Seascape Configuration and Fine-Scale Habitat Complexity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Across the Land-Sea Boundary with an IOOS Informed Seascape Ecology Supporting Ecosystem Management John P. Manderson1 and Josh
Across the land-sea boundary with an IOOS informed seascape ecology supporting ecosystem management John P. Manderson1 and Josh T. Kohut2 The co-authors contributed equally to the development of this white paper 1NOAA/NMFS/NEFSC James J. Howard Laboratory, Highlands, NJ 07732 2Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 “..comparison of marine and terrestrial application of paradigms developed on dynamics has more than theoretical land to the problems of ocean interest. As we utilize marine and management fundamentally flawed. terrestrial environments, the The rapid evolution of the consequences, deliberate or accidental, Integrated Ocean Observation System depend on [ecosystem] responses to (IOOS) made possible through physical and chemical change. The interdisciplinary partnerships and imposition of terrestrial standards for networked data sharing provides marine problems may produce too strict descriptions of coastal ocean or too lax criteria--or most likely quite hydrography and hydrodynamics at fine inappropriate ones” (Steele, 1991) scales of space and time and regional spatial extents. This allows hydrography 1. Introduction and hydrodynamics to be placed at the Ecosystem assessment and foundation of a seascape ecology in the management in the sea is holistic, based upon interdisciplinary science that considers physical, chemical and biological processes, including feedbacks with human ecological systems, that structure and regulate marine ecosystems. Space and time based tools for the management of human activities in the sea need to be informed by a broad scale habitat ecology that reflects the dynamic realities of the ocean. Current spatial management strategies including marine spatial planning (MSP) and ocean zoning are based upon the patch-mosaic paradigm of terrestrial landscape ecology modified to consider principles of dispersal ecology, primarily for pelagic early life history stages. -
Plankton Planet – Proof-Of-Concept & Perspectives
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.263442; this version posted September 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Plankton Planet – Proof-of-Concept & Perspectives Plankton Planet: ‘seatizen’ oceanography to assess open ocean life at the planetary scale Colomban de Vargas1,2,3 #, Thibaut Pollina2,4, Sarah Romac1,2,3, Noan Le Bescot1,2, Nicolas Henry1,2,3, Calixte Berger2, Sébastien Colin1,2, Nils Haëntjens5,2, Margaux Carmichael2, David Le Guen2, Johan Decelle6, Frédéric Mahé7, Emmanuel Malpot8, Carole Beaumont9, Michel Hardy10, the planktonauts, the Plankton Planet team, Damien Guiffant2, Ian Probert1, David F. Gruber11, Andy Allen12, Gabriel Gorsky13,2, Mick Follows14, Barry B. Cael15, Xavier Pochon16,17, Romain Troublé18,2 #, Fabien Lombard2,13,19, Emmanuel Boss5,2, Manu Prakash4,2 # 1 Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, 29680 Roscoff, France. 2 Plankton Planet NGO, Station Biologique de Roscoff & Atelier PontonZ Morlaix, 29680 Roscoff, France 3 Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France 4 Stanford University, Department of Bioengineering, Stanford, CA 94305, USA. 5 University of Maine, School of Marine Sciences, 5706 Aubert Hall, Orono, ME 04473, USA 6 Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRA; 38054, Grenoble, France 7 CIRAD, UMR GBPI, 34398, Montpellier, France 8 Moana Fisheries Ltd, Cawthron Aquaculture Park, Nelson, New Zealand 9 On board ‘Folligou’ 10 On board ‘Taravana’ 11 Baruch College and the Graduate Center, Department of Natural Sciences, City University of New York, USA 12 J. -
Life History Compendium of Exploited Hawaiian Fishes
Life History Compendium of Exploited Hawaiian Fishes Prepared for Fisheries Local Action Strategy and Division of Aquatic Resources Prepared by K. Longenecker Hawai‘i Biological Survey Bishop Museum 1525 Bernice Street Honolulu, Hawai‘i 96817 R. Langston Windward Community College 45-720 Keahaala Road Kaneohe, Hawai‘i 96744 July 2008 1 Table of Contents INTRODUCTION .......................................................................................................................... 3 METHODS ..................................................................................................................................... 3 Description of life history parameters: ....................................................................................... 4 RESULTS ....................................................................................................................................... 6 HOLOCENTRIDAE ................................................................................................................... 7 Myripristis amaena (Castelnau, 1873) [3] .............................................................................. 7 Sargocentron diadema (Lacepède, 1802) [13] ..................................................................... 10 CARANGIDAE ........................................................................................................................ 13 Caranx ignobilis (Forsskål, 1775) [17] ................................................................................. 13 Caranx melampygus -
Ecological Connectivity in East African Seascapes
Ecological connectivity in East African seascapes Charlotte Berkström 1 ©Charlotte Berkström, Stockholm 2012 ISBN 978-91-7447-477-0 Printed in Sweden by US-AB, Stockholm 2012 Distributor: Department of Systems Ecology, Stockholm University Cover photo: Ian Bryceson 2 Abstract Coral reefs, seagrass beds and mangroves constitute a complex mosaic of habitats referred to as the tropical seascape. Great gaps exist in the knowledge of how these systems are interconnected. This thesis sets out to examine ecological connectivity, i.e. the connectedness of ecological processes across multiple scales, in Zanzibar and Mafia Island, Tanzania with focus on functional groups of fish. Paper I examined the current knowledge of interlinkages and their effect on seascape functioning, revealing that there are surprisingly few studies on the influences of cross-habitat interactions and food-web ecology. Furthermore, 50% of all fish species use more than one habitat and 18% of all coral reef fish species use mangrove or seagrass beds as juvenile habitat in Zanzibar. Paper II examined the seascape of Menai Bay, Zanzibar using a landscape ecology approach. The relationship between fish and landscape variables were studied. The amount of seagrass within 750m of a coral reef site was correlated with increased invertebrate feeder/piscivore fish abundance, especially Lethrinidae and Lutjanidae, which are known to perform ontogenetic and feeding migrations. Furthermore, within-patch seagrass cover was correlated with nursery species abundance. Paper III focused on a seagrass-dominated seascape in Chwaka Bay, Unguja Island and showed that small-scale habitat complexity (shoot height and density) as well as large-scale variables such as distance to coral reefs affected the abundance and distribution of a common seagrass parrotfish Leptoscarus vaigiensis. -
Seascape Ecology and Landscape Ecology: Distinct, Related, and Synergistic
Wu, J. 2018. Seascape ecology and landscape ecology: Distinct, related, and synergistic. Pages 487-491 In: Simon J. Pittman (editor), Seascape Ecology, Wiley-Blackwell. Seascape ecology and landscape ecology: Distinct, related, and synergistic Jianguo (Jingle) Wu School of Life Sciences and School of Sustainability, Arizona State University, Tempe, AZ 85287, USA, and Center for Human-Environment System Sustainability (CHESS), Beijing Normal University, Beijing 100875, China Most of ecological theories have been based on terrestrial systems although about 71% of the Earth's surface is covered by water (nearly 96.5% of which is contained in the oceans). Since Darwin, oceanic islands have long been used as “natural laboratories” for developing and testing ecological and evolutionary theories. Yet, terrestrial and marine systems had been studied separately with little scholarly communication until the 1980s when scientists began to compare and connect them in order to understand the earth as a whole ecosystem (e.g., Steele 1985, Steele 1991a, Levin et al. 1993, Okubo and Levin 2001). The past few decades have witnessed a wave of new research fronts that cut across marine and terrestrial systems. One of these exciting and emerging cross-system fields is seascape ecology, the topic of this book. Here I compare and contrast this new field with landscape ecology and discuss how they can benefit each other. Landscape ecology While the term, landscape ecology, was coined in 1939, initially as the study of the relationship between biotic communities and their environment in a regional landscape mosaic, modern landscape ecology since the 1980s has become a highly interdisciplinary and comprehensive scientific enterprise, with multiple definitions and interpretations (Forman 1995, Wiens and Moss 2005, Wu 2006, Wu and Hobbs 2007, Turner and Gardner 2015). -
Patterns and Processes in the Evolutionary History of Parrotfishes
bs_bs_banner Biological Journal of the Linnean Society, 2012, ••, ••–••. With 5 figures Patterns and processes in the evolutionary history of parrotfishes (Family Labridae) JOHN. H. CHOAT1*, OYA. S. KLANTEN1†, LYNNE VAN HERWERDEN1, D. ROSS ROBERTSON2‡ and KENDALL D. CLEMENTS3 1School of Tropical and Marine Biology, James Cook University, Townsville, QLD, 4811, Australia 2Smithsonian Tropical Research Institute, Ancon, Balboa, Republic of Panama 3School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand Received 5 March 2012; revised 23 May 2012; accepted for publication 23 May 2012 Phylogenetic reconstruction of the evolutionary relationships among 61 of the 70 species of the parrotfish genera Chlorurus and Scarus (Family Labridae) based on mitochondrial and nuclear gene sequences retrieved 15 well-supported clades with mid Pliocene/Pleistocene diversification. Twenty-two reciprocally monophyletic sister- species pairs were identified: 64% were allopatric, and the remainder were sympatric. Age of divergence was similar for allopatric and sympatric species pairs. Sympatric sister pairs displayed greater divergence in morphol- ogy, ecology, and sexually dimorphic colour patterns than did allopatric pairs, suggesting that both genetic drift in allopatric species pairs and ecologically adaptive divergence between members of sympatric pairs have played a role in diversification. Basal species typically have small geographical ranges and are restricted to geographically and ecologically peripheral reef habitats. We found little evidence that a single dominant process has driven diversification, nor did we detect a pattern of discrete, sequential stages of diversification in relation to habitat, ecology, and reproductive biology. The evolution of Chlorurus and Scarus has been complex, involving a number of speciation processes. -
Towards a Seascape Typology. I. Zipf Versus Pareto Laws ⁎ Laurent Seuront A,B, , James G
Available online at www.sciencedirect.com Journal of Marine Systems 69 (2008) 310–327 www.elsevier.com/locate/jmarsys Towards a seascape typology. I. Zipf versus Pareto laws ⁎ Laurent Seuront a,b, , James G. Mitchell b a School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001, South Australia, Australia b Station Marine de Wimereux, CNRS UMR 8013 ELICO, Université des Sciences et Technologies de Lille, 28 avenue Foch, F-62930 Wimereux, France Received 11 June 2005; received in revised form 22 December 2005; accepted 11 March 2006 Available online 22 February 2007 Abstract Two data analysis methods, referred to as the Zipf and Pareto methods, initially introduced in economics and linguistics two centuries ago and subsequently used in a wide range of fields (word frequency in languages and literature, human demographics, finance, city formation, genomics and physics), are described and proposed here as a potential tool to classify space–time patterns in marine ecology. The aim of this paper is, first, to present the theoretical bases of Zipf and Pareto laws, and to demonstrate that they are strictly equivalent. In that way, we provide a one-to-one correspondence between their characteristic exponents and argue that the choice of technique is a matter of convenience. Second, we argue that the appeal of this technique is that it is assumption- free for the distribution of the data and regularity of sampling interval, as well as being extremely easy to implement. Finally, in order to allow marine ecologists to identify and classify any structure in their data sets, we provide a step by step overview of the characteristic shapes expected for Zipf's law for the cases of randomness, power law behavior, power law behavior contaminated by internal and external noise, and competing power laws illustrated on the basis of typical ecological situations such as mixing processes involving non-interacting and interacting species, phytoplankton growth processes and differential grazing by zooplankton. -
Using Environmental DNA for Marine Monitoring and Planning
Network of Conservation Educators & Practitioners What’s in the Water? Using environmental DNA for Marine Monitoring and Planning Author(s): Kristin E. Douglas, Patrick Shea, Ana Luz Porzecanski, and Eugenia Naro-Maciel Source: Lessons in Conservation, Vol. 10, Issue 1, pp. 29–48 Published by: Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History Stable URL: ncep.amnh.org/linc This article is featured in Lessons in Conservation, the official journal of the Network of Conservation Educators and Practitioners (NCEP). NCEP is a collaborative project of the American Museum of Natural History’s Center for Biodiversity and Conservation (CBC) and a number of institutions and individuals around the world. Lessons in Conservation is designed to introduce NCEP teaching and learning resources (or “modules”) to a broad audience. NCEP modules are designed for undergraduate and professional level education. These modules—and many more on a variety of conservation topics—are available for free download at our website, ncep.amnh.org. To learn more about NCEP, visit our website: ncep.amnh.org. All reproduction or distribution must provide full citation of the original work and provide a copyright notice as follows: “Copyright 2020, by the authors of the material and the Center for Biodiversity and Conservation of the American Museum of Natural History. All rights reserved.” Illustrations obtained from the American Museum of Natural History’s library: images.library.amnh.org/digital/ -
HETA ROUSI: Zoobenthos As Indicators of Marine Habitats in the Northern Baltic
Heta Rousi Zoobenthos as indicators of marine Heta Rousi | habitats in the northern Baltic Sea of marine as indicators habitats in the northernZoobenthos Baltic Sea Heta Rousi This thesis describes how physical and chemical environmental variables impact zoobenthic species distribution in the northern Baltic Sea and how dis- Zoobenthos as indicators of marine tinct zoobenthic species indicate different marine benthic habitats. The thesis inspects the effects of habitats in the northern Baltic Sea depth, sediment type, temperature, salinity, oxy- gen, nutrients as well as topographical and geo- logical factors on zoobenthos on small and large temporal and spatial scales. | 2020 ISBN 978-952-12-3944-1 Heta Rousi Född 1979 Studier och examina Magister vid Helsingfors Universitet 2006 Licentiat vid Åbo Akademi 2013 Doktorsexamen vid Åbo Akademi 2020 Institutionen för miljö- och marinbiologi, Åbo Akademi ZOOBENTHOS AS INDICATORS OF MARINE HABITATS IN THE NORTHERN BALTIC SEA HETA ROUSI Environmental and Marine Biology Faculty of Science and Engineering Åbo Akademi University Finland, 2020 SUPERVISED BY PRE-EXAMINED BY Professor Erik Bonsdorff Research Professor (Supervisor & Examiner) Markku Viitasalo Åbo Akademi University Finnish Environment Institute Faculty of Science and Engineering Sustainable Use of the Marine Areas Environmental and Marine Biology Latokartanonkaari 11 Artillerigatan 6 00790 Helsinki 20520 Åbo Finland Finland Professor Emeritus Ilppo Vuorinen CO-SUPERVISOR University of Turku Adjunct Professor Faculty of Science and Engineering Samuli Korpinen Itäinen Pitkäkatu 4 Finnish Environment Institute 20520 Turku Marine Management Finland Latokartanonkaari 11 00790 Helsinki FACULTY OPPONENT Finland Associate Professor Urszula Janas SUPERVISING AT THE University of Gdansk LICENCIATE PHASE Institute of Oceanography Assistant Professor Al. -
Interregional Comparison of Benthic Ecosystem Functioning Community
Ecological Indicators 110 (2020) 105945 Contents lists available at ScienceDirect Ecological Indicators journal homepage: www.elsevier.com/locate/ecolind Interregional comparison of benthic ecosystem functioning: Community bioturbation potential in four regions along the NE Atlantic shelf T ⁎ Mayya Goginaa, , Michael L. Zettlera, Jan Vanaverbekeb, Jennifer Dannheimc,d, Gert Van Hoeye, Nicolas Desroyf, Alexa Wredec,d, Henning Reissg, Steven Degraerb, Vera Van Lanckerb, Aurélie Foveauf, Ulrike Braeckmanh, Dario Fiorentinoc,d, Jan Holsteini, Silvana N.R. Birchenoughj a Leibniz Institute for Baltic Sea Research, Seestraße 15, 18119 Rostock, Germany b Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Vautierstraat 29, B-1000 Brussels, Belgium c Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, P.O. Box 120161, D-27570 Bremerhaven, Germany d Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, Oldenburg 26129, Germany e Flanders Research Institute of Agriculture, Fishery and Food, Ankerstraat 1, 8400 Oostende, Belgium f Ifremer, Laboratoire Environnement et Ressources Bretagne nord, 38 Rue du Port Blanc, 35800 Dinard, France g Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway h Marine Biology Research Group, Ghent University, Krijgslaan 281/S8, 9000 Gent, Belgium i Focke & Co., Siemensstraße 19, 27283 Verden, Germany j CEFAS Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 -
Fishes Collected During the 2017 Marinegeo Assessment of Kāne
Journal of the Marine Fishes collected during the 2017 MarineGEO Biological Association of the ā ‘ ‘ ‘ United Kingdom assessment of K ne ohe Bay, O ahu, Hawai i 1 1 1,2 cambridge.org/mbi Lynne R. Parenti , Diane E. Pitassy , Zeehan Jaafar , Kirill Vinnikov3,4,5 , Niamh E. Redmond6 and Kathleen S. Cole1,3 1Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 159, Washington, DC 20013-7012, USA; 2Department of Biological Sciences, National University of Singapore, Original Article Singapore 117543, 14 Science Drive 4, Singapore; 3School of Life Sciences, University of Hawai‘iatMānoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA; 4Laboratory of Ecology and Evolutionary Biology of Cite this article: Parenti LR, Pitassy DE, Jaafar Aquatic Organisms, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690091, Russia; 5Laboratory of Z, Vinnikov K, Redmond NE, Cole KS (2020). 6 Fishes collected during the 2017 MarineGEO Genetics, National Scientific Center of Marine Biology, Vladivostok 690041, Russia and National Museum of assessment of Kāne‘ohe Bay, O‘ahu, Hawai‘i. Natural History, Smithsonian Institution DNA Barcode Network, Smithsonian Institution, PO Box 37012, MRC 183, Journal of the Marine Biological Association of Washington, DC 20013-7012, USA the United Kingdom 100,607–637. https:// doi.org/10.1017/S0025315420000417 Abstract Received: 6 January 2020 We report the results of a survey of the fishes of Kāne‘ohe Bay, O‘ahu, conducted in 2017 as Revised: 23 March 2020 part of the Smithsonian Institution MarineGEO Hawaii bioassessment. We recorded 109 spe- Accepted: 30 April 2020 cies in 43 families. -
Identification Guide to the Common Coatal Food Fishes of the Pacific Region-90-104
BMK Bolbometopon muricatum Scaridae / Parrotfish Green humphead parrotfish, bumphead parrotfish 1 Adults greenish-grey with 1 distinctive hump on forehead. Juveniles brown to green with 2 five vertical rows of small white spots. Adult phase 2 Max length: 120 cm TL AS CK FJ FM GU KI MH MP NC NR NU PF PG PN PW SB TK TO TV VU WF WS Juvenile phase ULG Calotomus carolinus Scaridae / Parrotfish Carolines parrotfish, stareye parrotfish Terminal phase with green to 1 brownish-red, with 1 numerous orange-pink bars radiating out from eyes. Initial phase mottled brown with 2 pale patches on back. Terminal phase Max length: 50 cm TL AS CK FJ FM GU KI MH MP NC NR NU PF PG PN PW SB TK TO TV VU WF WS Initial phase 2 90 Scaridae / Parrotfish Cetoscarus ocellatus PWT Spotted parrotfish 1 Terminal phase green with 1 numerous small orange-pink spots and lines on head and forebody, and short orange-pink bars on scales towards rear half of body. 2 Orange-pink horizontal stripe extending from upper lip to anal fin, with no spots below this line. Initial phase with purplish- to red- 2 dish-brown head with 3 golden irises in eyes, 4 pale yellow band Terminal phase on back, and 5 greenish-grey to bluish-grey scale markings on sides and belly. 3 4 Max length: 80 cm TL AS CK FJ FM GU KI MH MP NC NR NU PF PG PN PW SB TK TO TV VU WF WS Initial phase 5 This species was previously referred to as Cetoscarus bicolor across its distribution, however recent genetic analysis has split this into two distinct species: C.