A Brain-Specific SGK1 Splice Isoform Regulates Expression of ASIC1 in Neurons

Total Page:16

File Type:pdf, Size:1020Kb

A Brain-Specific SGK1 Splice Isoform Regulates Expression of ASIC1 in Neurons A brain-specific SGK1 splice isoform regulates expression of ASIC1 in neurons Maria F. Arteaga, Tatjana Coric, Christoph Straub, and Cecilia M. Canessa* Department of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, CT 06520 Communicated by Steven C. Hebert, Yale University School of Medicine, New Haven, CT, January 30, 2008 (received for review October 23, 2007) Neurodegenerative diseases and noxious stimuli to the brain two additional full-length human and mouse SGK1 cDNAs. These enhance transcription of serum- and glucocorticoid-induced cDNAs differ from the canonical one at the 5Ј end. The gene spans kinase-1 (SGK1). Here, we report that the SGK1 gene encodes a Ϸ118 kb, with the additional exons located far upstream of the brain-specific additional isoform, SGK1.1, which exhibits distinct initially identified 5Ј end. These exons are differentially spliced to regulation, properties, and functional effects. SGK1.1 decreases give rise to three different transcripts designated here as SGK1, expression of the acid-sensing ion channel-1 (ASIC1); thereby, SGK1.1, and SGK1.2. Fig. 1A shows a schematic representation of SGK1.1 may limit neuronal injury associated to activation of ASIC1 the exon–intron organization of the mouse SGK1 gene. The N in ischemia. Given that neurons express at least two splice iso- termini of the three splice isoforms are encoded by different exons, forms, SGK1 and SGK1.1, driven by distinct promoters, any changes whereas they share an identical catalytic domain and C-terminal in SGK1 transcript level must be examined to define the isoform hydrophobic motif (exons 6–16). induced by each stimulus or neurological disorder. The region upstream of exon 1 contains signature sequences consistent with a TATA box Ϸ1 kb and 0.7 kb from the initiation alternative promoter ͉ Proton-activated channel ͉ site. A different promoter in intron 4 controls transcription of the serum- and glucocorticoid-induced kinase canonical SGK1 isoform. This is the only promoter that has been characterized experimentally (21); it contains a TATA box near the GK1 is a S/T protein kinase expressed in many mammalian start site of transcription and a glucocorticoid-responsive element Stissues. It was originally identified as a glucocorticoid (1) and (GRE), consistent with the observation that glucocorticoids in- cell-volume-responsive gene (2). The most extensively studied crease mRNA abundance of the canonical isoform in most tissues. target of SGK1 is the epithelial sodium channel, ENaC, which plays No GRE was identified in the 10 kb upstream of exons 1 or 4. a crucial role in the regulation of body sodium (3). The phenotype Tissue distribution and relative abundance of SGK1.1 isoform of SGK1-null mice is a partial deficit in renal sodium reabsorption were examined by quantitative (q)RT-PCR of mouse tissues. whereby the mice are prone to volume depletion when exposed SGK1.1 mRNA was detected exclusively in brain; in all other tissues to a low-salt diet (4). There is substantial evidence that SGK1 examined expression was negligible (Fig. 1C Left). Similar experi- also works in the signaling pathways increasing cell survival and ments conducted with SGK1.2 primers showed very low expression in all tissues; therefore, we did not pursue further studies with this apoptosis in vertebrates (5) and in the nematode Caenorhabditis isoform. In brain, expression of SGK1.1 transcript was Ϸ1/10 of the elegans (6). level of SGK1 (Fig. 1C Right). The functional role of SGK1 in the mammalian nervous system Transcriptional regulation of the SGK1.1 isoform was examined has been explored by numerous studies that have reported increases by qRT-PCR in differentiated neuronal mouse B1E-115 cells in SGK1 transcript induced by diverse stimuli and conditions. High exposed to dexamethasone or to depolarization (by increasing the levels of SGK1 mRNA have been observed in ischemia (7), injury ϩ concentration of K ), a method that simulates neuronal activity. (8), in various animal models of Parkinson’s disease (9, 10), Depolarization increased SGK1.1 transcript, whereas dexametha- amyotrophic lateral sclerosis (11), Rett syndrome (12, 13), Hun- sone did not induce a significant change in mRNA levels of any tington’s disease (14), and in the dorsal horn of the spinal cord after isoform (Fig. 1D). induction of inflammation in the corresponding innervated periph- Distribution of SGK1.1 in brain structures was analyzed by in situ eral tissues (15). hybridization using a probe specific for the SGK1.1 splice isoform. Recent studies have started to probe the functional effects of Low magnification of a brain section shows staining of all regions elevated SGK1 expression in neurons of the central nervous system. of hippocampus, dentate gyrus, and cerebral cortex layers. A The current evidence points to a role of SGK1 in activity-dependent cerebellum section shows staining of Purkinje cells and granular facilitation of learning and memory formation (16, 17), consolida- layer (Fig. 1E). Comparison of the SGK1.1 isoform with the tion of long-term memory (18), facilitation of expression of long- distribution of SGK1 by in situ hybridization published online by the NEUROSCIENCE term potentiation in hippocampal neurons (19), and modulation of Allen Institute for Brain Science (www.brain-map.org) indicates synaptic plasticity in the dorsal horn of the spinal cord (15). overlap of expression of SGK1.1 and SGK1 in most areas of the The capacity of SGK1 to modulate expression of ion channels mouse central nervous system. and transporters at the plasma membrane of many cell types (20) also provides a means to alter membrane excitability in neurons. SGK1.1 Is the Most Abundant Protein Isoform in Brain. The relative This prompted us to further investigate SGK1 in the nervous abundance of SGK1 and SGK1.1 proteins was determined by system. Here, we report a splice isoform, SGK1.1, exclusively expressed in the nervous system. We describe the distinct features, transcriptional regulation, and functional effects of SGK1.1 in Author contributions: C.M.C. designed research; M.F.A., T.C., C.S., and C.M.C. performed neurons. research; C.M.C. contributed new reagents/analytic tools; M.F.A. and C.M.C. analyzed data; and M.F.A. and C.M.C. wrote the paper. Results The authors declare no conflict of interest. SGK1 Splice Isoforms and Distribution in Mouse Brain. Hitherto, it was Freely available online through the PNAS open access option. thought that the SGK1 gene spanned Ϸ6 kb, a segment of genomic *To whom correspondence should be addressed. E-mail: [email protected]. DNA that contains the promoter and all of the exons of the This article contains supporting information online at www.pnas.org/cgi/content/full/ reference sequence transcript of SGK1. However, the GenBank 0800958105/DC1. database (National Center for Biotechnology Information) reports © 2008 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0800958105 PNAS ͉ March 18, 2008 ͉ vol. 105 ͉ no. 11 ͉ 4459–4464 Downloaded by guest on September 27, 2021 Fig. 1. Schematic of the SGK1 gene, differential expression, and distribution of isoforms. (A) The SGK1 gene expands Ϸ100 kb. White and blank boxes indicate 5Ј and 3Ј untranslated regions and exons; line represents introns. Arrows and arrowheads indicate positions of qPCR primers and the in situ hybridization probe specific for the SGK1.1 isoform. The gene contains at least three isoforms with corresponding promoters located upstream of exon 1, intron 3, and intron 4 for transcription of SGK1.1, SGK1.2, and SGK1 (canonical isoform), respectively. The SGK1 promoter contains a GRE. (B) Amino acid sequence of the N termini of SGK1 isoforms; intron–exon boundaries are indicated with arrows. Polybasic motif (ϩ) with large hydrophobic residues (⌬) in the N terminus of SGK1.1 is shown above the protein. (C) qRT-PCR of mouse tissues normalized to the value of SGK1.1 in brain Ϯ SD. Comparison of SGK1 and SGK1.1 in mouse brain. (D) Expression of SGK1 and SGK1.1 transcripts examined by qRT-PCR of N1E-115 cells treated with dexamethasone or increasing external Kϩ concentration to 50 mM. Each bar is the mean of six experiments normalized to GAPDH Ϯ SD. (E) In situ hybridization of mouse brain and cerebellum with SGK1.1-specific antisense and sense probes. e1 antisense and e2 sense probe on brain and e3 antisense and e4 sense probe on cerebellum are shown. quantitative Western blot analysis of mouse tissues. In previous homogenates of brain, heart, and lung, we identified SGK1 (49/45 work, we demonstrated that the abundance of SGK1 protein is kDa) and SGK1.1 (60 kDa) only in brain (Fig. 2A). lower than expected from the level of its own transcript. This The relative high protein abundance of SGK1.1 in brain when disparity is due to rapid degradation by the ubiquitin/proteasomal compared with its low mRNA level suggests that it might be more system (22). We used a transgenic mouse strain with insertion of a stable than the canonical SGK1. We confirmed by pulse–chase Ͼ bacterial artificial chromosome (BAC) containing the whole-mouse experiments that the half-life of SGK1.1 is longer (t1/2 180 min) SGK1 gene (Ϸ200 kb) modified by the addition of three HA than the one previously determined for SGK1 (t1/2 of 28 min) (Fig. epitopes at the C terminus of the coding region (23). In tissue 2B). The high stability of SGK1.1 protein is due to the absence of the proteasomal degradation signal in the N terminus of SGK1. SGK1.1 Resides at the Plasma Membrane by Binding to PtdIns(4,5)P2. Cellular localization of SGK1.1 was examined by immunofluores- cence of CHO cells cotransfected with SGK1.1-V5 and PH-GFP, a fusion of GFP and the pleckstrin-homology domain of phospho- lipase C␦, which selectively binds PtdIns(4,5)P2.Fig.3A shows colocalization of the two proteins at the plasma membrane.
Recommended publications
  • Regulation of SETD2 Stability Is Important for the Fidelity Of
    Bhattacharya and Workman Epigenetics & Chromatin (2020) 13:40 Epigenetics & Chromatin https://doi.org/10.1186/s13072-020-00362-8 RESEARCH Open Access Regulation of SETD2 stability is important for the fdelity of H3K36me3 deposition Saikat Bhattacharya and Jerry L. Workman* Abstract Background: The histone H3K36me3 mark regulates transcription elongation, pre-mRNA splicing, DNA methylation, and DNA damage repair. However, knowledge of the regulation of the enzyme SETD2, which deposits this function- ally important mark, is very limited. Results: Here, we show that the poorly characterized N-terminal region of SETD2 plays a determining role in regulat- ing the stability of SETD2. This stretch of 1–1403 amino acids contributes to the robust degradation of SETD2 by the proteasome. Besides, the SETD2 protein is aggregate prone and forms insoluble bodies in nuclei especially upon proteasome inhibition. Removal of the N-terminal segment results in the stabilization of SETD2 and leads to a marked increase in global H3K36me3 which, uncharacteristically, happens in a Pol II-independent manner. Conclusion: The functionally uncharacterized N-terminal segment of SETD2 regulates its half-life to maintain the requisite cellular amount of the protein. The absence of SETD2 proteolysis results in a Pol II-independent H3K36me3 deposition and protein aggregation. Keywords: Chromatin, Proteasome, Histone, Methylation, Aggregation Background In yeast, the SET domain-containing protein Set2 Te N-terminal tails of histones protrude from the nucle- (ySet2) is the sole H3K36 methyltransferase [10]. ySet2 osome and are hotspots for the occurrence of a variety interacts with the large subunit of the RNA polymerase II, of post-translational modifcations (PTMs) that play key Rpb1, through its SRI (Set2–Rpb1 Interaction) domain, roles in regulating epigenetic processes.
    [Show full text]
  • The Huntington's Disease Protein Interacts with P53 and CREB
    The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription Joan S. Steffan*, Aleksey Kazantsev†, Olivera Spasic-Boskovic‡, Marilee Greenwald*, Ya-Zhen Zhu*, Heike Gohler§, Erich E. Wanker§, Gillian P. Bates‡, David E. Housman†, and Leslie M. Thompson*¶ *Department of Biological Chemistry, D240 Medical Sciences I, University of California, Irvine, CA 92697-1700; †Department of Biology Center for Cancer Research, Massachusetts Institute of Technology, Building E17-543, Cambridge, MA 02139; ‡Medical and Molecular Genetics, GKT School of Medicine, King’s College, 8th Floor Guy’s Tower, Guy’s Hospital, London SE1 9RT, United Kingdom; and §Max-Planck-Institut fur Molekulare Genetik, Ihnestraße 73, Berlin D-14195, Germany Contributed by David E. Housman, March 14, 2000 Huntington’s Disease (HD) is caused by an expansion of a poly- The amino-terminal portion of htt that remains after cyto- glutamine tract within the huntingtin (htt) protein. Pathogenesis in plasmic cleavage and can localize to the nucleus appears to HD appears to include the cytoplasmic cleavage of htt and release include the polyglutamine repeat and a proline-rich region which of an amino-terminal fragment capable of nuclear localization. We have features in common with a variety of proteins involved in have investigated potential consequences to nuclear function of a transcriptional regulation (22). Therefore, htt is potentially pathogenic amino-terminal region of htt (httex1p) including ag- capable of direct interactions with transcription factors or the gregation, protein–protein interactions, and transcription. httex1p transcriptional apparatus and of mediating alterations in tran- was found to coaggregate with p53 in inclusions generated in cell scription.
    [Show full text]
  • Transglutaminase-Catalyzed Inactivation Of
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12604–12609, November 1997 Medical Sciences Transglutaminase-catalyzed inactivation of glyceraldehyde 3-phosphate dehydrogenase and a-ketoglutarate dehydrogenase complex by polyglutamine domains of pathological length ARTHUR J. L. COOPER*†‡§, K.-F. REX SHEU†‡,JAMES R. BURKE¶i,OSAMU ONODERA¶i, WARREN J. STRITTMATTER¶i,**, ALLEN D. ROSES¶i,**, AND JOHN P. BLASS†‡,†† Departments of *Biochemistry, †Neurology and Neuroscience, and ††Medicine, Cornell University Medical College, New York, NY 10021; ‡Burke Medical Research Institute, Cornell University Medical College, White Plains, NY 10605; and Departments of ¶Medicine, **Neurobiology, and iDeane Laboratory, Duke University Medical Center, Durham, NC 27710 Edited by Louis Sokoloff, National Institutes of Health, Bethesda, MD, and approved August 28, 1997 (received for review April 24, 1997) ABSTRACT Several adult-onset neurodegenerative dis- Q12-containing peptide (16). In the work of Kahlem et al. (16) the eases are caused by genes with expanded CAG triplet repeats largest Qn domain studied was Q18. We found that both a within their coding regions and extended polyglutamine (Qn) nonpathological-length Qn domain (n 5 10) and a longer, patho- domains within the expressed proteins. Generally, in clinically logical-length Qn domain (n 5 62) are excellent substrates of affected individuals n > 40. Glyceraldehyde 3-phosphate dehy- tTGase (17, 18). drogenase binds tightly to four Qn disease proteins, but the Burke et al. (1) showed that huntingtin, huntingtin-derived significance of this interaction is unknown. We now report that fragments, and the dentatorubralpallidoluysian atrophy protein purified glyceraldehyde 3-phosphate dehydrogenase is inacti- bind selectively to glyceraldehyde 3-phosphate dehydrogenase vated by tissue transglutaminase in the presence of glutathione (GAPDH) in human brain homogenates and to immobilized S-transferase constructs containing a Qn domain of pathological rabbit muscle GAPDH.
    [Show full text]
  • A Dissertation Entitled the Androgen Receptor
    A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen.
    [Show full text]
  • Celastrol Suppresses Experimental Autoimmune Encephalomyelitis Via MAPK/SGK1-Regulated Mediators of Autoimmune Pathology
    Inflammation Research (2019) 68:285–296 https://doi.org/10.1007/s00011-019-01219-x Inflammation Research ORIGINAL RESEARCH PAPER Celastrol suppresses experimental autoimmune encephalomyelitis via MAPK/SGK1-regulated mediators of autoimmune pathology Shivaprasad H. Venkatesha1,2 · Kamal D. Moudgil1,2,3 Received: 17 November 2018 / Revised: 10 January 2019 / Accepted: 11 February 2019 / Published online: 28 February 2019 © This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019 Abstract Objective and design Multiple sclerosis (MS) is a debilitating autoimmune disease involving immune dysregulation of the pathogenic T helper 17 (Th17) versus protective T regulatory (Treg) cell subsets, besides other cellular aberrations. Studies on the mechanisms underlying these changes have unraveled the involvement of mitogen-activated protein kinase (MAPK) pathway in the disease process. We describe here a gene expression- and bioinformatics-based study showing that celastrol, a natural triterpenoid, acting via MAPK pathway regulates the downstream genes encoding serum/glucocorticoid regulated kinase 1 (SGK1), which plays a vital role in Th17/Treg differentiation, and brain-derived neurotrophic factor (BDNF), which is a neurotrophic factor, thereby offering protection against experimental autoimmune encephalomyelitis (EAE) in mice. Methods We first tested the gene expression profile of splenocytes of EAE mice in response to the disease-related antigen, myelin oligodendrocyte glycoprotein (MOG), and then examined the effect of celastrol on that profile. Results Interestingly, celastrol reversed the expression of many MOG-induced genes involved in inflammation and immune pathology. The MAPK pathway involving p38MAPK and ERK was identified as one of the mediators of celastrol action.
    [Show full text]
  • The Isolation and Characterization of Huntingtin Interacting
    THE ISOLATION AND CHARACTERIZATION OF HUNTINGTIN INTERACTING PROTEINS By MICHAEL ANDREW KALCHMAN B.Sc. (Honor's Genetics), University of Western Ontario, 1992 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY In THE FACULTY OF GRADUATE STUDIES GENETICS GRADUATE PROGRAMME We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA JULY, 1998 © Michael Andrew Kalchman 1998 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada DE-6 (2/88) ABSTRACT Huntington Disease (HD) is an autosomal dominant, neurodegenerative disorder with onset normally occurring at around 40 years of age. This devastating disease is the result of the expression of a polyglutamine tract greater than 35 in a protein with unknown function. The underlying mutation in HD places it in a category of neurodegenerative diseases along with seven other diseases, all of which have widespread expression of the protein with an abnormally long polyglutamine tract, but have disease specific neurodegeneration. Yeast two-hybrid screens were used in an attempt to further elucidate the function of the HD gene product, huntingtin.
    [Show full text]
  • Phosphorylation of Huntingtin at Residue T3 Is Decreased In
    Phosphorylation of huntingtin at residue T3 is PNAS PLUS decreased in Huntington’s disease and modulates mutant huntingtin protein conformation Cristina Cariuloa,1, Lucia Azzollinia,1, Margherita Verania, Paola Martufia, Roberto Boggiob, Anass Chikic, Sean M. Deguirec, Marta Cherubinid,e, Silvia Ginesd,e, J. Lawrence Marshf, Paola Confortig,h, Elena Cattaneog,h, Iolanda Santimonei, Ferdinando Squitierii, Hilal A. Lashuelc,2, Lara Petriccaa,2,3, and Andrea Caricasolea,2,3 aDepartment of Neuroscience, IRBM Science Park, 00071 Pomezia, Rome, Italy; bIRBM Promidis, 00071 Pomezia, Rome, Italy; cLaboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; dDepartamento de Biomedicina, Facultad de Medicina, Instituto de Neurociencias, Universidad de Barcelona, 08035 Barcelona, Spain; eInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; fDepartment of Developmental and Cell Biology, University of California, Irvine, CA 92697; gLaboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; hIstituto Nazionale Genetica Molecolare (INGM) Romeo ed Enrica Invernizzi, Milan 20122, Italy; and iHuntington and Rare Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved October 25, 2017 (received for review April 10, 2017) Posttranslational modifications can have profound effects on the reviewed in ref. 13). The mutation leads to the production of biological and biophysical properties of proteins associated with huntingtin protein (HTT) bearing a polyglutamine expansion misfolding and aggregation.
    [Show full text]
  • Allele-Specific Regulation of Mutant Huntingtin by Wig1, a Downstream
    Human Molecular Genetics, 2016, Vol. 25, No. 12 2514–2524 doi: 10.1093/hmg/ddw115 Advance Access Publication Date: 19 May 2016 Original Article Downloaded from https://academic.oup.com/hmg/article-abstract/25/12/2514/2525740 by Univ of Connecticut user on 21 May 2019 ORIGINAL ARTICLE Allele-specific regulation of mutant Huntingtin by Wig1, a downstream target of p53 Sun-Hong Kim1,†, Neelam Shahani1,†,‡, Byoung-II Bae2,¶, Juan I. Sbodio2, Youjin Chung1, Kazuhiro Nakaso3, Bindu D. Paul2 and Akira Sawa1,2,* 1Department of Psychiatry and Behavioral Sciences, 2Neuroscience Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA and 3Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, 86, Nishicho, Yonago, 683-8503, Japan *To whom correspondence should be addressed at: Tel: þ1 4109554726; Fax: þ1 4106141792; Email: [email protected] Abstract p53 has been implicated in the pathophysiology of Huntington’s disease (HD). Nonetheless, the molecular mechanism of how p53 may play a unique role in the pathology remains elusive. To address this question at the molecular and cellular biology levels, we initially screened differentially expressed molecules specifically dependent on p53 in a HD animal model. Among the candidate molecules, wild-type p53-induced gene 1 (Wig1) is markedly upregulated in the cerebral cortex of HD patients. Wig1 preferentially upregulates the level of mutant Huntingtin (Htt) compared with wild-type Htt. This allele-specific charac- teristic of Wig1 is likely to be explained by higher affinity binding to mutant Htt transcripts than normal counterpart for the stabilization. Knockdown of Wig1 level significantly ameliorates mutant Htt-elicited cytotoxicity and aggregate formation.
    [Show full text]
  • Sequence Specificity Analysis of the SETD2 Protein Lysine Methyltransferase and Discovery of a SETD2 Super-Substrate
    ARTICLE https://doi.org/10.1038/s42003-020-01223-6 OPEN Sequence specificity analysis of the SETD2 protein lysine methyltransferase and discovery of a SETD2 super-substrate Maren Kirstin Schuhmacher1,4, Serap Beldar2,4, Mina S. Khella1,3,4, Alexander Bröhm1, Jan Ludwig1, ✉ ✉ 1234567890():,; Wolfram Tempel2, Sara Weirich1, Jinrong Min2 & Albert Jeltsch 1 SETD2 catalyzes methylation at lysine 36 of histone H3 and it has many disease connections. We investigated the substrate sequence specificity of SETD2 and identified nine additional peptide and one protein (FBN1) substrates. Our data showed that SETD2 strongly prefers amino acids different from those in the H3K36 sequence at several positions of its specificity profile. Based on this, we designed an optimized super-substrate containing four amino acid exchanges and show by quantitative methylation assays with SETD2 that the super-substrate peptide is methylated about 290-fold more efficiently than the H3K36 peptide. Protein methylation studies confirmed very strong SETD2 methylation of the super-substrate in vitro and in cells. We solved the structure of SETD2 with bound super-substrate peptide con- taining a target lysine to methionine mutation, which revealed better interactions involving three of the substituted residues. Our data illustrate that substrate sequence design can strongly increase the activity of protein lysine methyltransferases. 1 Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany. 2 Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada. 3 Biochemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt. 4These authors contributed equally: Maren Kirstin Schuhmacher, Serap Beldar, Mina S.
    [Show full text]
  • The Expression of Genes Contributing to Pancreatic Adenocarcinoma Progression Is Influenced by the Respective Environment – Sagini Et Al
    The expression of genes contributing to pancreatic adenocarcinoma progression is influenced by the respective environment – Sagini et al Supplementary Figure 1: Target genes regulated by TGM2. Figure represents 24 genes regulated by TGM2, which were obtained from Ingenuity Pathway Analysis. As indicated, 9 genes (marked red) are down-regulated by TGM2. On the contrary, 15 genes (marked red) are up-regulated by TGM2. Supplementary Table 1: Functional annotations of genes from Suit2-007 cells growing in pancreatic environment Categoriesa Diseases or p-Valuec Predicted Activation Number of genesf Functions activationd Z-scoree Annotationb Cell movement Cell movement 1,56E-11 increased 2,199 LAMB3, CEACAM6, CCL20, AGR2, MUC1, CXCL1, LAMA3, LCN2, COL17A1, CXCL8, AIF1, MMP7, CEMIP, JUP, SOD2, S100A4, PDGFA, NDRG1, SGK1, IGFBP3, DDR1, IL1A, CDKN1A, NREP, SEMA3E SERPINA3, SDC4, ALPP, CX3CL1, NFKBIA, ANXA3, CDH1, CDCP1, CRYAB, TUBB2B, FOXQ1, SLPI, F3, GRINA, ITGA2, ARPIN/C15orf38- AP3S2, SPTLC1, IL10, TSC22D3, LAMC2, TCAF1, CDH3, MX1, LEP, ZC3H12A, PMP22, IL32, FAM83H, EFNA1, PATJ, CEBPB, SERPINA5, PTK6, EPHB6, JUND, TNFSF14, ERBB3, TNFRSF25, FCAR, CXCL16, HLA-A, CEACAM1, FAT1, AHR, CSF2RA, CLDN7, MAPK13, FERMT1, TCAF2, MST1R, CD99, PTP4A2, PHLDA1, DEFB1, RHOB, TNFSF15, CD44, CSF2, SERPINB5, TGM2, SRC, ITGA6, TNC, HNRNPA2B1, RHOD, SKI, KISS1, TACSTD2, GNAI2, CXCL2, NFKB2, TAGLN2, TNF, CD74, PTPRK, STAT3, ARHGAP21, VEGFA, MYH9, SAA1, F11R, PDCD4, IQGAP1, DCN, MAPK8IP3, STC1, ADAM15, LTBP2, HOOK1, CST3, EPHA1, TIMP2, LPAR2, CORO1A, CLDN3, MYO1C,
    [Show full text]
  • Region-Specific Transcriptional Changes Following the Three
    Molecular Psychiatry (2007) 12, 167–189 & 2007 Nature Publishing Group All rights reserved 1359-4184/07 $30.00 www.nature.com/mp ORIGINAL ARTICLE Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine B Conti1, R Maier2, AM Barr1,3, MC Morale1,4,XLu1, PP Sanna1, G Bilbe2, D Hoyer2 and T Bartfai1 1Molecular and Integrative Neuroscience Department, The Harold L Dorris Neurological Research Institute, The Scripps Research Institute, La Jolla, CA, USA and 2Neuroscience Research, Novartis Institutes for Biomedical Research, Basel, Switzerland The significant proportion of depressed patients that are resistant to monoaminergic drug therapy and the slow onset of therapeutic effects of the selective serotonin reuptake inhibitors (SSRIs)/serotonin/noradrenaline reuptake inhibitors (SNRIs) are two major reasons for the sustained search for new antidepressants. In an attempt to identify common underlying mechanisms for fast- and slow-acting antidepressant modalities, we have examined the transcriptional changes in seven different brain regions of the rat brain induced by three clinically effective antidepressant treatments: electro convulsive therapy (ECT), sleep deprivation (SD), and fluoxetine (FLX), the most commonly used slow-onset antidepressant. Each of these antidepressant treatments was applied with the same regimen known to have clinical efficacy: 2 days of ECT (four sessions per day), 24 h of SD, and 14 days of daily treatment of FLX, respectively. Transcriptional changes were evaluated on RNA extracted from seven different brain regions using the Affymetrix rat genome microarray 230 2.0. The gene chip data were validated using in situ hybridization or autoradiography for selected genes.
    [Show full text]
  • Datasheet: VMA00449 Product Details
    Datasheet: VMA00449 Description: MOUSE ANTI SETD2 Specificity: SETD2 Format: Purified Product Type: PrecisionAb™ Monoclonal Clone: OTI1E1 Isotype: IgG2a Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Product Form Purified IgG - liquid Preparation Mouse monoclonal antibody purified by affinity chromatography from ascites Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 1% Bovine Serum Albumin 50% Glycerol Immunogen Recombinant protein fragment corresponding to aa 1787-2144 of human SETD2 (NP_054878) produced in E.coli External Database UniProt: Links Q9BYW2 Related reagents Entrez Gene: 29072 SETD2 Related reagents Synonyms HIF1, HYPB, KIAA1732, KMT3A, SET2 Page 1 of 2 Specificity Mouse anti Human SETD2 antibody recognizes SETD2, also known as histone-lysine N-methyltransferase SETD2, huntingtin interacting protein 1, huntingtin yeast partner B, HYPB, huntingtin-interacting protein B, HIF-1, HIP-1, lysine N-methyltransferase 3A, KMT3A and HBP231. Huntington's disease (HD), a neurodegenerative disorder characterized by loss of striatal neurons, is caused by an expansion of a polyglutamine tract in the HD protein huntingtin.
    [Show full text]