Supernovae, Dark Energy, and the Accelerating Universe

Total Page:16

File Type:pdf, Size:1020Kb

Supernovae, Dark Energy, and the Accelerating Universe Supernovae, Dark Energy, and the Accelerating Universe Using very distant supernovae as standard candles, one pansion of the universe since the time the light was emitted. A collection of can trace the history of cosmic expansion and try to find such measurements, over a sufficient out what’s currently speeding it up. range of distances, would yield an en- tire historical record of the universe’s expansion. Saul Perlmutter Conceptually, this scheme is a re- markably straightforward means to a or millennia, cosmology has been a theorist’s domain, profound prize: an empirical account of the growth of our Fwhere elegant theory was only occasionally endangered universe. A spectroscopically distinguishable class of ob- by inconvenient facts. Early in the 20th century, Albert jects with determinable intrinsic brightness would do the Einstein gave us new conceptual tools to rigorously ad- trick. In Edwin Hubble’s discovery of the cosmic expansion dress the questions of the origins, evolution, and fate of the in the 1920s, he used entire galaxies as standard candles. universe. In recent years, technology has developed to the But galaxies, coming in many shapes and sizes, are diffi- point where these concepts from general relativity can be cult to match against a standard brightness. They can substantiated and elaborated by measurements. For ex- grow fainter with time, or brighter—by merging with other ample, measurement of the remnant glow from the hot, galaxies. In the 1970s, it was suggested that the brightest dense beginnings of the expanding universe—the cosmic member of a galaxy cluster might serve as a reliable stan- microwave background—is yielding increasingly detailed dard candle. But in the end, all proposed distant galactic data about the first half-million years and the overall candidates were too susceptible to evolutionary change. geometry of the cosmos (see the news story on page 21 of As early as 1938, Walter Baade, working closely with this issue). Fritz Zwicky, pointed out that supernovae were extremely The standard model of particle physics has also begun promising candidates for measuring the cosmic expansion. to play a prominent role in cosmology. The widely accepted Their peak brightness seemed to be quite uniform, and idea of exponential inflation in the immediate aftermath they were bright enough to be seen at extremely large dis- of the Big Bang was built on the predicted effect of certain tances.1 In fact, a supernova can, for a few weeks, be as putative particle fields and potentials on the cosmic ex- bright as an entire galaxy. Over the years, however, as pansion. Measuring the history of cosmic expansion is no more and more supernovae were measured, it became easy task, but in recent years, a specific variety of super- clear that they were a rather heterogeneous group with a novae, type Ia, has given us a first glimpse at that his- wide range of intrinsic peak brightnesses. tory—and surprised us with an unexpected plot twist. In the early 1980s, a new subclassification of super- novae emerged. Supernovae with no hydrogen features in Searching for a standard candle their spectra had previously all been classified simply as In principle, the expansion history of the cosmos can be de- type I. Now this class was subdivided into types Ia and Ib, termined quite easily, using as a “standard candle” any dis- depending on the presence or absence of a silicon absorp- tinguishable class of astronomical objects of known in- tion feature at 6150 Å in the supernova’s spectrum.2 With trinsic brightness that can be identified over a wide that minor improvement in typology, an amazing consis- distance range. As the light from such beacons travels to tency among the type Ia supernovae became evident. Their Earth through an expanding universe, the cosmic expan- spectra matched feature-by-feature, as did their “light sion stretches not only the distances between galaxy clus- curves”—the plots of waxing and waning brightness in the ters, but also the very wavelengths of the photons en route. weeks following a supernova explosion.3,4 By the time the light reaches us, the spectral wavelength The uniformity of the type Ia supernovae became even l has thus been redshifted by precisely the same incre- more striking when their spectra were studied in detail as mental factor z Dl/l by which the cosmos has been they brightened and then faded. First, the outermost parts stretched in the time interval since the light left its source. of the exploding star emit a spectrum that’s the same for That time interval is the speed of light times the object’s all typical type Ia supernovae, indicating the same ele- distance from Earth, which can be determined by com- mental densities, excitation states, velocities, and so forth. paring its apparent brightness to a nearby standard of the Then, as the exploding ball of gas expands, the outermost same class of astrophysical objects. layers thin out and become transparent, letting us see the The recorded redshift and brightness of each such ob- spectral signatures of conditions further inside. Eventu- ject thus provide a measurement of the total integrated ex- ally, if we watch the entire time series of spectra, we get to see indicators that probe almost the entire explosive Saul Perlmutter is a senior scientist at the Lawrence Berkeley event. It is impressive that the type Ia supernovae exhibit National Laboratory and leader of the Supernova Cosmology so much uniformity down to this level of detail. Such a “su- Project. pernova CAT-scan” can be difficult to interpret. But it’s © 2003 American Institute of Physics, S-0031-9228-0304-030-4 April 2003 Physics Today 53 Figure 1. Light curves of nearby, low-redshift type Ia super- –20 a novae measured by Mario Hamuy and coworkers.7 (a) Ab- solute magnitude, an inverse logarithmic measure of intrinsic –19 brightness, is plotted against time (in the star’s rest frame) be- fore and after peak brightness. The great majority (not all of them shown) fall neatly onto the yellow band. The figure –18 emphasizes the relatively rare outliers whose peak brightness or duration differs noticeably from the norm. The nesting of the light curves suggests that one can deduce the intrinsic –17 brightness of an outlier from its time scale. The brightest supernovae wax and wane more slowly than the faintest. (b) Simply by stretching the time scales of individual light –16 curves to fit the norm, and then scaling the brightness by an ABSOLUTE MAGNITUDE amount determined by the required time stretch, one gets all the type Ia light curves to match.5,8 –15 –20 b –19 clear that essentially the same physical processes are oc- –18 curring in all of these explosions. The detailed uniformity of the type Ia supernovae im- plies that they must have some common triggering mech- –17 anism (see the box on page 56). Equally important, this uniformity provides standard spectral and light-curve SCALED MAGNITUDE –16 templates that offer the possibility of singling out those su- pernovae that deviate slightly from the norm. The complex natural histories of galaxies had made them difficult to –15 standardize. With type Ia supernovae, however, we saw –20 0 20 40 60 the chance to avoid such problems. We could examine the DAYS rich stream of observational data from each individual ex- plosion and match spectral and light-curve fingerprints to recognize those that had the same peak brightness. tantalizing prospect that we could find such standard- Within a few years of their classification, type Ia su- candle supernovae more than ten times farther away and pernovae began to bear out that expectation. First, David thus sample the expansion of the universe several billion Branch and coworkers at the University of Oklahoma years ago. Measurements using such remote supernovae showed that the few type Ia outliers—those with peak might actually show the expected slowing of the expansion brightness significantly different from the norm—could rate by gravity. Because that deceleration rate would de- generally be identified and screened out.4 Either their r pend on the cosmic mean mass density m, we would, in ef- spectra or their “colors” (the ratios of intensity seen fect, be weighing the universe. through two broadband filters) deviated from the tem- If mass density is, as was generally supposed a decade plates. The anomalously fainter supernovae were typically ago, the primary energy constituent of the universe, then redder or found in highly inclined spiral galaxies (or both). the measurement of the changing expansion rate would Many of these were presumably dimmed by dust, which also determine the curvature of space and tell us about absorbs more blue light than red. whether the cosmos is finite or infinite. Furthermore, the Soon after Branch’s work, Mark Phillips at the Cerro fate of the universe might be said to hang in the balance: Tololo Interamerican Observatory in Chile showed that If, for example, we measured a cosmic deceleration big the type Ia brightness outliers also deviated from the tem- enough to imply a r exceeding the “critical density” r plate light curve—and in a very predictable way.5 The su- m c (roughly 10–29 gm/cm3), that would indicate that the uni- pernovae that faded faster than the norm were fainter at verse will someday stop expanding and collapse toward an their peak, and the slower ones were brighter (see figure 1). In fact, one could use the light curve’s time scale to pre- apocalyptic “Big Crunch.” dict peak brightness and thus slightly recalibrate each su- All this sounded enticing: fundamental measure- pernova.
Recommended publications
  • AST 541 Lecture Notes: Classical Cosmology Sep, 2018
    ClassicalCosmology | 1 AST 541 Lecture Notes: Classical Cosmology Sep, 2018 In the next two weeks, we will cover the basic classic cosmology. The material is covered in Longair Chap 5 - 8. We will start with discussions on the first basic assumptions of cosmology, that our universe obeys cosmological principles and is expanding. We will introduce the R-W metric, which describes how to measure distance in cosmology, and from there discuss the meaning of measurements in cosmology, such as redshift, size, distance, look-back time, etc. Then we will introduce the second basic assumption in cosmology, that the gravity in the universe is described by Einstein's GR. We will not discuss GR in any detail in this class. Instead, we will use a simple analogy to introduce the basic dynamical equation in cosmology, the Friedmann equations. We will look at the solutions of Friedmann equations, which will lead us to the definition of our basic cosmological parameters, the density parameters, Hubble constant, etc., and how are they related to each other. Finally, we will spend sometime discussing the measurements of these cosmological param- eters, how to arrive at our current so-called concordance cosmology, which is described as being geometrically flat, with low matter density and a dominant cosmological parameter term that gives the universe an acceleration in its expansion. These next few lectures are the foundations of our class. You might have learned some of it in your undergraduate astronomy class; now we are dealing with it in more detail and more rigorously. 1 Cosmological Principles The crucial principles guiding cosmology theory are homogeneity and expansion.
    [Show full text]
  • Large Scale Structure Signals of Neutrino Decay
    Large Scale Structure Signals of Neutrino Decay Peizhi Du University of Maryland Phenomenology 2019 University of Pittsburgh based on the work with Zackaria Chacko, Abhish Dev, Vivian Poulin, Yuhsin Tsai (to appear) Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM 1 Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM What we don’t know: • Origin of mass • Majorana or Dirac • Mass ordering • Total mass 1 Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM What we don’t know: • Origin of mass • Majorana or Dirac • Mass ordering D1 • Total mass ⌫ • Lifetime …… D2 1 Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM What we don’t know: • Origin of mass • Majorana or Dirac probe them in cosmology • Mass ordering D1 • Total mass ⌫ • Lifetime …… D2 1 Why cosmology? Best constraints on (m⌫ , ⌧⌫ ) CMB LSS Planck SDSS Huge number of neutrinos Neutrinos are non-relativistic Cosmological time/length 2 Why cosmology? Best constraints on (m⌫ , ⌧⌫ ) Near future is exciting! CMB LSS CMB LSS Planck SDSS CMB-S4 Euclid Huge number of neutrinos Passing the threshold: Neutrinos are non-relativistic σ( m⌫ ) . 0.02 eV < 0.06 eV “Guaranteed”X evidence for ( m , ⌧ ) Cosmological time/length ⌫ ⌫ or new physics 2 Massive neutrinos in structure formation δ ⇢ /⇢ cdm ⌘ cdm cdm 1 ∆t H− ⇠ Dark matter/baryon 3 Massive neutrinos in structure formation δ ⇢ /⇢ cdm ⌘ cdm cdm 1 ∆t H− ⇠ Dark matter/baryon
    [Show full text]
  • Measuring the Velocity Field from Type Ia Supernovae in an LSST-Like Sky
    Prepared for submission to JCAP Measuring the velocity field from type Ia supernovae in an LSST-like sky survey Io Odderskov,a Steen Hannestada aDepartment of Physics and Astronomy University of Aarhus, Ny Munkegade, Aarhus C, Denmark E-mail: [email protected], [email protected] Abstract. In a few years, the Large Synoptic Survey Telescope will vastly increase the number of type Ia supernovae observed in the local universe. This will allow for a precise mapping of the velocity field and, since the source of peculiar velocities is variations in the density field, cosmological parameters related to the matter distribution can subsequently be extracted from the velocity power spectrum. One way to quantify this is through the angular power spectrum of radial peculiar velocities on spheres at different redshifts. We investigate how well this observable can be measured, despite the problems caused by areas with no information. To obtain a realistic distribution of supernovae, we create mock supernova catalogs by using a semi-analytical code for galaxy formation on the merger trees extracted from N-body simulations. We measure the cosmic variance in the velocity power spectrum by repeating the procedure many times for differently located observers, and vary several aspects of the analysis, such as the observer environment, to see how this affects the measurements. Our results confirm the findings from earlier studies regarding the precision with which the angular velocity power spectrum can be determined in the near future. This level of precision has been found to imply, that the angular velocity power spectrum from type Ia supernovae is competitive in its potential to measure parameters such as σ8.
    [Show full text]
  • AST4220: Cosmology I
    AST4220: Cosmology I Øystein Elgarøy 2 Contents 1 Cosmological models 1 1.1 Special relativity: space and time as a unity . 1 1.2 Curvedspacetime......................... 3 1.3 Curved spaces: the surface of a sphere . 4 1.4 The Robertson-Walker line element . 6 1.5 Redshifts and cosmological distances . 9 1.5.1 Thecosmicredshift . 9 1.5.2 Properdistance. 11 1.5.3 The luminosity distance . 13 1.5.4 The angular diameter distance . 14 1.5.5 The comoving coordinate r ............... 15 1.6 TheFriedmannequations . 15 1.6.1 Timetomemorize! . 20 1.7 Equationsofstate ........................ 21 1.7.1 Dust: non-relativistic matter . 21 1.7.2 Radiation: relativistic matter . 22 1.8 The evolution of the energy density . 22 1.9 The cosmological constant . 24 1.10 Some classic cosmological models . 26 1.10.1 Spatially flat, dust- or radiation-only models . 27 1.10.2 Spatially flat, empty universe with a cosmological con- stant............................ 29 1.10.3 Open and closed dust models with no cosmological constant.......................... 31 1.10.4 Models with more than one component . 34 1.10.5 Models with matter and radiation . 35 1.10.6 TheflatΛCDMmodel. 37 1.10.7 Models with matter, curvature and a cosmological con- stant............................ 40 1.11Horizons.............................. 42 1.11.1 Theeventhorizon . 44 1.11.2 Theparticlehorizon . 45 1.11.3 Examples ......................... 46 I II CONTENTS 1.12 The Steady State model . 48 1.13 Some observable quantities and how to calculate them . 50 1.14 Closingcomments . 52 1.15Exercises ............................. 53 2 The early, hot universe 61 2.1 Radiation temperature in the early universe .
    [Show full text]
  • Arxiv:0910.5224V1 [Astro-Ph.CO] 27 Oct 2009
    Baryon Acoustic Oscillations Bruce A. Bassett 1,2,a & Ren´ee Hlozek1,2,3,b 1 South African Astronomical Observatory, Observatory, Cape Town, South Africa 7700 2 Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, South Africa 7700 3 Department of Astrophysics, University of Oxford Keble Road, Oxford, OX1 3RH, UK a [email protected] b [email protected] Abstract Baryon Acoustic Oscillations (BAO) are frozen relics left over from the pre-decoupling universe. They are the standard rulers of choice for 21st century cosmology, provid- ing distance estimates that are, for the first time, firmly rooted in well-understood, linear physics. This review synthesises current understanding regarding all aspects of BAO cosmology, from the theoretical and statistical to the observational, and includes a map of the future landscape of BAO surveys, both spectroscopic and photometric . † 1.1 Introduction Whilst often phrased in terms of the quest to uncover the nature of dark energy, a more general rubric for cosmology in the early part of the 21st century might also be the “the distance revolution”. With new knowledge of the extra-galactic distance arXiv:0910.5224v1 [astro-ph.CO] 27 Oct 2009 ladder we are, for the first time, beginning to accurately probe the cosmic expansion history beyond the local universe. While standard candles – most notably Type Ia supernovae (SNIa) – kicked off the revolution, it is clear that Statistical Standard Rulers, and the Baryon Acoustic Oscillations (BAO) in particular, will play an increasingly important role. In this review we cover the theoretical, observational and statistical aspects of the BAO as standard rulers and examine the impact BAO will have on our understand- † This review is an extended version of a chapter in the book Dark Energy Ed.
    [Show full text]
  • A Model-Independent Approach to Reconstruct the Expansion History of the Universe with Type Ia Supernovae
    A Model-Independent Approach to Reconstruct the Expansion History of the Universe with Type Ia Supernovae Dissertation submitted to the Technical University of Munich by Sandra Ben´ıtezHerrera Max Planck Institute for Astrophysics October 2013 TECHNISHCE UNIVERSITAT¨ MUNCHEN¨ Max-Planck Institute f¨urAstrophysik A Model-Independent Approach to Reconstruct the Expansion History of the Universe with Type Ia Supernovae Sandra Ben´ıtezHerrera Vollst¨andigerAbdruck der von der Fakult¨atf¨urPhysik der Technischen Uni- versitt M¨unchen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzende(r): Univ.-Prof. Dr. Lothar Oberauer Pr¨uferder Dissertation: 1. Hon.-Prof. Dr. Wolfgang Hillebrandt 2. Univ.-Prof. Dr. Shawn Bishop Die Dissertation wurde am 23.10.2013 bei der Technischen Universit¨atM¨unchen eingereicht und durch die Fakult¨atf¨urPhysik am 21.11.2013 angenommen. \Our imagination is stretched to the utmost, not, as in fiction, to imagine things which are not really there, but just to comprehend those things which are there." Richard Feynman \It is impossible to be a mathematician without being a poet in soul." Sofia Kovalevskaya 6 Contents 1 Introduction 11 2 From General Relativity to Cosmology 15 2.1 The Robertson-Walker Metric . 15 2.2 Einstein Gravitational Equations . 17 2.3 The Cosmological Constant . 19 2.4 The Expanding Universe . 21 2.5 The Scale Factor and the Redshift . 22 2.6 Distances in the Universe . 23 2.6.1 Standard Candles and Standard Rulers . 26 2.7 Cosmological Probes for Acceleration . 27 2.7.1 Type Ia Supernovae as Cosmological Test .
    [Show full text]
  • Arxiv:2002.11464V1 [Physics.Gen-Ph] 13 Feb 2020 a Function of the Angles Θ and Φ in the Sky Is Shown in Fig
    Flat Space, Dark Energy, and the Cosmic Microwave Background Kevin Cahill Department of Physics and Astronomy University of New Mexico Albuquerque, New Mexico 87106 (Dated: February 27, 2020) This paper reviews some of the results of the Planck collaboration and shows how to compute the distance from the surface of last scattering, the distance from the farthest object that will ever be observed, and the maximum radius of a density fluctuation in the plasma of the CMB. It then explains how these distances together with well-known astronomical facts imply that space is flat or nearly flat and that dark energy is 69% of the energy of the universe. I. COSMIC MICROWAVE BACKGROUND RADIATION The cosmic microwave background (CMB) was predicted by Gamow in 1948 [1], estimated to be at a temperature of 5 K by Alpher and Herman in 1950 [2], and discovered by Penzias and Wilson in 1965 [3]. It has been observed in increasing detail by Roll and Wilkinson in 1966 [4], by the Cosmic Background Explorer (COBE) collaboration in 1989{1993 [5, 6], by the Wilkinson Microwave Anisotropy Probe (WMAP) collaboration in 2001{2013 [7, 8], and by the Planck collaboration in 2009{2019 [9{12]. The Planck collaboration measured CMB radiation at nine frequencies from 30 to 857 6 GHz by using a satellite at the Lagrange point L2 in the Earth's shadow some 1.5 10 km × farther from the Sun [11, 12]. Their plot of the temperature T (θ; φ) of the CMB radiation as arXiv:2002.11464v1 [physics.gen-ph] 13 Feb 2020 a function of the angles θ and φ in the sky is shown in Fig.
    [Show full text]
  • FRW Cosmology
    Physics 236: Cosmology Review FRW Cosmology 1.1 Ignoring angular terms, write down the FRW metric. Hence express the comoving distance rM as an function of time and redshift. What is the relation between scale factor a(t) and redshift z? How is the Hubble parameter related to the scale factor a(t)? Suppose a certain radioactive decay emits a line at 1000 A˚, with a characteristic decay time of 5 days. If we see it at z = 3, at what wavelength do we observe it, and whats the decay timescale? The FRW metric is given as 2 2 2 2 2 2 2 ds = −c dt + a(t) [dr + Sκ(r) dΩ ]: (1) Where for a given radius of curvature, R, 8 R sin(r=R) κ = 1 <> Sκ(r) = r κ = 0 :>R sinh(r=R) κ = −1 Suppose we wanted to know the instantaneous distance to an object at a given time, such that dt = 0. Ignoring the angular dependence, i.e. a point object for which dΩ = 0, we can solve for rM as Z dp Z rM ds = a(t) dr; 0 0 dp(t) = a(t)rM (t): (2) Where dp(t) is the proper distance to an object, and rM is the coming distance. Note that at the present time the comoving distance and proper distance are equal. Consider the rate of change of the proper time a_ d_ =ar _ = d : (3) p a p Hubble is famously credited for determining what is now called Hubbles law, which states that vp(t0) = H0dp(t0): (4) Relaxing this equation to now be a function of time we will let the Hubble constant now be the Hubble parameter.
    [Show full text]
  • Distances in Cosmology
    Distances in Cosmology REVIEW OF “WORLD MODELS” Simplify notation by adopting c=1, so that E=m. Friedmann's equation is then: . Substitute H(t)= a/a and recall that we can formally associate an energy density with the cosmological constant, i.e The index i refers to the type of particle fluid under consideration, e.g. matter or radiation. If the Universe is flat (k=0): Let us define the fraction of the critical density contributed by each component of the Universe : So that we have Ωm , Ωr and ΩΛ for matter, radiation and dark energy. These quantities are time-dependent, the values today are denoted as Ωm,0 We can rewrite the Friedmann eqn: If we define Ωk = -k/(aH)2, we can write: Flat FRW Cosmologies In the last lecture we showed that the density of matter evolves as: Set a0=1. The Friedmann equation becomes: or In a flat Universe, ΩΛ,0 + Ωm,0=1. Case 1: Λ>0 Use the substitution: to obtain Take the positive root: This can be integrated by completing the square in the u-integral and with substitutions v = u + 1 and cosh w = v: to yield the solution: Case 2, Λ < 0: Introduce Solution: CaseCase 33,, Λ=0 : This is now the Einstein-deSitter case which we have already encountered in the last lecture. A flat, pressureless universe with a small, but non-zero, cosmo- logical constant initially evolves as if it were Einstein-deSitter. Fo r Λ > 0, the second term on the right-hand side of these equations dominates at large values of t and the universe grows exponentially: A wide variety of world models are conceivable, depending on the values of the parameters Ω.
    [Show full text]
  • The Big Bang in a Nutshell
    Spring term 2014: Dark Matter – lecture 1/9 Torsten Bringmann ([email protected]) reading: any standard cosmology textbook • [here, I (mostly) follow the conventions of Weinberg] K. A. Olive, G. Steigman, T. P. Walker, “Primordial nucleosynthesis: The- • ory and observations,” Phys. Rept. 333, 389-407 (2000). [astro-ph/9905320]. 1 Recap – the big bang in a nutshell The three main building blocks of modern cosmology are general relativity, the cosmological principle and a description of matter as a perfect fluid. According to the cosmological principle,theuniverseishomogeneousand isotropic on large scales, i.e. it looks basically the same at all places and in all directions. This means that spacetime can be described by the Friedmann- Robertson-Walker (FRW) metric: dr2 ds2 = g dxµdx⌫ = dt2 + a2(t) + r2d⌦2 , (1) − µ⌫ − 1 kr2 − where k =0, 1, 1 for a flat, positively and negatively curved universe, re- spectively. For− the approximately flat geometry that we observe, the scale factor a(t)thusrelatesphysicaldistancesλphys to coordinate (or comoving) distances r via λphys = ar. Note that a change of coordinates would re-scale a,soitsnormalizationdoesnotcorrespondtoaphysicalquantity;conven- tionally one often sets its value today to a0 a(t0)=1. A perfect fluid can be completely characterized⌘ by its rest-frame energy density ⇢ and and isotropic pressure p (i.e. shear stresses, viscosity and heat conduction are assumed to be absent). In the rest frame of the fluid, its energy-momentum tensor takes the form T µ⌫ =diag(⇢, p, p, p); in a frame that is moving with 4-velocity v,itthentakestheform T µ⌫ =(⇢ + p)vµv⌫ + pgµ⌫ .
    [Show full text]
  • AST1100 Lecture Notes
    AST1100 Lecture Notes 23-24: Cosmology: models of the universe 1 The FRW-metric Cosmology is the study of the universe as a whole. In the lectures on cos- mology we will look at current theories of how the universe looked in the beginning, how it looks today, how it evolved from the beginning until today and how it will continue in the future. We learned i the lectures on general relativity that how an object moves depends on the geometry of space and time. The question of how the universe evolves is mainly a question about what happens to its ’ingredients’ as time goes by. How do the objects in the universe move with time? To answer this question, we thus need to find the geometry of the universe as a whole. We know that in order to find the geometry of spacetime, we need to specify the content of spacetime in the stress-energy tensor Tµν on the right hand side in the Einstein equation Gµν =8πTµν. But how can we specify the mass and energy content at every point in space- time of the whole universe? As always, we need to make some approximations and simplifying assumptions. One main assumption is the cosmological prin- ciple. The cosmological principle states that the universe is homogeneous and isotropic. The universe is assumed to, on average, have a similar compo- sition and density in all positions and to look the same in all directions. The two conditions, homogeneity and isotropy may, at first look, seem identical. It is easy to convince yourself that they are not: Imagine a universe filled with trees which are all aligned with each other, i.e.
    [Show full text]
  • Topics in Cosmology: Island Universes, Cosmological Perturbations and Dark Energy
    TOPICS IN COSMOLOGY: ISLAND UNIVERSES, COSMOLOGICAL PERTURBATIONS AND DARK ENERGY by SOURISH DUTTA Submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy Department of Physics CASE WESTERN RESERVE UNIVERSITY August 2007 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. To the people who have believed in me. Contents Dedication iv List of Tables viii List of Figures ix Abstract xiv 1 The Standard Cosmology 1 1.1 Observational Motivations for the Hot Big Bang Model . 1 1.1.1 Homogeneity and Isotropy . 1 1.1.2 Cosmic Expansion . 2 1.1.3 Cosmic Microwave Background . 3 1.2 The Robertson-Walker Metric and Comoving Co-ordinates . 6 1.3 Distance Measures in an FRW Universe . 11 1.3.1 Proper Distance . 12 1.3.2 Luminosity Distance . 14 1.3.3 Angular Diameter Distance . 16 1.4 The Friedmann Equation . 18 1.5 Model Universes . 21 1.5.1 An Empty Universe . 22 1.5.2 Generalized Flat One-Component Models . 22 1.5.3 A Cosmological Constant Dominated Universe . 24 1.5.4 de Sitter space . 26 1.5.5 Flat Matter Dominated Universe . 27 1.5.6 Curved Matter Dominated Universe . 28 1.5.7 Flat Radiation Dominated Universe . 30 1.5.8 Matter Radiation Equality . 32 1.6 Gravitational Lensing . 34 1.7 The Composition of the Universe .
    [Show full text]