(12) Patent Application Publication (10) Pub. No.: US 2017/0191133 A1 Davicioni (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2017/0191133 A1 Davicioni (43) Pub US 2017.0191133A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0191133 A1 Davicioni (43) Pub. Date: Jul. 6, 2017 (54) SYSTEMIS AND METHODS FOR Publication Classification EXPRESSION-BASED DISCRIMINATION OF (51) Int. C. DISTINCT CLINICAL DISEASE STATES IN CI2O I/68 (2006.01) PROSTATE CANCER (52) U.S. C. CPC ...... CI2O 1/6886 (2013.01); C12O 2600/112 (71) Applicant: GENOMEDX BIOSCIENCES, INC., (2013.01); C12O 2600/118 (2013.01); C12O Vancouver (CA) 2600/158 (2013.01) (72) Inventor: Elai Davicioni, La Jolla, CA (US) (57) ABSTRACT A system for expression-based discrimination of distinct clinical disease states in prostate cancer is provided that is (21) Appl. No.: 15/092,468 based on the identification of sets of gene transcripts, which are characterized in that changes in expression of each gene (22) Filed: Apr. 6, 2016 transcript within a set of gene transcripts can be correlated with recurrent or non-recurrent prostate cancer. The Prostate Cancer Prognostic system provides for sets of “prostate Related U.S. Application Data cancer prognostic' target sequences and further provides for combinations of polynucleotide probes and primers derived (63) Continuation of application No. 12/994.408, filed on there from. These combinations of polynucleotide probes Feb. 17, 2011, now abandoned, filed as application can be provided in solution or as an array. The combination No. PCT/CA2009/000694 on May 28, 2009. of probes and the arrays can be used for diagnosis. The (60) Provisional application No. 61/056,827, filed on May invention further provides further methods of classifying 28, 2008. prostate cancer tissue. Patent Application Publication Jul. 6, 2017. Sheet 1 of 9 US 2017/O191133 A1 FG. A Patent Application Publication Jul. 6, 2017. Sheet 2 of 9 US 2017/O191133 A1 & Patent Application Publication Jul. 6, 2017. Sheet 3 of 9 US 2017/O191133 A1 Patent Application Publication Jul. 6, 2017. Sheet 4 of 9 US 2017/O191133 A1 ¿?*8). ?0000'0×d 8% ågå Patent Application Publication Jul. 6, 2017. Sheet 5 of 9 US 2017/O191133 A1 : i. 3. SYS F.G. 3 Patent Application Publication Jul. 6, 2017. Sheet 6 of 9 US 2017/O191133 A1 & & wer x : s . 8 SE x 8. Yes 83888 x 8.3: Patent Application Publication Jul. 6, 2017. Sheet 7 of 9 US 2017/O191133 A1 ---------------------- : i s x & x x : x : 838 kix: Patent Application Publication Jul. 6, 2017. Sheet 8 of 9 US 2017/O191133 A1 : i s Patent Application Publication Jul. 6, 2017. Sheet 9 of 9 US 2017/O191133 A1 : : s ''''''''''''''''''''''''''''''''''''''''''''''''''''1'''''''''''''''''''''''''''''''''''''''''''''''''''''''' 838 :x: US 2017/O 191133 A1 Jul. 6, 2017 SYSTEMIS AND METHODS FOR cancer and this has resulted in an increased number of EXPRESSION-BASED DISCRIMINATION OF patients being treated but not significantly decreased the DISTINCT CLINICAL DISEASE STATES IN mortality rate. PROSTATE CANCER 0007. Despite the controversies surrounding PSA testing as a screening tool, most physicians confidently rely on PSA CROSS-REFERENCE TO RELATED testing to assess pre-treatment prognosis and to monitor APPLICATIONS disease progression after initial therapy. Successive increases in PSA levels above a defined threshold value or 0001. This application is a continuation of U.S. applica variations thereof (i.e. Rising-PSA), also known as bio tion Ser. No. 12/994,408 filed Feb. 17, 2011, now aban chemical recurrence has been shown to be correlated to doned, which claimed the benefit of 5 USC S371 National disease progression after first-line therapy (e.g., prostatec Stage application of International Application No. PCT/ tomy, radiation and brachytherapy). However, less than a /3 CA2009/000694 filed May 28, 2009, which claims priority of patients with rising-PSA will eventually be diagnosed benefit of U.S. 61/056,827 filed May 28, 2008, now expired. with systemic or metastatic disease and several studies have The disclosure of each of the prior applications is considered shown that after long-term follow up, the majority will never part of and is incorporated by reference in the disclosure of show any symptoms of disease progression aside from this application. increases in PSA measurement. The limitations of using the PSA biomarker and the absence of additional biomarkers for INCORPORATION OF SEQUENCE LISTING predicting disease recurrence have led to the development of 0002 The material in the accompanying sequence listing statistical models combining several clinical and pathologi is hereby incorporated by reference into this application. The cal features including PSA results. Several of these nomo accompanying sequence listing text file, name GBX1140 2 grams have been shown to improve the predictive power for Sequence Listing..txt, was created on Jun. 22, 2016, and is disease recurrence in individual patients over any single independent variable. These models (see Citation #14) are 744 kb. The file can be assessed using Microsoft Word on a used routinely in the clinic and are currently the best computer that uses Windows OS. available tools for prediction of outcomes, although they do not provide high levels of accuracy for groups of patients FIELD OF THE INVENTION with highly similar histological/pathological features or 0003. This invention relates to the field of diagnostics and those at intermediate risk of disease recurrence after pros in particular to systems and methods for classifying prostate tatectomy. cancer into distinct clinical disease states. 0008. The use of quantitative molecular analyses has the potential to increase the sensitivity, specificity and/or overall BACKGROUND accuracy of disease prognosis and provide a more objective basis for determination of risk stratification as compared to 0004 Prostate cancer is the most common malignancy conventional clinical-pathological risk models (see Citation affecting U.S. men, with approximately 240,000 new cases #13). The PSA test demonstrates the deficiencies of relying diagnosed each year. The incidence of prostate cancer is on the measurement of any single biomarker in clinically increasing, in part due to increased Surveillance efforts from heterogeneous and complex prostate cancer genomes. the application of routine molecular testing Such as prostate Therefore, genomic-based approaches measuring combina specific antigen (PSA). For most men, prostate cancer is a tions of biomarkers or a signature of disease recurrence are slow-growing, organ-confined or localized malignancy that currently being investigated as better Surrogates for predict poses little risk of death. The most common treatments for ing disease outcome (see Citations # 1-13). For prostate prostate cancer in the U.S. are Surgical procedures such as cancer patients these efforts are aimed at reducing the radical prostatectomy, where the entire prostate is removed number of unnecessary Surgeries for patients without pro from the patient. This procedure on its own is highly curative gressive disease and avoid inadvertent under-treatment for for most but not all men. higher risk patients. To date, genomic profiling efforts to 0005. The vast majority of deaths from prostate cancer identify DNA-based (e.g., copy-number alterations, meth occur in patients with metastasis, believed to be present ylation changes), RNA-based (e.g., gene or non-coding already at the time of diagnosis in the form of clinically RNA expression) or protein-based (e.g., protein expression undetectable micro-metastases. In these patients, it is clear or modification) signatures, useful for disease prognosis that prostatectomy alone is not curative and additional have not however resulted in widespread clinical use. therapies such as anti-androgen or radiation therapy are 0009. There are several key reasons explaining why prior required to control the spread of disease and extend the life genomic profiling methods for prostate cancer have not yet of the patient. been incorporated in the clinic. These include the small 0006 Most prostatectomy patients however face uncer sample sizes typical of individual studies, coupled with tainty with respect to their prognosis after Surgery: whether variations due to differences in study protocols, clinical or not the initial surgery will be curative several years from heterogeneity of patients and lack of external validation the initial treatment because the current methods for assess data, which combined have made identifying a robust and ment of the clinical risk Such as the various pathological reproducible disease signature elusive. Specifically for gene (e.g., tumor stage), histological (e.g., Gleasons), clinical or RNA expression based prognostic models; the mitigating (e.g., Kattan nomogram) and molecular biomarkers (e.g., technological limitations include the quality and quantity of PSA) are not reliable predictors of prognosis, specifically RNA that can be isolated from routine clinical samples. disease progression. Routine PSA testing has certainly Routine clinical samples of prostate cancer include needle increased Surveillance and early-detection rates of prostate biopsies and Surgical resections that have been fixed in US 2017/O 191133 A1 Jul. 6, 2017 formalin and embedded in paraffin wax (FFPE). FFPE expression level of said one or more nucleic acid sequences derived RNA is typically degraded and fragmented to with the disease state of prostate cancer tissue. between 100-300 by in size and without poly-A tails making 0016. In accordance with another aspect of the present it of little use for traditional 3'-biased gene expression
Recommended publications
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases
    G C A T T A C G G C A T genes Review RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases Amber Willbanks, Shaun Wood and Jason X. Cheng * Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL 60637, USA; [email protected] (A.W.); [email protected] (S.W.) * Correspondence: [email protected] Abstract: Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases. Keywords: 5’ cap (5’ cap); 7-methylguanosine (m7G); R-loops; N6-methyladenosine (m6A); RNA editing; A-to-I; C-to-U; 2’-O-methylation (Nm); 5-methylcytosine (m5C); NOL1/NOP2/sun domain Citation: Willbanks, A.; Wood, S.; (NSUN); MYC Cheng, J.X. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes 2021, 12, 627.
    [Show full text]
  • Essential Genes and Their Role in Autism Spectrum Disorder
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Essential Genes And Their Role In Autism Spectrum Disorder Xiao Ji University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Ji, Xiao, "Essential Genes And Their Role In Autism Spectrum Disorder" (2017). Publicly Accessible Penn Dissertations. 2369. https://repository.upenn.edu/edissertations/2369 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2369 For more information, please contact [email protected]. Essential Genes And Their Role In Autism Spectrum Disorder Abstract Essential genes (EGs) play central roles in fundamental cellular processes and are required for the survival of an organism. EGs are enriched for human disease genes and are under strong purifying selection. This intolerance to deleterious mutations, commonly observed haploinsufficiency and the importance of EGs in pre- and postnatal development suggests a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication and repetitive behavior. More and more genetic evidence points to a polygenic model of ASD and it is estimated that hundreds of genes contribute to ASD. The central question addressed in this dissertation is whether genes with a strong effect on survival and fitness (i.e. EGs) play a specific oler in ASD risk. I compiled a comprehensive catalog of 3,915 mammalian EGs by combining human orthologs of lethal genes in knockout mice and genes responsible for cell-based essentiality.
    [Show full text]
  • Growth and Gene Expression Profile Analyses of Endometrial Cancer Cells Expressing Exogenous PTEN
    [CANCER RESEARCH 61, 3741–3749, May 1, 2001] Growth and Gene Expression Profile Analyses of Endometrial Cancer Cells Expressing Exogenous PTEN Mieko Matsushima-Nishiu, Motoko Unoki, Kenji Ono, Tatsuhiko Tsunoda, Takeo Minaguchi, Hiroyuki Kuramoto, Masato Nishida, Toyomi Satoh, Toshihiro Tanaka, and Yusuke Nakamura1 Laboratories of Molecular Medicine [M. M-N., M. U., K. O., T. M., T. Ta., Y. N.] and Genome Database [T. Ts.], Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Obstetrics and Gynecology, School of Medicine, Kitasato University, Sagamihara 228-8555, Japan [H. K.]; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba 305-8576, Japan [M. N.]; and Department of Obstetrics and Gynecology, Ibaraki Seinan Central Hospital, Tsukuba 306-0433, Japan [T. S.] ABSTRACT Akt/protein kinase B, cell survival, and cell proliferation (8). Over- expression of PTEN can decrease cell proliferation and tumorigenicity The PTEN tumor suppressor gene encodes a multifunctional phospha- (9, 10), an observation attributed to the ability of PTEN to induce cell tase that plays an important role in inhibiting the phosphatidylinositol-3- cycle arrest and apoptosis (11, 12). kinase pathway and downstream functions that include activation of Akt/protein kinase B, cell survival, and cell proliferation. Enforced ex- Thus, lack of PTEN expression may affect a complex set of pression of PTEN in various cancer cell lines decreases cell proliferation transcriptional targets. However, no systematic assessment of PTEN- through arrest of the cell cycle, accompanied in some cases by induction regulated targets in cancer cells has been reported to date.
    [Show full text]
  • Identification of Differentially Expressed Genes in Human Bladder Cancer Through Genome-Wide Gene Expression Profiling
    521-531 24/7/06 18:28 Page 521 ONCOLOGY REPORTS 16: 521-531, 2006 521 Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling KAZUMORI KAWAKAMI1,3, HIDEKI ENOKIDA1, TOKUSHI TACHIWADA1, TAKENARI GOTANDA1, KENGO TSUNEYOSHI1, HIROYUKI KUBO1, KENRYU NISHIYAMA1, MASAKI TAKIGUCHI2, MASAYUKI NAKAGAWA1 and NAOHIKO SEKI3 1Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Departments of 2Biochemistry and Genetics, and 3Functional Genomics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Received February 15, 2006; Accepted April 27, 2006 Abstract. Large-scale gene expression profiling is an effective CKS2 gene not only as a potential biomarker for diagnosing, strategy for understanding the progression of bladder cancer but also for staging human BC. This is the first report (BC). The aim of this study was to identify genes that are demonstrating that CKS2 expression is strongly correlated expressed differently in the course of BC progression and to with the progression of human BC. establish new biomarkers for BC. Specimens from 21 patients with pathologically confirmed superficial (n=10) or Introduction invasive (n=11) BC and 4 normal bladder samples were studied; samples from 14 of the 21 BC samples were subjected Bladder cancer (BC) is among the 5 most common to microarray analysis. The validity of the microarray results malignancies worldwide, and the 2nd most common tumor of was verified by real-time RT-PCR. Of the 136 up-regulated the genitourinary tract and the 2nd most common cause of genes we detected, 21 were present in all 14 BCs examined death in patients with cancer of the urinary tract (1-7).
    [Show full text]
  • Utpa and Utpb Chaperone Nascent Pre-Ribosomal RNA and U3 Snorna to Initiate Eukaryotic Ribosome Assembly
    ARTICLE Received 6 Apr 2016 | Accepted 27 May 2016 | Published 29 Jun 2016 DOI: 10.1038/ncomms12090 OPEN UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly Mirjam Hunziker1,*, Jonas Barandun1,*, Elisabeth Petfalski2, Dongyan Tan3, Cle´mentine Delan-Forino2, Kelly R. Molloy4, Kelly H. Kim5, Hywel Dunn-Davies2, Yi Shi4, Malik Chaker-Margot1,6, Brian T. Chait4, Thomas Walz5, David Tollervey2 & Sebastian Klinge1 Early eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes—UtpA and UtpB—interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA–protein cross-linking data to elucidate the essential functions of both complexes. We show that UtpA contains a large composite RNA-binding site and captures the 50 end of pre-ribosomal RNA. UtpB forms an extended structure that binds early pre-ribosomal intermediates in close proximity to architectural sites such as an RNA duplex formed by the 50 ETS and U3 snoRNA as well as the 30 boundary of the 18S rRNA. Both complexes therefore act as vital RNA chaperones to initiate eukaryotic ribosome assembly. 1 Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, New York 10065, USA. 2 Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK. 3 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
    [Show full text]
  • The Complete Structure of the Small-Subunit Processome
    ARTICLES The complete structure of the small-subunit processome Jonas Barandun1,4 , Malik Chaker-Margot1,2,4 , Mirjam Hunziker1,4 , Kelly R Molloy3, Brian T Chait3 & Sebastian Klinge1 The small-subunit processome represents the earliest stable precursor of the eukaryotic small ribosomal subunit. Here we present the cryo-EM structure of the Saccharomyces cerevisiae small-subunit processome at an overall resolution of 3.8 Å, which provides an essentially complete near-atomic model of this assembly. In this nucleolar superstructure, 51 ribosome-assembly factors and two RNAs encapsulate the 18S rRNA precursor and 15 ribosomal proteins in a state that precedes pre-rRNA cleavage at site A1. Extended flexible proteins are employed to connect distant sites in this particle. Molecular mimicry and steric hindrance, as well as protein- and RNA-mediated RNA remodeling, are used in a concerted fashion to prevent the premature formation of the central pseudoknot and its surrounding elements within the small ribosomal subunit. Eukaryotic ribosome assembly is a highly dynamic process involving during which the four rRNA domains of the 18S rRNA (5′, central, in excess of 200 non-ribosomal proteins and RNAs. This process 3′ major and 3′ minor) are bound by a set of specific ribosome-assem- starts in the nucleolus where rRNAs for the small ribosomal subunit bly factors7,8. Biochemical studies indicated that these factors and the (18S rRNA) and the large ribosomal subunit (25S and 5.8S rRNA) 5′-ETS particle probably contribute to the independent maturation are initially transcribed as part of a large 35S pre-rRNA precursor of the domains of the SSU7,8.
    [Show full text]
  • Identifying Genetic Risk Factors for Coronary Artery Angiographic Stenosis in a Genetically Diverse Population
    Please do not remove this page Identifying Genetic Risk Factors for Coronary Artery Angiographic Stenosis in a Genetically Diverse Population Liu, Zhi https://scholarship.miami.edu/discovery/delivery/01UOML_INST:ResearchRepository/12355224170002976?l#13355497430002976 Liu, Z. (2016). Identifying Genetic Risk Factors for Coronary Artery Angiographic Stenosis in a Genetically Diverse Population [University of Miami]. https://scholarship.miami.edu/discovery/fulldisplay/alma991031447280502976/01UOML_INST:ResearchR epository Embargo Downloaded On 2021/09/26 20:05:11 -0400 Please do not remove this page UNIVERSITY OF MIAMI IDENTIFYING GENETIC RISK FACTORS FOR CORONARY ARTERY ANGIOGRAPHIC STENOSIS IN A GENETICALLY DIVERSE POPULATION By Zhi Liu A DISSERTATION Submitted to the Faculty of the University of Miami in partial fulfillment of the requirements for the degree of Doctor of Philosophy Coral Gables, Florida August 2016 ©2016 Zhi Liu All Rights Reserved UNIVERSITY OF MIAMI A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy IDENTIFYING GENETIC RISK FACTORS FOR CORONARY ARTERY ANGIOGRAPHIC STENOSIS IN A GENETICALLY DIVERSE POPULATION Zhi Liu Approved: ________________ _________________ Gary W. Beecham, Ph.D. Liyong Wang, Ph.D. Assistant Professor of Human Associate Professor of Human Genetics Genetics ________________ _________________ Eden R. Martin, Ph.D. Guillermo Prado, Ph.D. Professor of Human Genetics Dean of the Graduate School ________________ Tatjana Rundek, M.D., Ph.D. Professor of Neurology LIU, ZHI (Ph.D., Human Genetics and Genomics) Identifying Genetic Risk Factors for Coronary Artery (August 2016) Angiographic Stenosis in a Genetically Diverse Population Abstract of a dissertation at the University of Miami. Dissertation supervised by Professor Gary W.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Identification of Molecular Targets in Head and Neck Squamous Cell Carcinomas Based on Genome-Wide Gene Expression Profiling
    1489-1497 7/11/07 18:41 Page 1489 ONCOLOGY REPORTS 18: 1489-1497, 2007 Identification of molecular targets in head and neck squamous cell carcinomas based on genome-wide gene expression profiling SATOYA SHIMIZU1,2, NAOHIKO SEKI2, TAKASHI SUGIMOTO2, SHIGETOSHI HORIGUCHI1, HIDEKI TANZAWA3, TOYOYUKI HANAZAWA1 and YOSHITAKA OKAMOTO1 Departments of 1Otorhinolaryngology, 2Functional Genomics and 3Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Received May 21, 2007; Accepted June 28, 2007 Abstract. DNA amplifications activate oncogenes and are patients and metastases develop in 15-25% of patients (1). hallmarks of nearly all advanced cancers including head and Many factors, such as TNM stage, pathological grade and neck squamous cell carcinoma (HNSCC). Some oncogenes tumor site, influence the prognosis of HNSCC but are not show both DNA copy number gain and mRNA overexpression. sufficient to predict outcome. In addition, treatment often Chromosomal comparative genomic hybridization and oligo- results in impairment of functions such as speech and nucleotide microarrays were used to examine 8 HNSCC cell swallowing, cosmetic disfiguration and mental pain. These lines and a plot of gene expression levels relative to their inflictions significantly erode quality of life. To overcome this position on the chromosome was produced. Three highly situation, there is a need to find novel biomarkers that classify up-regulated genes, NT5C3, ANLN and INHBA, were patients into prognostic groups, to aid identification of high- identified on chromosome 7p14. These genes were subjected risk patients who may benefit from different treatments. to quantitative real-time RT-PCR on cDNA and genomic Comparative genomic hybridization (CGH) has facilitated DNA derived from 8 HNSCC cell lines.
    [Show full text]
  • Integrative Structural Analysis of the UTPB Complex, an Early Assembly
    Published online 21 June 2016 Nucleic Acids Research, 2016, Vol. 44, No. 15 7475–7486 doi: 10.1093/nar/gkw562 Integrative structural analysis of the UTPB complex, an early assembly factor for eukaryotic small ribosomal subunits Cheng Zhang1,QiSun1,2,3,4, Rongchang Chen3,4, Xining Chen1, Jinzhong Lin1 and Keqiong Ye3,4,* 1National Institute of Biological Sciences, Beijing 102206, China, 2Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China, 3Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China and 4Beijing Key Laboratory of Noncoding RNA, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China Received January 12, 2016; Revised June 9, 2016; Accepted June 10, 2016 ABSTRACT Most of these ribosome assembly factors are conserved in other eukaryotes (1). These factors transiently associate Ribosome assembly is an essential and conserved with ribosomal subunits, forming various pre-ribosomal cellular process in eukaryotes that requires numer- particles and function in the modification and processing ous assembly factors. The six-subunit UTPB com- of rRNA, r-protein assembly and structural remodeling and plex is an essential component of the 90S precursor export of pre-ribosomal particles (2–5). of the small ribosomal subunit. Here, we analyzed Except for 5S rRNA, which is transcribed separately, the molecular architecture of UTPB using an inte- three of the four rRNAs are transcribed in the nucleolus grative structural biology approach. We mapped the as a single 35S precursor that additionally encodes external major interactions that associate each of six UTPB and internal spacer sequences (ETS and ITS).
    [Show full text]