US 2014/0116112 A1 HUMPHREY Et Al
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Factors Influencing Pesticide Resistance in Psylla Pyricola Foerster and Susceptibility Inits Mirid
AN ABSTRACT OF THE THESIS OF: Hugo E. van de Baan for the degree ofDoctor of Philosopbv in Entomology presented on September 29, 181. Title: Factors Influencing Pesticide Resistance in Psylla pyricola Foerster and Susceptibility inits Mirid Predator, Deraeocoris brevis Knight. Redacted for Privacy Abstract approved: Factors influencing pesticide susceptibility and resistance were studied in Psylla pyricola Foerster, and its mirid predator, Deraeocoris brevis Knight in the Rogue River Valley, Oregon. Factors studied were at the biochemical, life history, and population ecology levels. Studies on detoxification enzymes showed that glutathione S-transferase and cytochrome P-450 monooxygenase activities were ca. 1.6-fold higherin susceptible R. brevis than in susceptible pear psylla, however, esterase activity was ca. 5-fold lower. Esterase activity was ca. 18-fold higher in resistant pear psylla than in susceptible D. brevis, however, glutathione S-transferase and cytochrome P-450 monooxygenase activities were similar. Esterases seem to be a major factor conferring insecticideresistance in P. Pvricola. Although the detoxification capacities of P. rivricola and D. brevis were quite similar, pear psylla has developed resistance to many insecticides in the Rogue River Valley, whereas D. brevis has remained susceptible. Biochemical factors may be important in determining the potential of resistance development, however, they are less important in determining the rate at which resistance develops. Computer simulation studies showed that life history and ecological factors are probably of greater importancein determining the rate at which resistance develops in P. pvricola and D. brevis. High fecundity and low immigration of susceptible individuals into selected populations appear to be major factors contributing to rapid resistance development in pear psylla compared with D. -
Multi-Omics Phenotyping of the Gut-Liver Axis Reveals Metabolic Perturbations from a Low-Dose Pesticide Mixture in Rats
ARTICLE https://doi.org/10.1038/s42003-021-01990-w OPEN Multi-omics phenotyping of the gut-liver axis reveals metabolic perturbations from a low-dose pesticide mixture in rats Robin Mesnage 1, Maxime Teixeira 2, Daniele Mandrioli 3, Laura Falcioni 3, Mariam Ibragim1, Quinten Raymond Ducarmon4, Romy Daniëlle Zwittink 4, Caroline Amiel2, Jean-Michel Panoff2, ✉ Emma Bourne5, Emanuel Savage5, Charles A. Mein5, Fiorella Belpoggi3 & Michael N. Antoniou 1 Health effects of pesticides are not always accurately detected using the current battery of regulatory toxicity tests. We compared standard histopathology and serum biochemistry 1234567890():,; measures and multi-omics analyses in a subchronic toxicity test of a mixture of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imida- cloprid and thiabendazole) in Sprague-Dawley rats. Analysis of water and feed consumption, body weight, histopathology and serum biochemistry showed little effect. Contrastingly, serum and caecum metabolomics revealed that nicotinamide and tryptophan metabolism were affected, which suggested activation of an oxidative stress response. This was not reflected by gut microbial community composition changes evaluated by shotgun metage- nomics. Transcriptomics of the liver showed that 257 genes had their expression changed. Gene functions affected included the regulation of response to steroid hormones and the activation of stress response pathways. Genome-wide DNA methylation analysis of the same liver samples showed that 4,255 CpG sites were differentially methylated. Overall, we demonstrated that in-depth molecular profiling in laboratory animals exposed to low con- centrations of pesticides allows the detection of metabolic perturbations that would remain undetected by standard regulatory biochemical measures and which could thus improve the predictability of health risks from exposure to chemical pollutants. -
Pest Management Strategic Plan for Western U.S. Sugarbeet Production
Pest Management Strategic Plan for Western U.S. Sugarbeet Production Summary of a workshop held on December 15–16, 2004 Boise, ID Issued 08/05/05 Lead Authors: Ronda Hirnyck, Lisa Downey Editor: Sally O’Neal Coates Contact Person: Ronda Hirnyck, Idaho Pesticide Program Coordinator (208) 364-4046 [email protected] This project was sponsored by the Western Integrated Pest Management Center, which is funded by the United States Department of Agriculture, Cooperative State Research, Education and Extension Service. Table of Contents Work Group................................................................................................3 Summary of Critical Needs .......................................................................5 Introduction ................................................................................................7 Production Overview ..................................................................................9 Foundation for the Pest Management Strategic Plan Crop Rotation ...................................................................................13 Pre-plant ...........................................................................................14 Planting.............................................................................................24 Pre-emergence ..................................................................................39 Emergence to Row Closure...............................................................44 Row Closure to Harvest....................................................................71 -
Lambda Cyhalothrin Elicited Dose Response Toxicity On
TOXICOLOGY AND FORENSIC MEDICINE http://dx.doi.org/10.17140/TFMOJ-1-107 Open Journal Research Lambda Cyhalothrin Elicited Dose *Corresponding author Response Toxicity on Haematological, Sujata Maiti Choudhury, PhD Department of Human Physiology with Community Health Hepatic, Gonadal and Lipid Metabolic Vidyasagar University Midnapore, West Bengal, India Biomarkers in Rat and Possible Modulatory Tel. + 9474444646 Fax: + 3222 275 329 Role of Taurine E-mail: [email protected]; [email protected] Rini Ghosh, MSc; Tuhina Das, MSc; Anurag Paramanik, MSc; Sujata Maiti Choudhury, Volume 1 : Issue 2 PhD* Article Ref. #: 1000TFMOJ1107 Department of Human Physiology with Community Health, Vidyasagar University, Midnapore Article History 721102, West Bengal, India Received: September 10th, 2016 Accepted: October 5th, 2016 Published: October 6th, 2016 ABSTRACT Extensive application of pesticides is usually accompanied with serious problems of pollution Citation and health hazards. Lambda-cyhalothrin (LCT), a type II synthetic pyrethroid, is widely used Ghosh R, Das T, Paramanik A, Maiti in agriculture, home pest control and protection of foodstuff. This study designed to evalu- Choudhury S. Lambda cyhalothrin elicited dose response toxicity on hae- ate the dose dependent haematological, hepatic and gonadal toxicity of LCT at different dose matological, hepatic, gonadal and lipid levels in Wistar rat. Investigations were also done to find out the toxic effect of lambda cyha- metabolic biomarkers in rat and possi- lothrin on lipid metabolism in female rat and its amelioration by taurine. Rats were exposed ble modulatory role of taurine. Toxicol to different doses of lambda cyhalothrin over a period of 14 consecutive days. Exposure to Forensic Med Open J. -
U.S. EPA, Pesticide Product Label, QUADRIS XTRA FUNGICIDE, 05/06/2008
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES Ms. Adora Clark MAY 6 2008 Syngenta Crop Protection, Inc. ~ P.O. Box 18300 Greensboro, NC 27419 Dear Ms Clark: Subject: Quadris Xtra Fungicide EPA Reg. No. 100-1225 Your Revised Label of February 8, 2008 The amendment referred to above, submitted in connection with registration under FIFRA sec. 3(c)(7)(A), is conditionally accepted provided that the following revision is made to the label: Update the Warranty Statement tocohform to that for Tilt, EPA Reg. No. 100-617, accepted May 25,2007. Submit one copy of the final printed label before you release the product for shipment. If these conditions are not complied with, the registration will be subject to cancellation in accordance with FIFRA sec. 6(e). Your release for shipment of the product constitutes acceptance of these conditions. A stamped copy of the label is enclosed for your records. Sincerely yours, C o-J5'~~~1t'- Mary L Waller Product Manager 21 Fungicide Branch Registration Division (750 Enclosures 7505P:CGrable:cg:5/1/08 ~, ' "'," ,t U-r'.,' Page 18 'CONTAINER/BASE LABEL I GROUP _ FUNGICIDES I Quadris Xtra ™ Fungicide Broad spectrum fungicide for control of plant diseases Active Ingredients: "Azoxy~trobin(CAS No. 131-860-33:'8} ....................... , .............................. 18.2% 'Cypr6c6naiole (cAs No. 94361-'06;;,5).. ............. , .. : .................................... 7.3% Other Ingredients: 74.5% Total: 100.0% Quadris Xtra is a 280SC formulation that contains 0.67 lb. a.i. cyproconazole and 1.67 lb. a.i. azoxystrobin per gallon. ~.!.:~(:~~r.T~D . -
Polystyrene Microplastics Do Not Affect Juvenile Brown Trout (Salmo Trutta F
Schmieg et al. Environ Sci Eur (2020) 32:49 https://doi.org/10.1186/s12302-020-00327-4 RESEARCH Open Access Polystyrene microplastics do not afect juvenile brown trout (Salmo trutta f. fario) or modulate efects of the pesticide methiocarb Hannah Schmieg1*, Sven Huppertsberg2, Thomas P. Knepper2, Stefanie Krais1, Katharina Reitter1, Felizitas Rezbach1, Aki S. Ruhl3,4, Heinz‑R. Köhler1 and Rita Triebskorn1,5 Abstract Background: There has been a rising interest within the scientifc community and the public about the environmen‑ tal risk related to the abundance of microplastics in aquatic environments. Up to now, however, scientifc knowledge in this context has been scarce and insufcient for a reliable risk assessment. To remedy this scarcity of data, we inves‑ tigated possible adverse efects of polystyrene particles (10 4 particles/L) and the pesticide methiocarb (1 mg/L) in juvenile brown trout (Salmo trutta f. fario) both by themselves as well as in combination after a 96 h laboratory expo‑ sure. PS beads (density 1.05 g/mL) were cryogenically milled and fractionated resulting in irregular‑shaped particles (< 50 µm). Besides body weight of the animals, biomarkers for proteotoxicity (stress protein family Hsp70), oxidative stress (superoxide dismutase, lipid peroxidation), and neurotoxicity (acetylcholinesterase, carboxylesterases) were analyzed. As an indicator of overall health, histopathological efects were studied in liver and gills of exposed fsh. Results: Polystyrene particles by themselves did not infuence any of the investigated biomarkers. In contrast, the exposure to methiocarb led to a signifcant reduction of the activity of acetylcholinesterase and the two carboxy‑ lesterases. Moreover, the tissue integrity of liver and gills was impaired by the pesticide. -
US EPA, Pesticide Product Label, Azoxystrobin 2SC,08/06/2020
U.S. ENVIRONMENTAL PROTECTION AGENCY EPA Reg. Number: Date of Issuance: Office of Pesticide Programs Registration Division (7505P) 94730-6 8/6/20 1200 Pennsylvania Ave., N.W. Washington, D.C. 20460 NOTICE OF PESTICIDE: Term of Issuance: X Registration Reregistration Unconditional (under FIFRA, as amended) Name of Pesticide Product: Azoxystrobin 2SC Name and Address of Registrant (include ZIP Code): Generic Crop Science, LLC c/o Biologic Regulatory Consulting, Inc. 10529 Heritage Bay Blvd. Naples, FL 34120 Note: Changes in labeling differing in substance from that accepted in connection with this registration must be submitted to and accepted by the Registration Division prior to use of the label in commerce. In any correspondence on this product always refer to the above EPA registration number. On the basis of information furnished by the registrant, the above named pesticide is hereby registered under the Federal Insecticide, Fungicide and Rodenticide Act. Registration is in no way to be construed as an endorsement or recommendation of this product by the Agency. In order to protect health and the environment, the Administrator, on his motion, may at any time suspend or cancel the registration of a pesticide in accordance with the Act. The acceptance of any name in connection with the registration of a product under this Act is not to be construed as giving the registrant a right to exclusive use of the name or to its use if it has been covered by others. This product is unconditionally registered in accordance with FIFRA section 3(c)(5) provided that you: 1. Submit and/or cite all data required for registration/reregistration/registration review of your product when the Agency requires all registrants of similar products to submit such data. -
Strobilurins: Evolution of a New Class of Active Substances
Strobilurins––new fungicides for crop protection Kresoxim-methyl REVIEWS Strobilurins: Evolution of a New Class of Active Substances Hubert Sauter,* Wolfgang Steglich, and Timm Anke Dedicated to Professor Hans-Jürgen Quadbeck-Seeger on the occasion of his 60th birthday Nature provides active substances, as mansins, the identification of the b- ture ± activity relationships. The varia- the result of special biosynthetic path- methoxyacrylate group as their com- tion of natural product lead structures ways, with the most diverse biological mon structural element, and the eluci- and the selection of suitable candidates activities. Many of these substances dation of their mode of actionÐsaw for development led to an across-the- perform functions that are important the focus of research activities shift board evolution of the strobilurins as a to the survival of the organism in which away from the universities, ushering in new class of active substance. Several they are formed. For example, certain an era of intense competition between commercial products resulting from fungi produce antifungal strobilurins rival industrial fungicide research this effort are now already on the and oudemansins, agents to which the teams. Their goal was, and remains, market, and more are expected to producers themselves are not sensitive, the development of fungicides with follow: a most intriguing success story. but which ward off other fungal species practical applications in agricultural that grow on the same substrates. The crop protection. This review illustrates Keywords: active substance research period that followed the early break- methodological approaches in the op- ´ fungicides ´ natural products ´ throughs in the 1970sÐthe discovery timization of lead structures and the strobilurins ´ structure ± activity re- of the natural strobilurins and oude- importance of understanding struc- lationships 1. -
Bayesian Nonparametric Model for Clustering Individual Co-Exposure to Pesticides Found in the French Diet
Bayesian nonparametric model for clustering individual co-exposure to pesticides found in the French diet. Amélie Crépet, Jessica Tressou To cite this version: Amélie Crépet, Jessica Tressou. Bayesian nonparametric model for clustering individual co-exposure to pesticides found in the French diet.. 2009. hal-00438796v2 HAL Id: hal-00438796 https://hal.archives-ouvertes.fr/hal-00438796v2 Preprint submitted on 12 Jan 2011 (v2), last revised 4 Feb 2011 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Bayesian nonparametric model for clustering individual co-exposure to pesticides found in the French diet. Am´elieCr´epet a & Jessica Tressoub January 12, 2011 aANSES, French Agency for Food, Environmental and Occupational Health Safety, 27-31 Av. G´en´eralLeclerc, 94701 Maisons-Alfort, France bINRA-Met@risk, Food Risk Analysis Methodologies, National Institute for Agronomic Re- search, 16 rue Claude Bernard, 75231 Paris, France Keywords Dirichlet process; Bayesian nonparametric modeling; multivariate Normal mixtures; clustering; multivariate exposure; food risk analysis. Abstract This work introduces a specific application of Bayesian nonparametric statistics to the food risk analysis framework. The goal was to determine the cocktails of pesticide residues to which the French population is simultaneously exposed through its current diet in order to study their possible combined effects on health through toxicological experiments. -
Methiocarb (132)
531 METHIOCARB (132) EXPLANATION Methiocarb, or mercaptodimethur, an insecticide, acaricide, molluscicide, and bird repellent was identified by the 1995 CCPR as a candidate for periodic review (ALINORM 95/24A, Annex 1). It was scheduled for toxicological and residue reviews by the 1998 and 1999 JMPR respectively (ALINORM 97/24A, Appendix III). The most recent extensive reviews of methiocarb residue chemistry were in 1981 and 1983. The manufacturer is Bayer AG. IDENTITY ISO common name: methiocarb mercaptodimethur Chemical names: IUPAC: 4-methylthio-3,5xylyl methylcarbamate CA: 3,5-dimethyl-4-(methylthio)phenyl methylcarbamate CAS Number: 2032-65-7 CIPAC Number: 165 Synonyms: BAY 37344 Mesurol Structural formula: CH3 S O CH3 H3C N O CH3 Molecular formula: C11H15NO2S Molecular weight: 225.3 Physical and chemical properties Pure active ingredient Vapour pressure: 0.015 mPa at 20°C 0.036 mPa at 25°C Melting point: 119°C 532 methiocarb Octanol/water partition Coefficient: log Pow = 3.11 at 20°C and pH 4 log Pow = 3.18 at 20°C and pH 7 degradation at pH 9 log Pow = 3.08 at 20°C unbuffered (Krohn, 1995) Solubility: 0.027 g/l at 20°C in water (Krohn, 1989) 1.3 g/l at 20°C in n-hexane 33 g/l at 20°C in toluene >200 g/l at 20°C in dichloromethane 53 g/l at 20°C in 2-propanol Specific gravity: 1.236 g/cm3 at 20°C Hydrolysis: half-lives of 763 days, 28 days, and 2.2 days at pH 5, 7, and 9 respectively (Saakvitne, 1981). -
Ust Be Reregistration Registered by EPA, Based on Scientific Studies Showing That They Can Be Used Without Posing Unreasonable Risks to People Or the Environment
United States Prevention, Pesticides EPA-738-F-94-002 Environmental Protection And Toxic Substances February 1994 Agency (7508W) R.E.D. FACTS Methiocarb Pesticide All pesticides sold or distributed in the United States must be Reregistration registered by EPA, based on scientific studies showing that they can be used without posing unreasonable risks to people or the environment. Because of advances in scientific knowledge, the law requires that pesticides which were first registered years ago be reregistered to ensure that they meet today's more stringent standards. In evaluating pesticides for reregistration, EPA obtains and reviews a complete set of studies from pesticide producers, describing the human health and environmental effects of each pesticide. The Agency imposes any regulatory controls that are needed to effectively manage each pesticide's risks. EPA then reregisters pesticides that can be used without posing unreasonable risks to human health or the environment. When a pesticide is eligible for reregistration, EPA announces this and explains why in a Reregistration Eligibility Decision (RED) document. This fact sheet summarizes the information in the RED for methiocarb. Use Profile Methiocarb is an insecticide, acaricide and molluscicide. It is used to control snails, slugs, spider mites and insects on lawns, turf and ornamentals, around building foundations, and in ginseng gardens. Methiocarb has no remaining food uses; the use on ginseng has a 12-month preharvest interval and therefore is not considered a food use. Methiocarb end-use products formulated as granulars and pellets/tablets are used on residential and commercially grown lawns, turfgrass and ornamentals, in commercial greenhouses and nurseries, around building foundations, and in ginseng gardens. -
Prediction of Aqueous Solubility from SCRATCH
Prediction of aqueous solubility from SCRATCH Item Type text; Electronic Dissertation Authors Jain, Parijat Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 08:44:28 Link to Item http://hdl.handle.net/10150/193517 PREDICTION OF AQUEOUS SOLUBILITY FROM SCRATCH By Parijat Jain ____________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF PHARMACEUTICAL SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2008 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Parijat Jain entitled Prediction of Aqueous Solubility from SCRATCH and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _______________________________________________________________________ Date: 10-17-08 Dr. Samuel H. Yalkowsky _______________________________________________________________________ Date: 10-17-08 Dr. Michael Mayersohn _______________________________________________________________________ Date: 10-17-08 Dr. Paul B. Myrdal Final approval and acceptance of this dissertation is contingent