 43017 (US) parameters are controlled to consistently produce petroleum coke within a predetermined range for Volatile combustible (73) Assignee: Environmental & Energy Enterprises, material (VCM) content. The invention includes a process of LLC producing a coke fuel, the method comprising Steps: (a) obtaining a coke precursor material derived from crude oil (21) Appl. No.: 10/027,677 and having a volatile organic component; and (b) Subjecting the coke precursor material to a thermal cracking proceSS for (22) Filed: Dec. 20, 2001 Sufficient time and at Sufficient temperature and under Suf ficient preSSure So as to produce a coke product having Related U.S. Application Data volatile combustible materials (VCMs) present in an amount (63) Continuation-in-part of application No. 09/556,132, in the range of from about 13% to about 50% by weight. filed on Apr. 21, 2000. Continuation-in-part of appli Most preferably, the volatile combustible materials in the coke product typically may be in the range of from about cation No. 09/763,282, filed on Feb. -
Phd Projects at the Institute of Origins
PhD projects at the Institute of Origins. A list of possible PhD projects at the Institute of Origins appear in the following pages. If you have any questions regarding any projects please contact the individual supervisors. Also if you have other suggestions for a project please contact us as well. The chemical composition of star forming regions near and far .................................... 3 ! Modelling the solubilities of organic solids in hydrocarbon liquids: application to the geology and astrobiology of Titan. .................................................................................... 4! Modeling turbulent flows in solar quiescent prominences ...............................................5! The zoo of exo-planets..................................................................................................8! Understanding the formation of heavy negative ions at Titan and Enceladus................9! Mapping anthropogenic versus natural sources of atmospheric CO2 ............................11! Probing Large Scale Structure with High Energy Neutrinos.........................................13! Future Moon Missions and High Energy Neutrinos ......................................................15! Measuring Cosmic Particles and the Upper Atmosphere with LOFAR.........................17! Mimicking planetary environments for assessing the survivability of bacterial organisms within an artificial environmental chamber. A combined planetary atmosphere and microbiological study for exploring panspermia................................ -
Carl Sagan 1934–1996
Carl Sagan 1934–1996 A Biographical Memoir by David Morrison ©2014 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. CARL SAGAN November 9, 1934–December 20, 1996 Awarded 1994 NAS Pubic Welfare Medal Carl Edward Sagan was a founder of the modern disci- plines of planetary science and exobiology (which studies the potential habitability of extraterrestrial environments for living things), and he was a brilliant educator who was able to inspire public interest in science. A visionary and a committed defender of rational scientific thinking, he transcended the usual categories of academia to become one of the world’s best-known scientists and a true celebrity. NASA Photo Courtesy of Sagan was propelled in his careers by a wealth of talent, By David Morrison a large share of good luck, and an intensely focused drive to succeed. His lifelong quests were to understand our plane- tary system, to search for life beyond Earth, and to communicate the thrill of scientific discovery to others. As an advisor to the National Aeronautics and Space Administration (NASA) and a member of the science teams for the Mariner, Viking, Voyager, and Galileo missions, he was a major player in the scientific exploration of the solar system. He was also a highly popular teacher, but his influence reached far beyond the classroom through his vivid popular writing and his mastery of the medium of television. The early years Born in 1934, Sagan grew up in a workingclass Jewish neighborhood of Brooklyn, New York, and attended public schools there and in Rahway, New Jersey. -
Comparative Enantioseparation of Chiral
Comparative enantioseparation of chiral 4,4’-bipyridine derivatives on coated and immobilized amylose-based chiral stationary phases Paola Peluso, Barbara Sechi, Giancarlo Lai, Alessandro Dessì, Roberto Dallocchio, Sergio Cossu, Emmanuel Aubert, Robin Weiss, Patrick Pale, Victor Mamane, et al. To cite this version: Paola Peluso, Barbara Sechi, Giancarlo Lai, Alessandro Dessì, Roberto Dallocchio, et al.. Com- parative enantioseparation of chiral 4,4’-bipyridine derivatives on coated and immobilized amylose- based chiral stationary phases. Journal of Chromatography A, Elsevier, 2020, 1625, pp.461303. 10.1016/j.chroma.2020.461303. hal-02868910 HAL Id: hal-02868910 https://hal.archives-ouvertes.fr/hal-02868910 Submitted on 15 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Chromatography A xxx (xxxx) 461303 Contents lists available at ScienceDirect Journal of Chromatography A journal homepage: http://ees.elsevier.com Comparative enantioseparation of chiral 4,4’-bipyridine derivatives on coated and immobilized amylose-based chiral -
An Evolving Astrobiology Glossary
Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. An Evolving Astrobiology Glossary K. J. Meech1 and W. W. Dolci2 1Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 2NASA Astrobiology Institute, NASA Ames Research Center, MS 247-6, Moffett Field, CA 94035 Abstract. One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be uni- versally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astro- biology Institute so that it can continue to grow as an evolving resource for the astrobiology community. 1. Introduction Interdisciplinary research does not come about simply by facilitating occasions for scientists of various disciplines to come together at meetings, or work in close proximity. Interdisciplinarity is achieved when the total of the research expe- rience is greater than the sum of its parts, when new research insights evolve because of questions that are driven by new perspectives. Interdisciplinary re- search foci often attack broad, paradigm-changing questions that can only be answered with the combined approaches from a number of disciplines. -
Isoprene Rule Revisited 242:2 R9–R22 Endocrinology REVIEW Terpenes, Hormones and Life: Isoprene Rule Revisited
242 2 Journal of S G Hillier and R Lathe Isoprene rule revisited 242:2 R9–R22 Endocrinology REVIEW Terpenes, hormones and life: isoprene rule revisited Stephen G Hillier1 and Richard Lathe2 1Medical Research Council Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK 2Division of Infection and Pathway Medicine, University of Edinburgh Medical School, Edinburgh, UK Correspondence should be addressed to S G Hillier or R Lathe: [email protected] or [email protected] Abstract The year 2019 marks the 80th anniversary of the 1939 Nobel Prize in Chemistry awarded Key Words to Leopold Ruzicka (1887–1976) for work on higher terpene molecular structures, including f isoprene the first chemical synthesis of male sex hormones. Arguably his crowning achievement f terpene was the ‘biogenetic isoprene rule’, which helped to unravel the complexities of terpenoid f steroid biosynthesis. The rule declares terpenoids to be enzymatically cyclized products of f evolution substrate alkene chains containing a characteristic number of linear, head-to-tail f great oxidation event condensed, C5 isoprene units. The number of repeat isoprene units dictates the type of f Ruzicka terpene produced (i.e., 2, monoterpene; 3, sesquiterpene; 4, diterpene, etc.). In the case of triterpenes, six C5 isoprene units combine into C30 squalene, which is cyclized into one of the signature carbon skeletons from which myriad downstream triterpenoid structures are derived, including sterols and steroids. Ruzicka also had a keen interest in the origin of life, but the pivotal role of terpenoids has generally been overshadowed by nucleobases, amino acids, and sugars. -
2-\Substituted-Dibenzofuranyl and Dibenzothienyl\ Carbapenem
Europaisches Patentamt 19 European Patent Office Office europeen des brevets © Publication number: 0 480 712 A1 EUROPEAN PATENT APPLICATION © Application number : 91309294.6 © int. ci.5: C07D 477/00, //A61K31/40 © Date of filing : 09.10.91 © Priority: 11.10.90 US 596152 © Inventor : Dininno, Frank P. 15.10.90 US 597648 5 Benjamin Court Old Birdge, NY 08857 (US) @ Date of publication of application : Inventor : Greenlee, Mark L. 15.04.92 Bulletin 92/16 1470 Campbell Street Rahway, NJ 07065 (US) Inventor : Salzmann, Thomas N. @ Designated Contracting States : 154 Meadowbrook Drive CH DE FR GB IT LI NL North Plainfield, NJ 07062 (US) MERCK & CO. INC. © Applicant : © Representative : Thompson, John Dr. et al 126, East Lincoln Avenue P.O. Box 2000 Merck & Co., Inc. European Patent New 07065-0900 Rahway Jersey (US) Department Terlings Park Eastwick Road Harlow, Essex CM20 2QR (GB) © 2-(substituted-dibenzofuranyl and dibenzothienyl) carbapenem antibacterial agents. © Carbapenems having the formula : R2H R COOM where Z is ; or < (A- ) CB. ) CM where X is O or S(O)0 2 ; h- are useful antibacterial agents, especially with respect to activity against methicillin resistant O Staphylococcus aureus (MRSA). 00 LU Jouve, 18, rue Saint-Denis, 75001 PARIS EP 0 480 712 A1 BACKGROUND OF THE INVENTION The present invention relates to antibacterial agents of the carbapenem class, in which the 2-position side chain is characterized by a dibenzofuranyl ordibenzothienyl moiety, substituted by various cation ic and neutral 5 substituents as described in more detail -
Presentation
IRENA MAMAJANOV FROM MESSY CHEMISTRY TO THE ORIGINS OF LIFE Habitability: Producing Conditions Conducive to Life LPI “First Billion Years” Conference Series September 9 2019 PLANETARY HABITABILITY AS PERCEIVED BY A CHEMIST WHAT IS HABITABILITY ANYWAY? Planetary habitability is the measure of a planet's or a natural satellite's potential to develop and sustain life. EARTH-CENTRIC? DEFINITION OF LIFE LIFE IS A SELF-SUSTAINING SYSTEM CAPABLE OF DARWINIAN EVOLUTION NASA Working Definition HOW WE STUDY ORIGINS OF LIFE TWO APPROACHES IN THE BROADEST SENSE ▸ More Earth biology-centric ▸ Prebiotic synthesis of biological building blocks ▸ Setting biological processes in abiotic environments ▸ Evolution of biological structures ▸ More open-ended: Building a chemical system capable of Darwinian Evolution ▸ Selectivity ▸ Replication ▸ Heredity MORE EARTH BIOLOGY-CENTRIC: UNSATISFYING? TV PARADOX ? ? “MORE OPEN ENDED” APPROACH ▸ Looking at systems level processes. MESSY CHEMISTRY ▸ “Systems Chemistry” usually = small defined networks ▸ “Messy Chemistry” = the network chemistry of large, “intractable”, prebiotically plausible systems. ▸ Sloppy biological processes ▸ Processes resembling biological but inefficient Small fraction of the Organic Chemistry M. Kowalik, C.M. Gothard, A.M. Drews, N.A. Gothard, B.A. Grzybowski, K.J.M. Bishop, Parallel optimization of synthetic pathways within the network of organic chemistry. Angew. Network (~0.001%). Chem. Int. Ed. 51, 7928-7932 (2012). EVOLUTION OF THE CHEMOSPHERE AND BIOCHEMICAL NETWORKS Biomimetic Systems Systems approximating biological fUnction • Protoenzymes • Protocells Open-Ended Systems Systems having no predetermined limit or boundary • Autocatalytic systems M. Kowalik, C.M. Gothard, A.M. Drews, N.A. Gothard, B.A. Grzybowski, K.J.M. Bishop (2012) Angew. Chem. Int. Ed. 51:7928-7932 Small fraction of the Organic Chemistry Network (~0.001%). -
Biosynthesis and Transport of Flavonol Sophorosides in Arabidopsis Thaliana Anthers
Biosynthesis and transport of flavonol sophorosides in Arabidopsis thaliana anthers Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät I – Biowissenschaften – der Martin-Luther-Universität Halle-Wittenberg, vorgelegt von Herrn Stephan Grunewald geb. am 10.05.1989 in Berlin Gutachter: 1. PD. Dr. Thomas Vogt 2. Prof. Dr. Ingo Heilmann 3. Prof. Dr. Enrico Martinoia Verteidigungsdatum: 18.01.2021 II Table of contents Table of contents List of abbreviations ....................................................................................... V List of tables ................................................................................................. VII List of figures............................................................................................... VIII 1 Introduction ............................................................................................. 1 1.1 The role of transport in plant secondary metabolism ............................................................ 1 1.2 Transporters of specialized metabolites ................................................................................. 2 1.2.1 ABC-transporters ............................................................................................................. 2 1.2.2 MATE-transporters .......................................................................................................... 3 1.2.3 The nitrate/peptide family (NPF-transporters) .............................................................. -
Mapping Disciplinary Relationships in Astrobiology: 2001-2012
Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship 2014 Mapping disciplinary relationships in Astrobiology: 2001-2012 Jason W. Cornell Western Washington University Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geography Commons Recommended Citation Cornell, Jason W., "Mapping disciplinary relationships in Astrobiology: 2001-2012" (2014). WWU Graduate School Collection. 387. https://cedar.wwu.edu/wwuet/387 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Mapping Disciplinary Relationships in Astrobiology: 2001 - 2012 By Jason W. Cornell Accepted in Partial Completion Of the Requirements for the Degree Master of Science Kathleen L. Kitto, Dean of the Graduate School ADVISORY COMMITTEE Chair, Dr. Gigi Berardi Dr. Linda Billings Dr. David Rossiter ! ! MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permission from the owner of any third party copyrighted material included in these files. I acknowledge that I retain ownership rights to the copyright of this work, including but not limited to the right to use all or part of this work in future works, such as articles or books. -
“Tholin”. Jialin Li1, Xinting Yu2, Ella Sciamma-O’Brien3, Chao He4, Joshua A
52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2675.pdf Comparison Study of Surface Energies for Titan Haze Analogs “Tholin”. Jialin Li1, Xinting Yu2, Ella Sciamma-O’Brien3, Chao He4, Joshua A. Sebree5, Farid Salama3, Sarah M. Hörst4, Xi Zhang2, 1Department of Physics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 ([email protected]). 2Depart- ment of Earth and Planetary Sciences, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064. 3NASA Ames Research Center, Space Science Astrobiology Division, Astrophysics Branch, Moffett Field, CA 94035. 4Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218. 5Department of Chemistry and Biochemistry, University of Northern Iowa, 1227 W 27th St, Cedar Falls, IA 50614 Introduction: Titan, the largest moon of Saturn, is implications for cloud formation, aerosol-lake interac- known for its thick and hazy atmosphere with rich and tions, sand transport and dune formation on Titan’s complex organic materials. Numerous chemical reac- surface [10]. tions are initiated in Titan’s upper atmosphere, result- ing in the formation of complex organic aerosol parti- Methods: We have measured the surface energy for cles that form the thick haze layers. One of the main seven samples from three different laboratories. Two efforts to better understand the chemistry of the haze is tholin samples were produced in the Planetary Haze through the synthetic analog materials of Titan’s haze, Research (PHAZER) chamber at Johns Hopkins Uni- tholins. Several groups have been involved in the pro- versity (JHU) from an initial N2:CH4 (95:5) gas mix- duction of tholins and analyses of its physical, chemi- ture using two energy sources: an AC glow discharge cal, and optical properties. -
The PRT Protein Family Sangita C Sinha* and Janet L Smith†
733 The PRT protein family Sangita C Sinha* and Janet L Smith† Members of the homologous PRT family are catalytic and unrelated to the PRT family (‘type I PRTases’) [27,28]. regulatory proteins involved in nucleotide synthesis and The sequences of the other tryptophan, histidine and salvage. New crystal structures have revealed key elements of nicotinamide enzymes appear to be unrelated to each other PRT protein function, as well as glimpses of how the fold has and unrelated to the PRT family (see also Update). Here we evolved to perform both catalytic and regulatory functions. review only members of the homologous PRT family. Addresses Like many protein families, the PRT family was identified *Department of Biochemistry, Howard Hughes Medical Institute, at the sequence level and the family relationship was University of Texas Southwestern Medical Center, Dallas, Texas confirmed later by three-dimensional structures. Nearly all 75390, USA; e-mail: [email protected] PRT proteins include a 13-residue sequence motif easily †Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA; e-mail: [email protected] recognized in database searches. The motif consists of Correspondence: Janet L Smith four hydrophobic amino acids, two acidic amino acids and seven amino acids of variable character, usually including Current Opinion in Structural Biology 2001, 11:733–739 glycine and threonine. The motif was correctly predicted 0959-440X/01/$ — see front matter to be a PRPP-binding site in advance of structural © 2001 Elsevier Science Ltd. All rights reserved. information [29,30]. Apart from the PRT sequence motif, Abbreviations different PRT proteins have a low level of sequence GPATase glutamine PRPP amidotransferase identity, generally <15%.