Year in Review

Total Page:16

File Type:pdf, Size:1020Kb

Year in Review FROM THE CORNER OFFICE 7 TRAJECTORIES 96 EDITOR’S NOTEBOOK 4 For AIAA, a year of change Testing the C Series jet Angel in the details 2017 YEAR IN REVIEW DECEMBER 2017 | A publication of the American Institute of Aeronautics and Astronautics | aerospaceamerica.aiaa.org 8–12 JANUARY 2018 KISSIMMEE, FLORIDA Five days of expert panels, technical sessions, endless networking opportunities, and so much more. Don’t miss out on everything the 2018 AIAA SciTech Forum has to offer. Register today! SPECIAL EVENTS Rising Leaders in Aerospace Speed Mentoring and Reception MONDAY, 8 JANUARY Accomplished members of the aerospace industry will take time to meet with the Rising Leaders in Aerospace participants to share their career experiences. Opening Reception in the Exposition Hall TUESDAY, 9 JANUARY Network your way through an evening with food and libations while you connect with colleagues and fellow attendees. From Race Cars to Flying Machines: Celebrating 80 Years of Liebeck WEDNESDAY, 10 JANUARY This special session will celebrate the 80th birthday of Bob Liebeck, renowned aerodynamicist, professor, and aerospace engineer. Guest speakers will highlight Bob’s tremendous contributions to aerospace and education, and will provide a glimpse of the fun he has had along the way. Women at SciTech Social Hour and Keynote THURSDAY, 11 JANUARY AIAA and the AIAA Diversity Working Group will celebrate women’s accomplishments in aerospace and aeronautics, and provide an opportunity for women to network and share their experiences. The event is open to everyone. Learn more about these special events and others at scitech.aiaa.org/forumschedule YEAR IN REVIEW | December 2017 MORE AT aerospaceamerica.aiaa.org THE YEAR IN REVIEW The most important developments as described by AIAA’s technical and outreach committees aerospaceamerica.aiaa.org | DECEMBER 2017 | 1 9–11 JULY 2018 CINCINNATI, OH CALL FOR PAPERS Hundreds of thought leaders and cutting-edge engineers and researchers will congregate in Cincinnati, Ohio, to discuss the exciting innovations happening in the fields of aerospace power and propulsion. Be a part of the conversation. Export Controlled submissions are also accepted for the topics below in the ITAR subject area. TOPICS INCLUDE • Additive Manufacturing for Propulsion Systems • High-Speed Air-Breathing Propulsion • Advanced Integrated Engine Controls and • Hybrid Rockets Intelligent Systems • Inlets, Nozzles, and Propulsion Systems Integration • Advanced Mechanical Components • Liquid Propulsion • Advanced Propulsion Concepts • Nuclear and Future Flight Propulsion • Advanced Vehicle Systems • Pressure Gain Combustion • Aerospace Power Systems • Propellants and Combustion • Aircraft Electric Propulsion • Propulsion and Power of Unmanned Aerial Systems • Electric Propulsion • Propulsion Education • Electricity Delivery and Grid Reliability • Small Satellites • Energetic Components and Systems • Solid Rocket Propulsion • Energy Conversion Technology • Space Nuclear Power Systems • Energy-Efficient and Renewable Energy Technologies • Space Solar Power • Fossil-Fuel Power Technologies • Thermal Management Technology • Gas Turbine Engines Abstracts Due at 2000 hrs EST on 4 January 2018 propulsionenergy.aiaa.org AEROSPACE ++ +AMERICA + ++ DECEMBER 2017, VOL. 55, NO. 11 YEAR IN REVIEW EDITOR-IN-CHIEF Ben Iannotta [email protected] Adaptive Structures............................................. 8 MVCE................................................................. 25 Aeroacoustics .................................................... 16 Microgravity and Space Processes .................... 66 ASSOCIATE EDITOR Karen Small Aerodynamic Measurement Technology ............. 17 Missile Systems................................................. 67 [email protected] Aerospace Power Systems ................................. 52 Modeling and Simulation .................................. 26 STAFF REPORTER Aircraft Design .................................................. 30 Multidisciplinary Design Optimization................. 9 Tom Risen Aircraft Operations ............................................31 Non-Deterministic Approaches ..........................10 [email protected] Air Transportation Systems................................ 29 Nuclear and Future Flight Propulsion ................ 60 EDITOR, AIAA BULLETIN Applied Aerodynamics ....................................... 18 Plasmadynamics and Lasers............................. 27 Christine Williams Astrodynamics................................................... 19 Pressure Gain Combustion ................................ 61 [email protected] Atmospheric and Space Environments ..............20 Propellants and Combustion ............................. 62 EDITOR EMERITUS Jerry Grey Atmospheric Flight Mechanics .......................... 21 Sensor Systems and Information Fusion............ 50 Balloon Systems ................................................34 Small Satellite................................................... 68 CONTRIBUTING WRITERS Robert van der Linden, Communications Systems ................................. 46 Society and Aerospace Technology..................... 43 Debra Werner, Frank H. Winter Computer Systems ............................................ 47 Software ............................................................ 51 Digital Avionics ................................................. 48 Solid Rockets..................................................... 63 James “Jim” Maser AIAA PRESIDENT Economics ......................................................... 39 Space Architecture ............................................ 69 John Langford AIAA PRESIDENT-ELECT Electric Propulsion ............................................ 53 Space Automation and Robotics........................ 70 Sandra H. Magnus PUBLISHER Energetic Components ...................................... 54 Space Logistics ................................................. 71 Rodger S. Williams DEPUTY PUBLISHER Flight Testing .................................................... 35 Spacecraft Structures ....................................... 11 ADVERTISING Fluid Dynamics.................................................. 22 Space Exploration.............................................. 44 Joan Daly, 703-938-5907 [email protected] Gas Turbine Engines.......................................... 55 Space Resources ............................................... 72 Green Engineering .............................................40 Space Systems .................................................. 73 ART DIRECTION AND DESIGN Ground Testing .................................................. 23 Space Tethers ....................................................74 THOR Design Studio | thor.design Guidance, Navigation and Control..................... 24 Space Transportation ........................................ 75 High-Speed Air Breathing Propulsion ................ 56 Structural Dynamics.......................................... 12 MANUFACTURING AND DISTRIBUTION History ............................................................... 41 Structures ......................................................... 13 Association Vision | associationvision.com Hybrid Rockets .................................................. 57 Survivability ...................................................... 14 LETTERS AND CORRESPONDENCE HyTASP .............................................................. 36 Systems Engineering .........................................15 Ben Iannotta, [email protected] Inlets, Nozzles and Propulsion ...........................58 Terrestrial Energy Systems ................................ 64 Intelligent Systems............................................ 49 Thermophysics .................................................. 28 Legal Aspects of Aeronautics, Astronautics....... 42 Transformational Flight .....................................45 Life Sciences and Systems ................................ 65 V/STOL Aircraft Systems ....................................38 Lighter-Than-Air Systems ..................................37 Weapon System Effectiveness ........................... 76 Liquid Propulsion .............................................. 59 DEPARTMENTS Aerospace America (ISSN 0740-722X) is published monthly by the American Institute of Aeronautics and Astronautics, Inc., at 12700 Sunrise Valley Drive, Suite 200 Reston, VA 20191-5807 [703-264-7500]. Subscription rate 4 Editor’s Notebook is 50% of dues for AIAA members (and is not deductible therefrom). Nonmember subscription price: U.S., $200; foreign, $220. Single copies $20 each. Postmaster: Send 7 From the Corner Offi ce address changes and subscription orders to Aerospace America, American Institute of Aeronautics and Astronautics, at 12700 Sunrise Valley Drive, Reston, VA, 20191-5807, 79 AIAA Bulletin Attn: A.I.A.A. Customer Service. Periodical postage paid at Reston, Virginia, and at additional mailing offi ces. Copyright 2017 by the American Institute of 90 Career Opportunities Aeronautics and Astronautics, Inc., all rights reserved. Trajectories The name Aerospace America is registered by the AIAA 96 A Bombardier conceptual design engineer talks about working in the U.S. Patent and Trademark Offi ce. 94 Looking Back on the C Series. aerospaceamerica.aiaa.org | DECEMBER 2017 | 3 EDITOR’S NOTEBOOK READY FOR 2018 Andrew Lofthouse/CREATE-AV Quality Assurance The angel in the details n its surface, our annual Year-in-Review special issue adds up to a compendium of
Recommended publications
  • 90 Years of Flight Test in the Miami Valley
    in the MiamiValley History Offke Aeronautical Systems Center Air Force Materiel Command ii FOREWORD Less than one hundred years ago, Lord Kelvin, the most prominent scientist of his generation, remarked that he had not “the smallest molecule of faith’ in any form of flight other than ballooning. Within a decade of his damningly pessimistic statement, the Wright brothers were routinely puttering through the skies above Huffman Prairie, pirouetting about in their frail pusher biplanes. They were there because, unlike Kelvin, they saw opportunity, not difficulty, challenge, not impossibility. And they had met that challenge, seized that opportunity, by taking the work of their minds, transforming it by their hands, making a series of gliders and, then, finally, an actual airplane that they flew. Flight testing was the key to their success. The history of flight testing encompassesthe essential history of aviation itself. For as long as humanity has aspired to fly, men and women of courage have moved resolutely from intriguing concept to practical reality by testing the result of their work in actual flight. In the eighteenth and nineteenth century, notable pioneers such asthe French Montgolfier brothers, the German Otto Lilienthal, and the American Octave Chanute blended careful study and theoretical speculation with the actual design, construction, and testing of flying vehicles. Flight testing reallycame ofage with the Wright bro!hers whocarefullycombined a thorough understanding of the problem and potentiality of flight with-for their time-sophisticated ground and flight-test methodolo- gies and equipment. After their success above the dunes at Kitty Hawk, North Carolina on December 17,1903, the brothers determined to refine their work and generate practical aircraft capable of routine operation.
    [Show full text]
  • Modular Spacecraft with Integrated Structural Electrodynamic Propulsion
    NAS5-03110-07605-003-050 Modular Spacecraft with Integrated Structural Electrodynamic Propulsion Nestor R. Voronka, Robert P. Hoyt, Jeff Slostad, Brian E. Gilchrist (UMich/EDA), Keith Fuhrhop (UMich) Tethers Unlimited, Inc. 11807 N. Creek Pkwy S., Suite B-102 Bothell, WA 98011 Period of Performance: 1 September 2005 through 30 April 2006 Report Date: 1 May 2006 Phase I Final Report Contract: NAS5-03110 Subaward: 07605-003-050 Prepared for: NASA Institute for Advanced Concepts Universities Space Research Association Atlanta, GA 30308 NAS5-03110-07605-003-050 TABLE OF CONTENTS TABLE OF CONTENTS.............................................................................................................................................1 TABLE OF FIGURES.................................................................................................................................................2 I. PHASE I SUMMARY ........................................................................................................................................4 I.A. INTRODUCTION .............................................................................................................................................4 I.B. MOTIVATION .................................................................................................................................................4 I.C. ELECTRODYNAMIC PROPULSION...................................................................................................................5 I.D. INTEGRATED STRUCTURAL
    [Show full text]
  • E-Sail for Fast Interplanetary Travel. M
    Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8056.pdf E-SAIL FOR FAST INTERPLANETARY TRAVEL. M. Aru1, P. Janhunen2, 1University of Tartu, Estonia, 2Finnish Meteorological Institute, Finland Introduction: Propulsion is a significant factor for areas of scientific research and new types of missions our access to the Solar System and the time con- could be imagined and created, improving our unders- sumption of the missions. We propose to use the elect- tanding of the Solar System. ric solar wind sail (E-sail), which can provide remar- Manned presence on Mars. A spacecraft equipped kable low thrust propulsion without needing propellant with a large E-sail, that provides 1 N of thrust at 1 au [1, 2]. from Sun, can travel from Earth to the asteroid belt in a The E-sail is a propellantless propulsion concept year. One such spacecraft can bring back three tonnes that uses centrifugally stretched, charged tethers to of water in three years, and repeat the journey multiple extract momentum from the solar wind to produce times within its estimated lifetime of at least ten years thrust. Over periods of months, this small but conti- [9, 12]. The water can be converted to synthetic cryo- nuous thrust can accelerate the spacecraft to great genic rocket fuel in orbital fuelling stations where speeds of approximately 20 to 30 au/year. For examp- manned vehicles travelling between Earth and Mars le, distances of 100 au could be reached in <10 years, can be fuelled. This dramatically reduces the overall which is groundbreaking [1]. mission fuel ratio at launch, and opens up possibilities The principles of operation: A full-scale E-sail for affordable continuous manned presence on Mars includes up to 100 thin, many kilometers long tethers, [13].
    [Show full text]
  • IAF Space Propulsion Symposium 2019
    IAF Space Propulsion Symposium 2019 Held at the 70th International Astronautical Congress (IAC 2019) Washington, DC, USA 21 -25 October 2019 Volume 1 of 2 ISBN: 978-1-7138-1491-7 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2019) by International Astronautical Federation All rights reserved. Printed with permission by Curran Associates, Inc. (2020) For permission requests, please contact International Astronautical Federation at the address below. International Astronautical Federation 100 Avenue de Suffren 75015 Paris France Phone: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 www.iafastro.org Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS VOLUME 1 PROPULSION SYSTEM (1) BLUE WHALE 1: A NEW DESIGN APPROACH FOR TURBOPUMPS AND FEED SYSTEM ELEMENTS ON SOUTH KOREAN MICRO LAUNCHERS ............................................................................ 1 Dongyoon Shin KEYNOTE: PROMETHEUS: PRECURSOR OF LOW-COST ROCKET ENGINE ......................................... 2 Jérôme Breteau ASSESSMENT OF MON-25/MMH PROPELLANT SYSTEM FOR DEEP-SPACE ENGINES ...................... 3 Huu Trinh 60 YEARS DLR LAMPOLDSHAUSEN – THE EUROPEAN RESEARCH AND TEST SITE FOR CHEMICAL SPACE PROPULSION SYSTEMS ....................................................................................... 9 Anja Frank, Marius Wilhelm, Stefan Schlechtriem FIRING TESTS OF LE-9 DEVELOPMENT ENGINE FOR H3 LAUNCH VEHICLE ................................... 24 Takenori Maeda, Takashi Tamura, Tadaoki Onga, Teiu Kobayashi, Koichi Okita DEVELOPMENT STATUS OF BOOSTER STAGE LIQUID ROCKET ENGINE OF KSLV-II PROGRAM .......................................................................................................................................................
    [Show full text]
  • Airship Hangars in Canada
    FWS Group Building Large Airship Hangars in Canada Engineering Considerations FWS Group History of Hangar Structures • In 1909, a French airplane pilot crash landed and rolled into a farmer’s cattle pen • He decided to set up shop in this unused shed, later ordering a number of these sheds for further use • The word hangar comes from a northern French dialect, and means "cattle pen" Zeppelin ZR3 approaching Hangar (Naval Air Station, Lakehurst, N.J) FWS Group History of Hangar Structures • A limited number of the over 100 airship hangars built in 19 countries survive today and documentation related to their construction is scarce • With the reinvention of the airship, the hangar needs to follow suit • Borrowing cues from the past and taking advantage of contemporary design and construction techniques FWS Group History of Hangar Structures • One of the first zeppelin sheds in Germany (1909) was a 600 ft x 150 ft x 66 ft steel-lattice structure with light cladding • 1920s saw the construction of parabolic reinforced concrete hangars • Designed by the pioneer of prestressed concrete, Eugene Freyssinet Construction of Former Hangar at Former Hangar at Orly, France Orly, France FWS Group Airship Hangars • “Hangar One” in California is a famous North American hangar that survives today • Over 1000 ft long and 308 ft wide Hangar One , NASA Ames Research Center USS Macon inside “Hangar One” circa 1933 Moffett Field, California FWS Group Airship Hangars • Another famous group of hangars in California are at Tustin • Over 1000 ft long, 300 ft wide and 178 ft high • All-wood design… war time rationing.
    [Show full text]
  • Solar Electric Propulsion Sail
    IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 13, Issue 5, Ver. I (Sep.-Oct. 2018), PP 18-22 www.iosrjournals.org Solar Electric Propulsion Sail Dr. S.S. Subashka Ramesh [1] Sri Haripriya Nutulapti [2], Yashraj Sharma [3], Pratyush Kumar [4] [1], [2], [3], [4] Department of Computer Science and Engineering, SRM institute of science & technology Ramapuram Campus, Chennai-89, India. Corresponding Author: Dr. S.S. Subashka Ramesh Abstract: The solar expedition missions have been minimized mainly due to the performance of the space capsules, also because of the planned amount of fuel a space shuttle must carry without discharging in order to advance to an unfamiliar region. Traditionally, a solar electric propulsion sail is extremely deformable to drive a space rocket through outer space. Photon or electric sails are propounding medium of propulsion by utilizing the cosmic radiation endeavored because of sun’s rays on massive mirrors. It is a fusion of photo-voltaic cells and ions for the propelling and is also capable of enabling very fine maneuvering of the spacecraft by means of large sail-surface deformations. Solar electric propulsion sailutilizes the natural beams of sunlight to advancethe vehicles into and out of space, just the way wind helps to propel the sailboats over the water. NASA team claimed working on the start ofgrowth of technology on the assignment recognized as the solar sail demonstrator which proved thatmaking use of giant, weightless and unfurling objects float in universe would enhance the abilities of travelling deeper in space.
    [Show full text]
  • Electric Sail Technology Demonstration Mission Spacecraft
    https://ntrs.nasa.gov/search.jsp?R=20170001821 2019-06-22T08:27:43+00:00Z The Conceptual Design of an Electric Sail Technology Demonstration Mission Spacecraft Presentation at: 40th Annual AAS Guidance and Control Conference Breckenridge, CO, USA February 3-8, 2017 Bruce M. Wiegmann NASA-MSFC-ED04 [email protected] Presentation Agenda • HERTS/Electric Sail background information • Findings from the Phase I NIAC • This propulsion technology enables trip times to the Heliopause in 10 – 12 years • Fastest transportation method to reach Heliopause of near term propulsion technologies • Current Phase II NIAC tasks • Plasma chamber testing • Particle-in-cell (PIC) space plasma to spacecraft modeling • Tether material investigation • Conceptual design of a TDM spacecraft • Mission capture Image shown is copyright by: Alexandre Szames, Antigravite, Paris, and is used with permission National Aeronautics and Space Administration 2 Solar Wind Basics-> Solar Sail • The relative velocity of the Solar Wind through the decades The solar wind ions traveling at 400-500 km/sec are the naturally occurring (free) energy source that propels an E-Sail National Aeronautics and Space Administration 3 Electric Sail Origins The electric solar wind sail, or electric sail for short, is a propulsion invention made in 2006 at the Kumpula Space Centre by Dr. Pekka Janhunen. Image courtesy of: Dr. Pekka Janhunen Phase I Findings • Electric-Sail propulsion systems are the fastest method to get spacecraft to deep space destinations as compared to: • Solar sails, • All chemical propulsions, • Electric (ion) propulsion systems • Technology appears to be viable . • Technology Assessment – Most subsystems at high state of readiness except: • Wire-plasma interaction modeling, • Wire deployment, and • Dynamic control of E–Sail spacecraft… • These are the three areas of focus for the current Phase II NIAC National Aeronautics and Space Administration 5 Electric Sail – Concept of Operations • The E-sail consists of 10 to 20 conducting, positively charged, bare wires, each 1–20 km in length.
    [Show full text]
  • Tethers in Space Handbook - Second Edition
    Tethers In Space Handbook - Second Edition - (NASA-- - I SECOND LU IT luN (Spectr Rsdrci ystLSw) 259 P C'C1 ? n: 1 National Aeronautics and Space Administration Office of Space Flight Advanced Program Development NASA Headquarters Code MD Washington, DC 20546 This document is the product of support from many organizations and individuals. SRS Technologies, under contract to NASA Headquarters, compiled, updated, and prepared the final document. Sponsored by: National Aeronautics and Space Administration NASA Headquarters, Code MD Washington, DC 20546 Contract Monitor: Edward J. Brazil!, NASA Headquarters Contract Number: NASW-4341 Contractor: SRS Technologies Washington Operations Division 1500 Wilson Boulevard, Suite 800 Arlington, Virginia 22209 Project Manager: Dr. Rodney W. Johnson, SRS Technologies Handbook Editors: Dr. Paul A. Penzo, Jet Propulsion Laboratory Paul W. Ammann, SRS Technologies Tethers In Space Handbook - Second Edition - May 1989 Prepared For: National Aeronautics and Space Administration Office of Space Flight Advanced Program Development NASA National Aeronautics and Space Administration FOREWORD The Tethers in Space Handbook Second Edition represents an update to the initial volume issued in September 1986. As originally intended, this handbook is designed to serve as a reference manual for policy makers, program managers, educators, engineers, and scientists alike. It contains information for the uninitiated, providing insight into the fundamental behavior of tethers in space. For those familiar with space tethers, it summarizes past and ongoing studies and programs, a complete bibliography of tether publications, and names, addresses, and phone numbers of workers in the field. Perhaps its most valuable asset is the brief description of nearly 50 tether applications which have been proposed and analyzed over the past 10 years.
    [Show full text]
  • Hybrid Solar Sails for Active Debris Removal Final Report
    HybridSail Hybrid Solar Sails for Active Debris Removal Final Report Authors: Lourens Visagie(1), Theodoros Theodorou(1) Affiliation: 1. Surrey Space Centre - University of Surrey ACT Researchers: Leopold Summerer Date: 27 June 2011 Contacts: Vaios Lappas Tel: +44 (0) 1483 873412 Fax: +44 (0) 1483 689503 e-mail: [email protected] Leopold Summerer (Technical Officer) Tel: +31 (0)71 565 4192 Fax: +31 (0)71 565 8018 e-mail: [email protected] Ariadna ID: 10-6411b Ariadna study type: Standard Contract Number: 4000101448/10/NL/CBi Available on the ACT website http://www.esa.int/act Abstract The historical practice of abandoning spacecraft and upper stages at the end of mission life has resulted in a polluted environment in some earth orbits. The amount of objects orbiting the Earth poses a threat to safe operations in space. Studies have shown that in order to have a sustainable environment in low Earth orbit, commonly adopted mitigation guidelines should be followed (the Inter-Agency Space Debris Coordination Committee has proposed a set of debris mitigation guidelines and these have since been endorsed by the United Nations) as well as Active Debris Removal (ADR). HybridSail is a proposed concept for a scalable de-orbiting spacecraft that makes use of a deployable drag sail membrane and deployable electrostatic tethers to accelerate orbital decay. The HybridSail concept consists of deployable sail and tethers, stowed into a nano-satellite package. The nano- satellite, deployed from a mothership or from a launch vehicle will home in towards the selected piece of space debris using a small thruster-propulsion firing and magnetic attitude control system to dock on the debris.
    [Show full text]
  • A Rapid and Scalable Approach to Planetary Defense Against Asteroid Impactors
    THE LEAGUE OF EXTRAORDINARY MACHINES: A RAPID AND SCALABLE APPROACH TO PLANETARY DEFENSE AGAINST ASTEROID IMPACTORS Version 1.0 NASA INSTITUTE FOR ADVANCED CONCEPTS (NIAC) PHASE I FINAL REPORT THE LEAGUE OF EXTRAORDINARY MACHINES: A RAPID AND SCALABLE APPROACH TO PLANETARY DEFENSE AGAINST ASTEROID IMPACTORS Prepared by J. OLDS, A. CHARANIA, M. GRAHAM, AND J. WALLACE SPACEWORKS ENGINEERING, INC. (SEI) 1200 Ashwood Parkway, Suite 506 Atlanta, GA 30338 (770) 379-8000, (770)379-8001 Fax www.sei.aero [email protected] 30 April 2004 Version 1.0 Prepared for ROBERT A. CASSANOVA NASA INSTITUTE FOR ADVANCED CONCEPTS (NIAC) UNIVERSITIES SPACE RESEARCH ASSOCIATION (USRA) 75 5th Street, N.W. Suite 318 Atlanta, GA 30308 (404) 347-9633, (404) 347-9638 Fax www.niac.usra.edu [email protected] NIAC CALL FOR PROPOSALS CP-NIAC 02-02 PUBLIC RELEASE IS AUTHORIZED The League of Extraordinary Machines: NIAC CP-NIAC 02-02 Phase I Final Report A Rapid and Scalable Approach to Planetary Defense Against Asteroid Impactors Table of Contents List of Acronyms ________________________________________________________________________________________ iv Foreword and Acknowledgements___________________________________________________________________________ v Executive Summary______________________________________________________________________________________ vi 1.0 Introduction _________________________________________________________________________________________ 1 2.0 Background _________________________________________________________________________________________
    [Show full text]
  • Siewnarine Vishal 2015 Masters
    THE IMPACT OF ATMOSPHERIC MODELS ON THE DYNAMICS OF SPACE TETHER SYSTEMS Vishal Siewnarine A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Graduate Program in Physics and Astronomy York University Toronto, Ontario September 2015 Vishal Siewnarine, 2015 Abstract Space debris has become an increasingly larger concern for aerospace travel and exploration. One idea to control the space debris population is to de-orbit defunct satellites using a space tether system. A space tether system is often made up of three parts: the main satellite, the tether and the sub-satellite. The tether connects the main satellite and the sub-satellite. Space tether systems make use of the Lorentz force as an electrodynamic drag for de-orbit. We use an established model of a space tether system to observe how satellites de- orbit. This model was constructed in MATLAB (Simulink) and uses the 1976 U.S. Standard Atmosphere. However, we wish to investigate how the model behaves using newer and more accurate atmospheric models, namely, the Jacchia-Bowman 2008 model and the Drag Temperature Model 2013. We also investigate the effect of controlling the tether's libration energy under the three aforementioned atmospheric models. ii Acknowledgements First of all, I would like to thank God for bringing me to this point. Without her, nothing is possible. Next, I would like to thank Professor Zheng Hong Zhu for his enduring patience and effort in being my supervisor and mentor whose sincerity, encouragement, late nights and tireless efforts helped shape my focus and inspire me as I hurdle all the obstacles and barriers in the completion of this work.
    [Show full text]
  • Facial Recognition by G. NANDAGOPAN, 3ND YEAR
    Our Founder Janab A. Thangal Kunju Musaliar Standing live at the forefront of Engineering Education with the vision of excellence in education and research with socio-economic and environmental outlook, ever since its inception in 1958 by the great visionary, philanthropist and social reformer Janab A Thangal Kunju Musaliar, TKM College of Engi- neering has never failed in instilling colour to the dreams of all those who dwell in. Over the years of existence, the institution has emerged as a kaleidoscope of diversity and vibrancy, transfiguring the way technical education is imparted and practiced. Through the ever growing number of alumni spanning over the globe, managing variant roles in different domains, the institution is always involved in the process of betterment of this world. Team Potentia pays respect to this campus, our abode, which has offered a better future to the nation, in all its years of excellence and glory. TKM COLLEGE OF ENGINEERING Message Greetings from the Department of Electrical and Elec- tronics Engineering of TKM College of Engineering. Let me begin by congratulating the Editorial Board for the efforts they have taken in bringing forth the latest edition of POTENTIA, the technical magazine published by our department since 2004. The students, faculty and staff have always striven to improve the quality of our magazine year after year. The current edition is undoubtedly a perfect blend of topics from energy, envi- ronment, computation, data science and e-mobility. The articles are compiled by the editorial board from the con- tributions of students from all the batches and the faculty of the department.
    [Show full text]