Applications of Nanotechnology in Electronics Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Applications of Nanotechnology in Electronics Pdf Applications of nanotechnology in electronics pdf Continue Part of a series of articles on Nanoelectronics Single-Molecular Electronics Molecular Scale Molecular Logic Gate Molecular Wires Solid-State Nanocircuitry Nanowires Nanolithography NEMS Nanosensor Moore Law Multigate Device Semiconductor Device Manufacturing List of Examples of Semiconductor Nanoionics Nanophotonics Nanomechanics Science Portal Electronics Portal Technology portal portal portalvte Part of a series of articles on Nanotechnology Stories Organization Popular Culture Outline Impact and Applications Nanomedicine Nanotoxicology Green Nanotechnology Dangers Regulation of Fuller Nanomaterials Carbon Nanoparticles Nanoparticles Molecular Self-Assembly Self-Assembling Supramolecular Assemblage DNA Nanoelectronics Molecular Scale Electronics Nanolithography Moore Law Semiconductor Device Manufacturing Semiconductor Scale The Electron microscope microscope microscope Super resolution microscopy Nanotribology Molecular nanotechnology Molecular Nanorobotics Mechano molecular engineering science portalvte Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a wide range of devices and materials, with a common characteristic that they are so small that interatomic interactions and quantum-mechanical properties must be studied extensively. Some of these candidates include: hybrid molecular/semiconductor electronics, one-dimensional nanotubes/nanowires (e.g. silicon nanowires or carbon nanotubes) or advanced molecular electronics. Nanoelectronic devices are critical in size with sizes ranging from 1 nm to 100 nm. The latest generations of MOSFET silicon technologies (metal oxide- semiconductor transistor, or MOS transistor) are already under this mode, including 22 CMOS (additional MOS) nodes and the subsequent 14 nm, 10 nm and 7 nm FinFET (fin-field transistor). Nanoelectronics is sometimes seen as a disruptive technology because the current candidates are significantly different from traditional transistors. Fundamental Concepts In 1965, Gordon Moore noticed that silicon transistors were undergoing an ongoing process of scaling down, an observation that was later codified as Moore's Law. Since its observation, the minimum size of transistor objects has decreased from 10 micrometers to 10 nm from 2019. Note that the technology node does not directly represent the minimum size of the object. The field of nanoelectronics aims to ensure the continuation of this law through new methods and materials to create electronic devices with the size of functions at the nanoscale. Mechanical Problems Object Volume Decreases as Third Force linear sizes, but the surface area only decreases his second strength. This somewhat subtle and inevitable principle has enormous implications. For example, the power of the drill (or any other machine) is proportional to the volume, while the friction of the bearings and gear drills is proportional to their surface area. For a normal-sized drill, the power of the device is enough to conveniently overcome any friction. However, scaling its length down 1,000 times, for example, reduces its power by 10,003 (a billion) while reducing friction by only 10,002 (a ratio of only a million). Proportionately it has 1000 times less energy per friction unit than the original drill. If the initial friction-to-power ratio was, say, 1%, it means that a smaller drill would have 10 times more friction than power; drill is useless. For this reason, while super-miniature electronic integrated circuits are fully functional, the same technology cannot be used to make working mechanical devices outside the scales, where frictional forces begin to exceed available power. So even if you can see microphotographs delicately etched silicon gear, such devices are now little more than curiosities with limited real-world applications, such as in moving mirrors and shutters. Surface tension increases in much of the same way, thus increasing the tendency for very small objects to stick together. This could make any kind of micro-factory impractical: even if robotic weapons and hands can be reduced, anything they pick up is usually impossible to put down. The aforementioned, molecular evolution led to the work of cilia, flagella, muscle fibers and rotary motors in aqueous environments, all at the nanoscale. These machines use increased frictional forces found on the micro or nanoscale. Unlike a paddle or propeller, which depends on normal frictional forces (frictional forces perpendicular to the surface) to achieve propulsion, cilia develop movement from exaggerated resistance forces or laminar (frictional forces, parallel surfaces) present in micro and nanoscale. To create meaningful machines at the nanoscale, you need to take into account the appropriate forces. We are faced with the development and design of internally appropriate machines, rather than simple reproductions of macroscopic machines. Therefore, all scaling issues should be carefully evaluated when evaluating nanotechnology for practical applications. Approaches Nanofabrication Main articles: Nanocircuitry and nanolithography For example, electronic transistors that include transistor operation based on a single electron. Nanoelectromechanical systems also fall into this category. Nano-fabrication can be used to build parallel arrays of nanowires, as an alternative to the synthesis of nanowires separately. The silicon nanowires of nanowires have a particular focus in this area increasingly being studied in the direction of various applications in nanoelectronics, energy conversion and storage. Such SiNWs can be manufactured by thermal oxidation in large quantities to produce guided thickness nanowires. Nanomaterials electronics In addition to being small and allowing more transistors to be packed into a single chip, the uniform and symmetrical structure of nanowires and/or nanotube allows for higher electron mobility (faster electron movement in the material), higher dielectric constant (fast frequency), and symmetrical electron/hole characteristic. In addition, nanoparticles can be used as quantum dots. Molecular Electronics Main article: Molecular Electronics Scale Single Molecule Devices is another possibility. These circuits will make heavy use of molecular self-sumen, designing the components of the device to create a larger structure or even a complete system of its own. This can be very useful for reconfigurable computing, and can even completely replace the current FPGA technology. Molecular electronics is a new technology that is still in its infancy, but also offers hope for truly atomic electronic systems in the future. One of the most promising applications of molecular electronics was proposed by IBM researcher Ari Aviram and theoretical chemist Mark Ratner in their 1974 and 1988 works Molecules for Memory, Logic and Amplification (see incredible fixer). This is one of many possible ways to synthesize a molecular-level diode/transistor using organic chemistry. The model system was proposed with a carbon spiro structure, giving a molecular diode about half a nanometer through which polythiophene molecular wires can be connected. Theoretical calculations have shown that the design is in principle audible, and there is still hope that such a system can be earned. Other Nanoionics approaches study the transport of ions rather than electrons in nanoscale systems. Nanophotonics studies the behavior of light on a nanoscash, and aims to develop devices that use this behavior. History See also: History of nanotechnology, semiconductor manufacturing and transistor quantity In 1960, Egyptian engineer Mohamed Atallah and Korean engineer Dovon Kang of Bell Labs manufactured the first MOSFET (semiconductor field transistor) with a 100 nm thick gate oxide, In 1962, Atallah and Kang produced a nano-base metal structure, which used 10 nm thick gold (Au) thin films. In 1987, Iranian engineer Bijan Davari led ibm's research team, which demonstrated the first MOSFET with a 10 nm thick gate oxide using the technology Multi-gate MOSFETs have allowed scaling below 20 nm length gate, starting with FinFET (fin field transistor effect), transistor), non-planetary, double mosFET gates. FinFET comes from the DELTA transistor developed by Dig Hisamoto, Toru Kagoi, Yoshifumi Kawamoto and Eiji Takego in 1989. In 1997, DARPA contracted a research team at the University of California, Berkeley, to develop a deep delta transistor. The group consisted of Hisamoto along with Chenming Hu TSMC and other international researchers including Tsu-Je King Liu, Jeffrey Bokora, Hideki Takeuchi, K. Asano, Yakub Kedzierska, Xuejue Huangga, Leland Chang, Nick Lindert, Shibli Ahmed and Cyrus Taberi. The team successfully manufactured FinFET devices up to 17 nm in 1998 and then 15 nm in 2001. In 2002, the band, including Yu, Chang, Ahmed, Hu, Liu, Bokor and Tabery, manufactured the 10-nm FinFET device. In 1999, the CMOS transistor (Additional MOS), developed at the Electronics and Information Technology Laboratory in Grenoble, France, tested the limits of the 18 nm MOSFET transistor (approximately 70 atoms side by side). This allowed the theoretical integration of seven billion compounds on coin No. 1. However, the CMOS transistor was not an easy research experiment to study how CMOS technology works, but rather a demonstration of how this technology functions now that we ourselves are getting closer to working on a molecular scale. According to the words in 2007, it would be impossible to master the
Recommended publications
  • A Comprehensive Survey on Hybrid Communication in Context of Molecular Communication and Terahertz Communication for Body-Centri
    IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS, VOL. 6, NO. 2, NOVEMBER 2020 107 A Comprehensive Survey on Hybrid Communication in Context of Molecular Communication and Terahertz Communication for Body-Centric Nanonetworks Ke Yang ,DadiBi,Student Member, IEEE, Yansha Deng , Member, IEEE, Rui Zhang, Muhammad Mahboob Ur Rahman , Member, IEEE, Najah Abu Ali , Muhammad Ali Imran , Senior Member, IEEE, Josep Miquel Jornet ,QammerH.Abbasi , and Akram Alomainy , Senior Member, IEEE Abstract—With the huge advancement of nanotechnology over communications are widely considered as two main promising the past years, the devices are shrinking into micro-scale, even paradigms and both follow their own development process. In nano-scale. Additionally, the Internet of nano-things (IoNTs) are this survey, the recent developments of these two paradigms are generally regarded as the ultimate formation of the current sen- first illustrated in the aspects of applications, network structures, sor networks and the development of nanonetworks would be modulation techniques, coding techniques and security to then of great help to its fulfilment, which would be ubiquitous with investigate the potential of hybrid communication paradigms. numerous applications in all domains of life. However, the com- Meanwhile, the enabling technologies have been presented to munication between the devices in such nanonetworks is still apprehend the state-of-art with the discussion on the possibility an open problem. Body-centric nanonetworks are believed to of the hybrid technologies. Additionally, the inter-connectivity of play an essential role in the practical application of IoNTs. electromagnetic and molecular body-centric nanonetworks is dis- BCNNs are also considered as domain specific like wireless sensor cussed.
    [Show full text]
  • MOLETRONICS: TOWARDS NEW ERA of NANOTECHNOLOGY 1 Prof
    International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com, Volume 5, Issue 2 (March - April 2017), PP. 73-75 MOLETRONICS: TOWARDS NEW ERA OF NANOTECHNOLOGY 1 Prof. Y.D. Kapse, 2Mr.Akash A. Sindhikar 1Assistant professor, 2M.tech 1,2 ENTC,GCOEJ, Jalgaon, India Abstract—The Molecular electronics is the fundamental single molecule logic gate. C. Joachim and J.K experimented building blocks of an emerging technology called the conductance of single molecule in IBM. In 1990 Mark ‘nanoelectronics a field that holds promise for application in all Reed et al added few hundred molecules. In 2000 Shirakawa, kinds of electronic devices, from cell phones to sensors. Heeger and MacDiarmid won the Nobel Prize in physics for Molecular devices could be built a thousand times smaller than Si the demoletronics. The conductive polymers can be used as based devices in use now. Computer industry execs might start “molecular wires”. This will altogether alter the fabrication breathing easier because their biggest fear - that smaller and faster devices will eventually come to an end because silicon industry because a conventional silicon chip houses over 10-50 microchips will get so small that eventually they will contain too million switches over an as large as a postage stamp. few silicon atoms to work - might be lessened as advancements in Moletronics aims at redefining this powerful integration molecular electronics come to the rescue. Molecular electronics is technology to density of over one million times than today’s enabling an area of nanoscience and technology that holds state-of-the-art IC fabrication.
    [Show full text]
  • Resume of Zeng Yuping 20180109 for Publishing on Website
    Curriculum Vitae Name Yuping Zeng Degree PhD DOB 12/02/1979 Visa Permanent Gender Female E-mail [email protected] Status Resident (U.S.) Mailing Address: Current Affiliation 139 The Green, Evans Hall 140 Assistant Professor Department of ECE Department of ECE University of Delaware University of Delaware Newark, DE 19716 Cell Phone: 510-610-2894 Office Phone: 302-831-3847 Projects Involved and Achievements Ø 34 peer-reviewed journal papers and 16 papers at international conferences; Ø Postdoctoral Research (2011-2016) in UC Berkeley Design and fabrication of InAs/AlSb/GaSb Tunneling Field Effect Transistors; High speed InAs Metal Oxide Semiconductor Field Effect transistors on Silicon (MOSFETs); InAs-on-Si fin field effect transistors (FinFETs) Ø PhD Research (2004-2011) in Swiss Federal Institute of Technology Design and fabrication of high-speed InP/GaAsSb Double-Heterojunction Bipolar Transistors (DHBTs) with record fT and fMAX cut-off frequencies Ø PhD Research (2003-2004) in Simon Fraser University High-speed photodetector; High Electron Mobility Transistors (HEMTs) Ø Second Master Research (2001-2003) in National University of Singapore Raman study of laser annealed silicon and photoluminecence from nano-scaled silicon Ø First Master Research (1998-2001) in Jilin University Fabrication of development of Superluminescent Light Emitting Diode (SLED): InGaAsP/InP and GaAlAs/GaAs Ø Bachelor Research (1994-1998) in Jilin University Mode Analysis of VCSEL with Fiber Gratings as its Distributed Bragg Reflector (DBR) 1 Education Swiss Federal
    [Show full text]
  • Extraction of Front and Buried Oxide Interface Trap Densities in Fully
    Q32 ECS Solid State Letters, 2 (5) Q32-Q34 (2013) 2162-8742/2013/2(5)/Q32/3/$31.00 © The Electrochemical Society Extraction of Front and Buried Oxide Interface Trap Densities in Fully Depleted Silicon-On-Insulator Metal-Oxide-Semiconductor Field-Effect Transistor Jen-Yuan Cheng,z Chun Wing Yeung, and Chenming Hu Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, California 94720, USA In this letter, a method is proposed and demonstrated for the first time to characterize and decouple the interface traps of both the front- and back channels of fully-depleted silicon-on-insulator (FD-SOI) metal-oxide-semiconductor field-effect transistor (MOSFET). We report the procedure and the underlying theory that allows the extraction of the energy profiles of the densities of the interface traps (Dit).This technique will be very useful for evaluating the interface qualities of future FD-SOI transistors. © 2013 The Electrochemical Society. [DOI: 10.1149/2.001305ssl] All rights reserved. Manuscript submitted December 31, 2012; revised manuscript received January 28, 2013. Published February 12, 2013. The fully-depleted silicon on insulator (FD-SOI) ultra-thin body channels in FD-SOI, the corresponding surface potentials for front 1–3 UTBSOI MOSFET is gaining new attention as an alternative tech- and back channel interface φsF and φsB with respect to the applied nology to FinFET4 for ultra-low power and mobile applications be- front and back bias can be expressed as follows19,20 cause of its outstanding
    [Show full text]
  • Simulation and Design of Germanium-Based Mosfets For
    UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Simulation and Design of Germanium-Based MOSFETs for Channel Lengths of 100 nm and Below A Thesis submitted to the Division of Graduate Studies and Research of The University of Cincinnati in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE (M.S.) in the department of Electrical and Computer Engineering of the College of Engineering March, 2007 by Martin Keith Arnold Jr. B.S. (Physics and Mathematics), Northern Kentucky University Highland Heights, KY, USA. Thesis Advisor and Committee Chair: Dr. Kenneth P. Roenker ABSTRACT Conventional silicon MOSFETs are rapidly approaching the end of the roadmap for conventional scaling techniques. As a result, alternative device designs, such as transport-enhanced FETs along with other semiconductor technologies, such as multi- gate transistors, are being investigated. Transport-enhanced FETs simply employ new materials in the channel region of MOSFETs with higher carrier mobilities and velocities than silicon. Since the electron and hole mobilities in germanium are considerably larger than those of silicon, Ge-based MOSFETs are being considered as a replacement for conventional Si MOSFETs for both p- and n-channel transistors for CMOS applications. Long-channel Ge MOSFETs have already been demonstrated exhibiting considerable performance enhancements over comparable Si devices. The Ge devices in these studies showed improvements over the Si devices in the output drain current, effective mobility, and small signal transconductance.
    [Show full text]
  • Nanoict STRATEGIC RESEARCH AGENDA Version 2.0 December 2011 AGENDA STRATEGICRESEARCH Nanoict
    2011 December 2.0 Version nanoICT Funded by Edited by STRATEGIC RESEARCH Phantoms Foundation AGENDA RESEARCH STRATEGIC Alfonso Gomez 17 28037 Madrid - Spain AGENDA [email protected] www.phantomsnet.net www.nanoict.org nanoICT nanoICT Strategic Reseach Agenda Index 1.1.1.-1.--- Introduction 777 2.2.2.-2.--- Strategic Research Agendas 131313 2.1 ––– Graphene 15 2.2 ––– Modeling 19 2.3 ––– Nanophononics / Nanophotonics 23 3.3.3.-3.--- Annex 1 --- NanoICT WorWorkingking Groups 252525 position papers 3.1 ––– Graphene 27 3.2 ––– Status of Modelling for nanoscale information processing and storage devices 79 3.3 ––– Nanophononics / Nanophotonics 105 3.4 ––– bioICT 141 3.5 ––– Nano Electro Mechanical Systems (NEMS) 149 4.4.4.-4.--- Annex 2 --- nanoICT groups & statistics 171 Annex 2.1 ––– List of nanoICT registered groups 173 Annex 2.2 ––– Statistics 181 555.5...---- Annex 3 --- National & regional funding 185 schemes study Foreword Antonio Correia Coordinator of the nanoICT CA Phantoms Foundation (Madrid, Spain) At this stage, it is impossible to predict the exact and accelerate progress in identified R&D course the nanotechnology revolution will take directions and priorities for the “nanoscale ICT and, therefore, its effect on our daily lives. We devices and systems” FET proactive program and can, however, be reasonably sure that guide public research institutions, keeping Europe nanotechnology will have a profound impact on at the forefront in research. In addition, it aims to the future development of many commercial be a valid source of guidance, not only for the sectors. The impact will likely be greatest in the nanoICT scientific community but also for the strategic nanoelectronics (ICT nanoscale devices - industry (roadmapping issues), providing the latest nanoICT) sector, currently one of the key enabling developments in the field of emerging nano- technologies for sustainable and competitive devices that appear promising for future take up growth in Europe, where the demand for by the industry.
    [Show full text]
  • Annual Report 2002 TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD
    TSE: 2330 NYSE: TSM Taiwan Semiconductor Manufacturing Company, Ltd. Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Manufacturing Company, Taiwan Annual Report 2002 121, Park Ave. 3, Science-Based Industrial Park, Hsin-Chu, Taiwan 300-77, R.O.C. Tel: 886-3-578-0221 Fax: 886-3-578-1546 http://www.tsmc.com Taiwan Semiconductor Manufacturing Company, Ltd. Annual Report 2002 • Taiwan Stock Exchange Market Observation Post System: http://mops.tse.com.tw • TSMC annual report is available at http://www.tsmc.com/english/tsmcinfo/c0203.htm Morris Chang, Chairman Printed on March 12, 2003 TABLE OF CONTENTS 3 LETTER TO THE SHAREHOLDERS 7 A BRIEF INTRODUCTION TO TSMC 7 Company Profile 8 Market Overview MAJOR FACILITIES TSMC SPOKESPERSON 9 Organization Corporate Headquarters & FAB 2, FAB 5 Name: Harvey Chang 18 Capital & Shares 121, Park Ave. 3 Title: Senior Vice President & CFO 22 Issuance of Corporate Bonds Science-Based Industrial Park Tel: 886-3-563-6688 Fax: 886-3-563-7000 23 Preferred Shares Hsin-Chu, Taiwan 300-77, R.O.C. Email: [email protected] 24 Issuance of American Depositary Shares Tel: 886-3-578-0221 Fax: 886-3-578-1546 26 Status of Employee Stock Option Plan (ESOP) Acting Spokesperson 26 Status of Mergers and Acquisitions FAB 3 Name: J.H. Tzeng 26 Corporate Governance 9, Creation Rd. 1 Title: Public Relations Department Manager 30 Social Responsibility Information Science-Based Industrial Park Tel: 886-3-563-6688 Fax: 886-3-567-0121 Hsin-Chu, Taiwan 300-77, R.O.C. Email: [email protected] 32 OPERATIONAL HIGHLIGHTS Tel: 886-3-578-1688 Fax: 886-3-578-1548 32 Business Activities AUDITORS 34 Customers FAB 6 Company: T N SOONG & CO 34 Raw Material Supply 1, Nan-Ke North Rd.
    [Show full text]
  • Direct Transmission Detection of Tunable Mechanical Resonance in an Individual Carbon Nanofiber Relay
    Edinburgh Research Explorer Direct transmission detection of tunable mechanical resonance in an individual carbon nanofiber relay Citation for published version: Eriksson, A, Lee, S, Sourab, AA, Isacsson, A, Kaunisto, R, Kinaret, JM & Campbell, EEB 2008, 'Direct transmission detection of tunable mechanical resonance in an individual carbon nanofiber relay', Nano Letters, vol. 8, no. 4, pp. 1224-1228. https://doi.org/10.1021/nl080345w Digital Object Identifier (DOI): 10.1021/nl080345w Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Nano Letters Publisher Rights Statement: Copyright © 2008 by the American Chemical Society. All rights reserved. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 26. Sep. 2021 This document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/nl080345w Cite as: Eriksson, A., Lee, S., Sourab, A.
    [Show full text]
  • Steep On/Off Transistors for Future Low Power Electronics
    Steep On/Off Transistors for Future Low Power Electronics Chun Wing Yeung Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014-226 http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-226.html December 18, 2014 Copyright © 2014, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Acknowledgement First, words will never be enough to express my sincere gratitude to Prof. Chenming Hu. In the past six years, his vision and wisdom have enlightened and guided me through the ups and downs of my PhD journey. I would like to thank Prof. Tsu-Jae King Liu and my mentor, Dr. Alvaro Padilla, for giving me a chance to do research in the device group when I was an undergraduate. I am also very grateful to have Prof. Sayeef Salahuddin be my co-advisor, and thankful for his advice in the negative capacitance FET project. I would also like to acknowledge the DARPA STEEP project, Qualcomm fellowship, and Center for Energy Efficient Electronics Science (E3S) for funding and supporting our research. Steep On/Off Transistors for Future Low Power Electronics By Chun Wing Yeung A dissertation submitted in partial
    [Show full text]
  • CSET Issue Brief
    SEPTEMBER 2020 The Chipmakers U.S. Strengths and Priorities for the High-End Semiconductor Workforce CSET Issue Brief AUTHORS Will Hunt Remco Zwetsloot Table of Contents Executive Summary ............................................................................................... 3 Key Findings ...................................................................................................... 3 Workforce Policy Recommendations .............................................................. 5 Introduction ........................................................................................................... 7 Why Talent Matters and the American Talent Advantage .............................. 10 Mapping the U.S. Semiconductor Workforce .................................................. 12 Identifying and Analyzing the Semiconductor Workforce .......................... 12 A Large and International Workforce ........................................................... 14 The University Talent Pipeline ........................................................................ 16 Talent Across the Semiconductor Supply Chain .......................................... 21 Chip Design ................................................................................................ 23 Electronic Design Automation ................................................................... 24 Fabrication .................................................................................................. 24 Semiconductor Manufacturing Equipment (SME) Suppliers
    [Show full text]
  • Welcome from the General Chair
    WELCOME FROM THE GENERAL CHAIR On behalf of the entire IEDM committee, I would like to welcome you to the 2010 IEEE International Electron Devices Meeting to be held December 6-8, 2010 in San Francisco. The IEDM continues to be the world’s premier venue for presenting the latest breakthroughs and the broadest and best technical information in electronic device technologies. This year we have a strong collection of both contributed and invited papers that will be presented by industrial and academic leaders and students from around the world. Short summaries of each paper are available on the IEDM web site, which we encourage everyone to visit – http://www.ieee.org/conference/iedm. This year, we will continue to distribute an abbreviated digest at the meeting, along with electronic versions of the complete abstracts, to more effectively leverage modern electronic content distribution capabilities. The full digest will be available on the IEEE Xplore website and the DVD package offered by the IEEE Electron Devices Society after the conference. In addition to the many regular paper sessions - and the always informative and entertaining IEDM Luncheon on Tuesday - we will again feature several special sessions. Meikei Ieong On Sunday December 5, 2010, two short courses will be offered: “15nm CMOS Technology” and General Chair “Reliability and yield of advanced integrated technologies”. These courses have been organized and will be presented by internationally known leading researchers active in their respective areas of technology. The topics have broad appeal to IEDM participants with material suitable for newcomers as well as experts in the field.
    [Show full text]
  • Structure & Examination Pattern
    Structure of M.Tech (Nano Technology) Based on Credit Pattern STRUCTURE & EXAMINATION PATTERN Semester I Total Duration : 20hrs/week Total Marks : 500 Total Credits : 18 Teaching Examination Scheme Examination Scheme Total Scheme (Hrs) (Marks) (Credits) Credits Subjects Hrs./Week Unit Attend Tutorial/ Pract/ TW/PR L P Theory TW TH Test ance Assignments Oral /OR Nanoscience& 04 02 60 20 10 10 25 25 04 01 05 Nanotechnology Nano-Physics 04 -- 60 20 10 10 -- -- 04 -- 04 Nano-Chemistry 04 -- 60 20 10 10 -- -- 04 -- 04 Nano-Biology 04 02 60 20 10 10 25 25 04 01 05 Total 16 04 240 80 40 40 50 50 16 02 18 Semester II Total Duration : 20hrs/week Total Marks : 500 Total Credits : 18 Teaching Examination Examination Scheme Total Scheme (Hrs) Scheme (Marks) Credits Subjects Hrs./Week (Credits) Unit Attend Tutorial/ Pract/ TW/PR/ L P Theory TW TH Test ance Assignments Oral OR Nano-Computing 04 -- 60 20 10 10 -- -- 04 -- 04 Nano Fabrication and Advanced 04 02 60 20 10 10 25 25 04 01 05 Synthesis Technology Nano Characterization 04 02 60 20 10 10 25 25 04 01 05 Energy, Environment, Safety and Commercialization for 04 -- 60 20 10 10 -- -- 04 -- 04 Nanotechnology Total 16 04 240 80 40 40 50 50 16 02 18 Semester III Total Duration : 28hrs/week Total Marks : 475 Total Credits : 40 Teaching Examination Scheme Examination Scheme Total Scheme (Hrs) (Credits) Credits Subjects Hrs./Week Attenda Tutorial/ Pract/ TW/PR/ L P Theory Unit Test TW TH nce Assignments Oral OR Elective –I 04 02 60 20 10 10 25 25 04 01 05 Elective –II 04 02 60 20 10 10 25 25 04 01 05
    [Show full text]