A Model-Independent Approach to Reconstruct the Expansion History of the Universe with Type Ia Supernovae

Total Page:16

File Type:pdf, Size:1020Kb

A Model-Independent Approach to Reconstruct the Expansion History of the Universe with Type Ia Supernovae A Model-Independent Approach to Reconstruct the Expansion History of the Universe with Type Ia Supernovae Dissertation submitted to the Technical University of Munich by Sandra Ben´ıtezHerrera Max Planck Institute for Astrophysics October 2013 TECHNISHCE UNIVERSITAT¨ MUNCHEN¨ Max-Planck Institute f¨urAstrophysik A Model-Independent Approach to Reconstruct the Expansion History of the Universe with Type Ia Supernovae Sandra Ben´ıtezHerrera Vollst¨andigerAbdruck der von der Fakult¨atf¨urPhysik der Technischen Uni- versitt M¨unchen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzende(r): Univ.-Prof. Dr. Lothar Oberauer Pr¨uferder Dissertation: 1. Hon.-Prof. Dr. Wolfgang Hillebrandt 2. Univ.-Prof. Dr. Shawn Bishop Die Dissertation wurde am 23.10.2013 bei der Technischen Universit¨atM¨unchen eingereicht und durch die Fakult¨atf¨urPhysik am 21.11.2013 angenommen. \Our imagination is stretched to the utmost, not, as in fiction, to imagine things which are not really there, but just to comprehend those things which are there." Richard Feynman \It is impossible to be a mathematician without being a poet in soul." Sofia Kovalevskaya 6 Contents 1 Introduction 11 2 From General Relativity to Cosmology 15 2.1 The Robertson-Walker Metric . 15 2.2 Einstein Gravitational Equations . 17 2.3 The Cosmological Constant . 19 2.4 The Expanding Universe . 21 2.5 The Scale Factor and the Redshift . 22 2.6 Distances in the Universe . 23 2.6.1 Standard Candles and Standard Rulers . 26 2.7 Cosmological Probes for Acceleration . 27 2.7.1 Type Ia Supernovae as Cosmological Test . 27 2.7.2 The Cosmic Microwave Background Radiation . 28 2.7.3 Baryonic Acoustic Oscillations . 32 2.8 The Concordance Model: ΛCDM . 34 2.8.1 Dark Matter . 34 2.8.2 Dark Energy . 38 2.8.3 Cosmological Parameters: the Current Picture . 41 2.9 Non-Standard Cosmologies: Modified Gravity . 42 2.9.1 Brane Worlds . 44 2.9.2 f(R) Models . 47 2.10 The Kinematic Approach . 48 3 Supernovae: Candles In The Universe 51 3.1 Supernovae Classification . 51 3.2 Explosion Mechanisms . 53 3.2.1 Thermonuclear Supernovae . 54 3.3 Observational Characteristics . 57 3.3.1 Light Curves and Spectra . 58 3.3.2 Diversity and Correlations: The Phillips Relation . 59 3.4 The Standardization Process of SNe Ia . 63 3.4.1 The SALT Fitter . 64 3.4.2 The MLCS Fitter . 66 3.4.3 Comparison of MLCS and SALT2 Methods . 67 7 8 CONTENTS 3.5 Cosmology with SNe Ia: Basic Principles . 70 3.5.1 The Hubble Diagram . 71 3.5.2 The Expansion History and the Accelerating Universe . 72 3.6 Current SN Ia Samples . 77 3.6.1 Observational Strategy . 77 3.6.2 State-of-the-Art SN Ia surveys . 79 3.6.3 The Union Compilation . 80 3.6.4 Systematic Uncertainties . 83 3.7 Space Versus Ground . 87 3.8 Future Samples and Surveys . 89 4 The Model-Independent Method 93 4.1 Motivation: Why Model Independent? . 93 4.2 Mathematical Formalism . 94 4.2.1 Background . 94 4.2.2 Model-Independent Determination of the Expansion Rate Function . 95 4.2.3 Illustration of the Method: Reconstructing ΛCDM . 98 4.3 Principal Component Analysis . 99 4.3.1 Building the Basis with Principal Component Analysis. 101 4.4 Error Analysis . 104 4.5 Convergence of the Neumann Series . 106 4.6 Combining Different Data Sets and Families of Models . 107 4.7 Improving the Reconstruction . 107 5 Testing the Method with Simulated Data 111 5.1 Different Cosmological Scenarios . 111 5.1.1 ΛCDM Simulations . 111 5.1.2 Non-ΛCDM Simulations . 114 5.2 SNANA: A Tool To Simulate High Quality SN Data. 120 5.2.1 Simulated Data in MLCS and SALT2. 122 6 Extracting the Expansion Rate from Real Data 127 6.1 The Union2.1 Sample Revisited . 127 6.2 Constraining Cosmological Scenarios . 130 6.2.1 Dark Energy Models . 131 6.2.2 Beyond the wCDM Cosmology . 132 6.3 Alternative Cosmological Probes . 136 6.4 Other Interesting Applications . 138 6.4.1 Checking for Systematics in the Supernova Samples . 138 6.4.2 Testing Redshift Ranges for Supernova Campaign Plan- ning . 141 6.5 Ongoing Work . 143 CONTENTS 9 7 Conclusions and Perspectives 147 8 Acknowledgments 153 Bibliography 154 10 CONTENTS 1. Introduction Humankind, given its own nature, has always tried to understand the Universe and its place in it. Since the beginning of history, cosmology has been the science through which women and men have tried to find answers to those fundamental questions by peering into the sky. Problems such as the motion of the planets, the nature of the space between stars, or the formation and evolution of galaxies, have been progressively understood thanks to the efforts of many generations of scientists. For millennia, humans have often observed new stars appearing in the night sky. As early as in 1006, Arabic and Chinese astronomers recorded the observa- tion of a bright newly-born star that shone in the sky for nearly two years and disappeared afterwards. Over the years scientists became aware that some of these events were remarkably more luminous. Moreover, estimated distances to these objects indicated that they had an extragalactic origin. Especially important were the observations of the (super)nova S Andromedae in the An- dromeda galaxy in 1885. It was reckoned, that these bright events were differ- ent from any other object ever observed before. The origin and nature of those stars remained a mystery until the beginning of the 20th century. Considered as beacons in the Universe from which relative distances can be measured, Type Ia supernova explosions play a key role, not only in cosmology, but in other fields of astrophysics. Our understanding of these magnificent objects is fundamental to comprehend the Universe in which we live in. Gravity and its effect on planetary orbits, has equally attracted a great deal of interest over history. From the theoretical, almost spiritual, beliefs of ancient Greek philosophers to the efforts of Galileo Galilei designing experi- ments with inclined planes, understanding the gravitational interactions which govern our planet and our Universe has been a priority for scientists. The first scientist who described gravity in quantitative terms, was Isaac Newton, who formulated the universal inverse-square law and provided extraordinary simple and accurate explanations of a wide range of terrestrial and celestial phenom- ena. Newton's laws were the accepted paradigm for gravity for the following two hundred years. In 1916, Albert Einstein presented his General Relativity, introducing revolutionary concepts that led to a new era in physics and cos- mology. Einstein described the curvature of space-time to be responsible of the effects of gravity but believed that the expansion detected by Edwin Hubble in 1925 would slow down over time, according with the Newtonian ideas. 11 12 1. INTRODUCTION However, the past fifthteen years have brought mounting evidence that the expansion of the Universe is nowadays in an accelerated phase. Amongst the several observational probes that led to such conclusion, and the first to reveal such a striking finding, are Type Ia supernovae. The currently adopted paradigm accounts for the acceleration but it re- quires the presence of an unknown component, dark energy, which is in fact the major constituent of our Universe. Present understanding of this compo- nent is uncomfortably close to nothing, which calls for a significant effort both at an observational and experimental front and on theoretical grounds. Be- cause of the important implications of the acceleration, ambitious experimental efforts are being developed to measure the expansion history and growth of structure in the cosmos with percent-level precision or better. A relatively large number of non-standard theories have been proposed to tackle the nature of dark energy. Indeed, cosmic acceleration is the most profound puzzle in contemporary physics and can lead to new ideas about the interaction between gravity and the quantum vacuum, the existence of extra spatial dimensions or the nature of quantum gravity. A model-independent approach to directly interpret the data is arguably essential, if one would like to avoid introducing prejudices or biases from theo- retical frameworks. The work in this thesis consists in implementing a recently developed methodology to derive the expansion history of the Universe in a model-independent fashion, using currently available Type Ia supernova data. Such reconstructions not only allow to recover the expansion history of the of the Universe, but also provide means to test cosmological models of the nature of dark energy. A number of tests on the improvement that future samples should provide or the effect of the different calibration methods are also presented. These studies shed light on the next necessary steps, from the observational side, to ensure progress. This work is but a first step in the direction of providing tighter constraints on the expansion history of the Universe and some comprehension on the prop- erties of dark energy. Model-independent methodologies are far from trivial, and a better understanding of their power and drawbacks is fundamental. The work presented here extends previous developments in this context. Future work will see to apply these methods to an increasing body of observational data, not only quantitatively, by including results from new observational cam- paigns, but also qualitatively, allowing for the introduction of data such as the Baryonic Acoustic Oscillations detected in the Cosmic Microwave Background. This thesis is organised as follows. The Chapter 2 summarizes the main as- pects of General Relativity and other alternative cosmological models needed to understand the tests and discussions presented here.
Recommended publications
  • AST 541 Lecture Notes: Classical Cosmology Sep, 2018
    ClassicalCosmology | 1 AST 541 Lecture Notes: Classical Cosmology Sep, 2018 In the next two weeks, we will cover the basic classic cosmology. The material is covered in Longair Chap 5 - 8. We will start with discussions on the first basic assumptions of cosmology, that our universe obeys cosmological principles and is expanding. We will introduce the R-W metric, which describes how to measure distance in cosmology, and from there discuss the meaning of measurements in cosmology, such as redshift, size, distance, look-back time, etc. Then we will introduce the second basic assumption in cosmology, that the gravity in the universe is described by Einstein's GR. We will not discuss GR in any detail in this class. Instead, we will use a simple analogy to introduce the basic dynamical equation in cosmology, the Friedmann equations. We will look at the solutions of Friedmann equations, which will lead us to the definition of our basic cosmological parameters, the density parameters, Hubble constant, etc., and how are they related to each other. Finally, we will spend sometime discussing the measurements of these cosmological param- eters, how to arrive at our current so-called concordance cosmology, which is described as being geometrically flat, with low matter density and a dominant cosmological parameter term that gives the universe an acceleration in its expansion. These next few lectures are the foundations of our class. You might have learned some of it in your undergraduate astronomy class; now we are dealing with it in more detail and more rigorously. 1 Cosmological Principles The crucial principles guiding cosmology theory are homogeneity and expansion.
    [Show full text]
  • Large Scale Structure Signals of Neutrino Decay
    Large Scale Structure Signals of Neutrino Decay Peizhi Du University of Maryland Phenomenology 2019 University of Pittsburgh based on the work with Zackaria Chacko, Abhish Dev, Vivian Poulin, Yuhsin Tsai (to appear) Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM 1 Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM What we don’t know: • Origin of mass • Majorana or Dirac • Mass ordering • Total mass 1 Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM What we don’t know: • Origin of mass • Majorana or Dirac • Mass ordering D1 • Total mass ⌫ • Lifetime …… D2 1 Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM What we don’t know: • Origin of mass • Majorana or Dirac probe them in cosmology • Mass ordering D1 • Total mass ⌫ • Lifetime …… D2 1 Why cosmology? Best constraints on (m⌫ , ⌧⌫ ) CMB LSS Planck SDSS Huge number of neutrinos Neutrinos are non-relativistic Cosmological time/length 2 Why cosmology? Best constraints on (m⌫ , ⌧⌫ ) Near future is exciting! CMB LSS CMB LSS Planck SDSS CMB-S4 Euclid Huge number of neutrinos Passing the threshold: Neutrinos are non-relativistic σ( m⌫ ) . 0.02 eV < 0.06 eV “Guaranteed”X evidence for ( m , ⌧ ) Cosmological time/length ⌫ ⌫ or new physics 2 Massive neutrinos in structure formation δ ⇢ /⇢ cdm ⌘ cdm cdm 1 ∆t H− ⇠ Dark matter/baryon 3 Massive neutrinos in structure formation δ ⇢ /⇢ cdm ⌘ cdm cdm 1 ∆t H− ⇠ Dark matter/baryon
    [Show full text]
  • Measuring the Velocity Field from Type Ia Supernovae in an LSST-Like Sky
    Prepared for submission to JCAP Measuring the velocity field from type Ia supernovae in an LSST-like sky survey Io Odderskov,a Steen Hannestada aDepartment of Physics and Astronomy University of Aarhus, Ny Munkegade, Aarhus C, Denmark E-mail: [email protected], [email protected] Abstract. In a few years, the Large Synoptic Survey Telescope will vastly increase the number of type Ia supernovae observed in the local universe. This will allow for a precise mapping of the velocity field and, since the source of peculiar velocities is variations in the density field, cosmological parameters related to the matter distribution can subsequently be extracted from the velocity power spectrum. One way to quantify this is through the angular power spectrum of radial peculiar velocities on spheres at different redshifts. We investigate how well this observable can be measured, despite the problems caused by areas with no information. To obtain a realistic distribution of supernovae, we create mock supernova catalogs by using a semi-analytical code for galaxy formation on the merger trees extracted from N-body simulations. We measure the cosmic variance in the velocity power spectrum by repeating the procedure many times for differently located observers, and vary several aspects of the analysis, such as the observer environment, to see how this affects the measurements. Our results confirm the findings from earlier studies regarding the precision with which the angular velocity power spectrum can be determined in the near future. This level of precision has been found to imply, that the angular velocity power spectrum from type Ia supernovae is competitive in its potential to measure parameters such as σ8.
    [Show full text]
  • AST4220: Cosmology I
    AST4220: Cosmology I Øystein Elgarøy 2 Contents 1 Cosmological models 1 1.1 Special relativity: space and time as a unity . 1 1.2 Curvedspacetime......................... 3 1.3 Curved spaces: the surface of a sphere . 4 1.4 The Robertson-Walker line element . 6 1.5 Redshifts and cosmological distances . 9 1.5.1 Thecosmicredshift . 9 1.5.2 Properdistance. 11 1.5.3 The luminosity distance . 13 1.5.4 The angular diameter distance . 14 1.5.5 The comoving coordinate r ............... 15 1.6 TheFriedmannequations . 15 1.6.1 Timetomemorize! . 20 1.7 Equationsofstate ........................ 21 1.7.1 Dust: non-relativistic matter . 21 1.7.2 Radiation: relativistic matter . 22 1.8 The evolution of the energy density . 22 1.9 The cosmological constant . 24 1.10 Some classic cosmological models . 26 1.10.1 Spatially flat, dust- or radiation-only models . 27 1.10.2 Spatially flat, empty universe with a cosmological con- stant............................ 29 1.10.3 Open and closed dust models with no cosmological constant.......................... 31 1.10.4 Models with more than one component . 34 1.10.5 Models with matter and radiation . 35 1.10.6 TheflatΛCDMmodel. 37 1.10.7 Models with matter, curvature and a cosmological con- stant............................ 40 1.11Horizons.............................. 42 1.11.1 Theeventhorizon . 44 1.11.2 Theparticlehorizon . 45 1.11.3 Examples ......................... 46 I II CONTENTS 1.12 The Steady State model . 48 1.13 Some observable quantities and how to calculate them . 50 1.14 Closingcomments . 52 1.15Exercises ............................. 53 2 The early, hot universe 61 2.1 Radiation temperature in the early universe .
    [Show full text]
  • Arxiv:0910.5224V1 [Astro-Ph.CO] 27 Oct 2009
    Baryon Acoustic Oscillations Bruce A. Bassett 1,2,a & Ren´ee Hlozek1,2,3,b 1 South African Astronomical Observatory, Observatory, Cape Town, South Africa 7700 2 Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, South Africa 7700 3 Department of Astrophysics, University of Oxford Keble Road, Oxford, OX1 3RH, UK a [email protected] b [email protected] Abstract Baryon Acoustic Oscillations (BAO) are frozen relics left over from the pre-decoupling universe. They are the standard rulers of choice for 21st century cosmology, provid- ing distance estimates that are, for the first time, firmly rooted in well-understood, linear physics. This review synthesises current understanding regarding all aspects of BAO cosmology, from the theoretical and statistical to the observational, and includes a map of the future landscape of BAO surveys, both spectroscopic and photometric . † 1.1 Introduction Whilst often phrased in terms of the quest to uncover the nature of dark energy, a more general rubric for cosmology in the early part of the 21st century might also be the “the distance revolution”. With new knowledge of the extra-galactic distance arXiv:0910.5224v1 [astro-ph.CO] 27 Oct 2009 ladder we are, for the first time, beginning to accurately probe the cosmic expansion history beyond the local universe. While standard candles – most notably Type Ia supernovae (SNIa) – kicked off the revolution, it is clear that Statistical Standard Rulers, and the Baryon Acoustic Oscillations (BAO) in particular, will play an increasingly important role. In this review we cover the theoretical, observational and statistical aspects of the BAO as standard rulers and examine the impact BAO will have on our understand- † This review is an extended version of a chapter in the book Dark Energy Ed.
    [Show full text]
  • Arxiv:2002.11464V1 [Physics.Gen-Ph] 13 Feb 2020 a Function of the Angles Θ and Φ in the Sky Is Shown in Fig
    Flat Space, Dark Energy, and the Cosmic Microwave Background Kevin Cahill Department of Physics and Astronomy University of New Mexico Albuquerque, New Mexico 87106 (Dated: February 27, 2020) This paper reviews some of the results of the Planck collaboration and shows how to compute the distance from the surface of last scattering, the distance from the farthest object that will ever be observed, and the maximum radius of a density fluctuation in the plasma of the CMB. It then explains how these distances together with well-known astronomical facts imply that space is flat or nearly flat and that dark energy is 69% of the energy of the universe. I. COSMIC MICROWAVE BACKGROUND RADIATION The cosmic microwave background (CMB) was predicted by Gamow in 1948 [1], estimated to be at a temperature of 5 K by Alpher and Herman in 1950 [2], and discovered by Penzias and Wilson in 1965 [3]. It has been observed in increasing detail by Roll and Wilkinson in 1966 [4], by the Cosmic Background Explorer (COBE) collaboration in 1989{1993 [5, 6], by the Wilkinson Microwave Anisotropy Probe (WMAP) collaboration in 2001{2013 [7, 8], and by the Planck collaboration in 2009{2019 [9{12]. The Planck collaboration measured CMB radiation at nine frequencies from 30 to 857 6 GHz by using a satellite at the Lagrange point L2 in the Earth's shadow some 1.5 10 km × farther from the Sun [11, 12]. Their plot of the temperature T (θ; φ) of the CMB radiation as arXiv:2002.11464v1 [physics.gen-ph] 13 Feb 2020 a function of the angles θ and φ in the sky is shown in Fig.
    [Show full text]
  • FRW Cosmology
    Physics 236: Cosmology Review FRW Cosmology 1.1 Ignoring angular terms, write down the FRW metric. Hence express the comoving distance rM as an function of time and redshift. What is the relation between scale factor a(t) and redshift z? How is the Hubble parameter related to the scale factor a(t)? Suppose a certain radioactive decay emits a line at 1000 A˚, with a characteristic decay time of 5 days. If we see it at z = 3, at what wavelength do we observe it, and whats the decay timescale? The FRW metric is given as 2 2 2 2 2 2 2 ds = −c dt + a(t) [dr + Sκ(r) dΩ ]: (1) Where for a given radius of curvature, R, 8 R sin(r=R) κ = 1 <> Sκ(r) = r κ = 0 :>R sinh(r=R) κ = −1 Suppose we wanted to know the instantaneous distance to an object at a given time, such that dt = 0. Ignoring the angular dependence, i.e. a point object for which dΩ = 0, we can solve for rM as Z dp Z rM ds = a(t) dr; 0 0 dp(t) = a(t)rM (t): (2) Where dp(t) is the proper distance to an object, and rM is the coming distance. Note that at the present time the comoving distance and proper distance are equal. Consider the rate of change of the proper time a_ d_ =ar _ = d : (3) p a p Hubble is famously credited for determining what is now called Hubbles law, which states that vp(t0) = H0dp(t0): (4) Relaxing this equation to now be a function of time we will let the Hubble constant now be the Hubble parameter.
    [Show full text]
  • Distances in Cosmology
    Distances in Cosmology REVIEW OF “WORLD MODELS” Simplify notation by adopting c=1, so that E=m. Friedmann's equation is then: . Substitute H(t)= a/a and recall that we can formally associate an energy density with the cosmological constant, i.e The index i refers to the type of particle fluid under consideration, e.g. matter or radiation. If the Universe is flat (k=0): Let us define the fraction of the critical density contributed by each component of the Universe : So that we have Ωm , Ωr and ΩΛ for matter, radiation and dark energy. These quantities are time-dependent, the values today are denoted as Ωm,0 We can rewrite the Friedmann eqn: If we define Ωk = -k/(aH)2, we can write: Flat FRW Cosmologies In the last lecture we showed that the density of matter evolves as: Set a0=1. The Friedmann equation becomes: or In a flat Universe, ΩΛ,0 + Ωm,0=1. Case 1: Λ>0 Use the substitution: to obtain Take the positive root: This can be integrated by completing the square in the u-integral and with substitutions v = u + 1 and cosh w = v: to yield the solution: Case 2, Λ < 0: Introduce Solution: CaseCase 33,, Λ=0 : This is now the Einstein-deSitter case which we have already encountered in the last lecture. A flat, pressureless universe with a small, but non-zero, cosmo- logical constant initially evolves as if it were Einstein-deSitter. Fo r Λ > 0, the second term on the right-hand side of these equations dominates at large values of t and the universe grows exponentially: A wide variety of world models are conceivable, depending on the values of the parameters Ω.
    [Show full text]
  • The Big Bang in a Nutshell
    Spring term 2014: Dark Matter – lecture 1/9 Torsten Bringmann ([email protected]) reading: any standard cosmology textbook • [here, I (mostly) follow the conventions of Weinberg] K. A. Olive, G. Steigman, T. P. Walker, “Primordial nucleosynthesis: The- • ory and observations,” Phys. Rept. 333, 389-407 (2000). [astro-ph/9905320]. 1 Recap – the big bang in a nutshell The three main building blocks of modern cosmology are general relativity, the cosmological principle and a description of matter as a perfect fluid. According to the cosmological principle,theuniverseishomogeneousand isotropic on large scales, i.e. it looks basically the same at all places and in all directions. This means that spacetime can be described by the Friedmann- Robertson-Walker (FRW) metric: dr2 ds2 = g dxµdx⌫ = dt2 + a2(t) + r2d⌦2 , (1) − µ⌫ − 1 kr2 − where k =0, 1, 1 for a flat, positively and negatively curved universe, re- spectively. For− the approximately flat geometry that we observe, the scale factor a(t)thusrelatesphysicaldistancesλphys to coordinate (or comoving) distances r via λphys = ar. Note that a change of coordinates would re-scale a,soitsnormalizationdoesnotcorrespondtoaphysicalquantity;conven- tionally one often sets its value today to a0 a(t0)=1. A perfect fluid can be completely characterized⌘ by its rest-frame energy density ⇢ and and isotropic pressure p (i.e. shear stresses, viscosity and heat conduction are assumed to be absent). In the rest frame of the fluid, its energy-momentum tensor takes the form T µ⌫ =diag(⇢, p, p, p); in a frame that is moving with 4-velocity v,itthentakestheform T µ⌫ =(⇢ + p)vµv⌫ + pgµ⌫ .
    [Show full text]
  • AST1100 Lecture Notes
    AST1100 Lecture Notes 23-24: Cosmology: models of the universe 1 The FRW-metric Cosmology is the study of the universe as a whole. In the lectures on cos- mology we will look at current theories of how the universe looked in the beginning, how it looks today, how it evolved from the beginning until today and how it will continue in the future. We learned i the lectures on general relativity that how an object moves depends on the geometry of space and time. The question of how the universe evolves is mainly a question about what happens to its ’ingredients’ as time goes by. How do the objects in the universe move with time? To answer this question, we thus need to find the geometry of the universe as a whole. We know that in order to find the geometry of spacetime, we need to specify the content of spacetime in the stress-energy tensor Tµν on the right hand side in the Einstein equation Gµν =8πTµν. But how can we specify the mass and energy content at every point in space- time of the whole universe? As always, we need to make some approximations and simplifying assumptions. One main assumption is the cosmological prin- ciple. The cosmological principle states that the universe is homogeneous and isotropic. The universe is assumed to, on average, have a similar compo- sition and density in all positions and to look the same in all directions. The two conditions, homogeneity and isotropy may, at first look, seem identical. It is easy to convince yourself that they are not: Imagine a universe filled with trees which are all aligned with each other, i.e.
    [Show full text]
  • Topics in Cosmology: Island Universes, Cosmological Perturbations and Dark Energy
    TOPICS IN COSMOLOGY: ISLAND UNIVERSES, COSMOLOGICAL PERTURBATIONS AND DARK ENERGY by SOURISH DUTTA Submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy Department of Physics CASE WESTERN RESERVE UNIVERSITY August 2007 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. To the people who have believed in me. Contents Dedication iv List of Tables viii List of Figures ix Abstract xiv 1 The Standard Cosmology 1 1.1 Observational Motivations for the Hot Big Bang Model . 1 1.1.1 Homogeneity and Isotropy . 1 1.1.2 Cosmic Expansion . 2 1.1.3 Cosmic Microwave Background . 3 1.2 The Robertson-Walker Metric and Comoving Co-ordinates . 6 1.3 Distance Measures in an FRW Universe . 11 1.3.1 Proper Distance . 12 1.3.2 Luminosity Distance . 14 1.3.3 Angular Diameter Distance . 16 1.4 The Friedmann Equation . 18 1.5 Model Universes . 21 1.5.1 An Empty Universe . 22 1.5.2 Generalized Flat One-Component Models . 22 1.5.3 A Cosmological Constant Dominated Universe . 24 1.5.4 de Sitter space . 26 1.5.5 Flat Matter Dominated Universe . 27 1.5.6 Curved Matter Dominated Universe . 28 1.5.7 Flat Radiation Dominated Universe . 30 1.5.8 Matter Radiation Equality . 32 1.6 Gravitational Lensing . 34 1.7 The Composition of the Universe .
    [Show full text]
  • Baryon Acoustic Oscillations in the Large Scale Structures of the Universe As Seen by the Sloan Digital Sky Survey Julian Bautista
    Baryon Acoustic Oscillations in the Large Scale Structures of the Universe as seen by the Sloan Digital Sky Survey Julian Bautista To cite this version: Julian Bautista. Baryon Acoustic Oscillations in the Large Scale Structures of the Universe as seen by the Sloan Digital Sky Survey. Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]. Université Paris Diderot, 2014. English. tel-01389967 HAL Id: tel-01389967 https://tel.archives-ouvertes.fr/tel-01389967 Submitted on 4 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole Doctorale Particules, Noyaux et Cosmos 517 UNIVERSITE´ PARIS DIDEROT SORBONNE PARIS CITE Laboratoire Astroparticules Cosmologie THESE` pour obtenir le grade de Docteur en Sciences Sp´ecialit´e: Cosmologie Baryon Acoustic Oscillations in the Large Scale Structures of the Universe as seen by the Sloan Digital Sky Survey par Juli´anErnesto Bautista Soutenue le 15 Septembre 2014. Jury : Pr´esident: M. Stavros Katzanevas - Laboratoire AstroParticule et Cosmologie Rapporteurs : M. Alain Blanchard - Institut de Recherche en Astrophysique et Plan´etologie M. Jean-Paul Kneib - Ecole Polytechnique F´ed´eralede Lausanne Examinateurs : M. Julien Guy - Lawrence Berkeley National Laboratory M. Jordi Miralda-Escude´ - Institut de Cincies del Cosmos Barcelona M.
    [Show full text]