Determination of 8 Diuretics and Probenecid in Human Urine by Gas Chromatography-Mass Spectrometry: Confirmation Procedure

Total Page:16

File Type:pdf, Size:1020Kb

Determination of 8 Diuretics and Probenecid in Human Urine by Gas Chromatography-Mass Spectrometry: Confirmation Procedure American Journal of Analytical Chemistry, 2012, 3, 320-327 http://dx.doi.org/10.4236/ajac.2012.34044 Published Online April 2012 (http://www.SciRP.org/journal/ajac) Determination of 8 Diuretics and Probenecid in Human Urine by Gas Chromatography-Mass Spectrometry: Confirmation Procedure Olga Zaporozhets, Iuna Tsyrulneva, Mykola Ischenko Taras Shevchenko National University of Kiev, Kiev, Ukraine Email: [email protected] Received February 16, 2012; revised March 15, 2012; accepted March 25, 2012 ABSTRACT A fast and sensitive method for determination of 8 diuretics (acetazolamide, bendroflumethiazide, bumetanide, chlorthali- done, furosemide, hydrochlorothiazide, metolazone, triamterene) and masking agent (probenecid) in human urine using gas-chromatography with mass spectrometric detection is described. The extraction of the substances as function of the nature of organic solvent, mixing time and pH of aqueous phase was studied. The tandem mass spectrometry was used to increase selectivity of diuretics determination due to elimination of background interferences. Fragmentation reac- tions were studied for each compound and their collision energies were optimized to obtain the best selectivity. The results of method’s validation demonstrate its suitability in routine analysis for confirmation purposes. Keywords: Diuretics; Urine; Gas Chromatography; Tandem Mass Spectrometry; Confirmation 1. Introduction trometric detection. Though liquid chromatography with mass spectrometric detection (LC-MS) causes the de- It is known [1] that athletes misuse diuretics for several crease in sensitivity due to the suppression of ionization reasons: to reduce body weight in order to be qualified for a lower weight category, to decrease fluid retention in by biological matrix [4,5] and shift in retention times in body caused by the application of steroids and to reduce case of direct injection of sample [6] it also allows to the concentration of other prohibited substances in urine achieve low detection limits and short time of analysis to avoid positive doping results. International Olympic [7]. Because of relatively high cost of LC-MS this method Committee and World Anti-Doping Agency (WADA) pro- is more preferable for quantative determination of diuret- hibited the use of diuretics in sport. WADA established ics in biological objects and for screening purpose. Gas the requirement for anti-doping laboratories to control chromatography with mass detection (GC-MS) is suit- the presence of these compounds in urine at the level less able for multicomponent, selective and sensitive diuretics or equal to minimum required performance limit (MRPL), determination in human urine, as well as liquid chroma- which is 0.25 µg·ml–1 [2]. Most of the banned substances tography. GC-MS method which includes two-step liq- should not be present at any concentration in the speci- uid-liquid extraction and derivatization was proposed for mens (mainly urine) collected for the analysis. Therefore, quantative determination of 16 diuretics [8]. Long pre- they are often detected only on a qualitative basis. liminary sample preparation of urine limits the use of the Diuretics belong to non-threshold substances, which method in routine analysis. Moreover, this technique means the absence of specific threshold concentration in does not provide high recovery of chlorthalidone and tri- urine. Table 1 shows that diuretics include compounds amterene. At the same time GC-MS demonstrates the which have differences in molecular structures and chemical best results for qualitative determination and for confir- properties [3], and this fact complicates the elaboration mation. of the only method of their extracting from biological The GC-MS method was proposed for confirmation in matrix and their detection at the necessary selectivity [9]. The recovery of diuretics and impeding effect of level. urine matrix and other diuretics were not studied in this According to WADA requirements the only methods work as well as in [10]. Besides, both methods were not of analysis that should be applied at anti-doping labora- validated. Moreover, the technique proposed in [11] is tories are liquid or gas chromatography with mass spec- long lasting which is caused by long retention time. Copyright © 2012 SciRes. AJAC O. ZAPOROZHETS ET AL. 321 Table 1. General characteristics of diuretics. рКа рКа Name Structure Name Structure рКа1 рКа2 рКа1 рКа2 Cl O S NH HN2 N N NH2 2 O N Triamterene N 6.2 - Indapamide H 8.8 - N O NH2 N Cl O NH O S 2 NN O O Acetazolamide N S 7.4 9.1 Chlorthalidone HO 9.4 - H S O NH NH 2 O H N Cl O HN Cl Chlorothiazide N O 6.7 9.5 Furosemide 3.9 - S S O NH O O O O 2 S NH HO 2 O H N Cl NH Hydrochlorothiazide HN O 7.9 9.2 Bumetanide 3.6 7.7 S S O O NH O O 2 O O S NH2 OH O Cl H N Cl HO Cl O S N Trichlormethiazide HN O 7 10 Probenecid 3.4 - S S O O O O NH O 2 Cl O F Cl H F Ethacrinic acid Bendroflumethiazide N 8.5 - 3.5 - F HO (Internal Standard) O HN O S S O O O O NH 2 H N Cl Metolazone N O 9.7 - S NH O O 2 Despite the great number of methods proposed, gas or detection. liquid chromatography with mass spectrometric detection do not always provide the necessary selectivity towards 2. Experimental Procedure the urine components [10,12]. In case of liquid chroma- 2.1. Preparation of Reagent Solutions tography, the use of tandem mass-spectrometry allowed to pass over these problems and to ensure the satisfactory Stock standard solutions were prepared for 12 diuretic result [13-15]. drugs (acetazolamide, bendroflumethiazide, bumetanide, Despite liquid chromatography is more preferable for chlorthalidone, chlorothiazide, ethacrinic acid, furosemide, screening purposes, gas chromatography with mass de- hydrochlorothiazide, indapamide, metolazone, triamterene, tection demonstrates the best results for confirmation. trichlormethiazide) and a masking agent (probenecid) (all According to WADA requirements the optimal method by SIGMA, St. Louis, MO, USA) by dissolving in metha- for confirmation of presence of diuretics is the method nol at concentration of 1.0 mg·ml–1. different from the screening method. Therefore, the goal Diethyl ether, ethyl acetate, isopropanol, acetone (Merck, of the present work was to develop a method of confir- Darmstadt, Germany) and methanol (SIGMA, St. Louis, mation of presence of diuretics and probenecid in urine MO, USA) had a qualification “for chromatography”. by gas chromatography with tandem mass spectrometric Methyl iodide with purity 99% (SIGMA, St. Louis, MO, Copyright © 2012 SciRes. AJAC 322 O. ZAPOROZHETS ET AL. USA), sodium sulfate (Merck, Darmstadt, Germany) were The top layer was totally transferred to a 10 ml glass used without further purification, potassium carbonate tubes. Solutions were evaporated in nitrogen stream at (Merck, Darmstadt, Germany) was used after calcination 40˚C (for solvents based on diethyl ether) or 80˚C (for in oven. Hydrochloric acid and sodium hydroxide were solvents based on ethyl acetate) to obtain solid residue, prepared by dilution of the concentrated initial solution the tubes were cooled to room temperature. The deri- (Merck, Darmstadt, Germany). vatization (methylation by methyl iodide in acetone in an alkaline environment) was performed according to [16]. 2.2. Instruments and Materials Afterwards the samples were immediately sent to gas- chromatographic analysis. The degree of substances re- Gas chromatograph Varian 3800 (Australia) equipped with covery from matrix achieved by liquid-liquid extraction an automatic sample injector system Combipal and Fac- was investigated at a concentration of 0.9 MRPL (0.225 torFour Capillary Column VF-DA 12 m, 0.20 mm I.D. –1 µg·ml ). The mixture of standard diuretics and IS were for mass spectrometric determination of narcotic drugs added to the urine samples and sample preparation was and pharmaceuticals. Mass spectrometer Varian 1200 performed by the method described. Simultaneously, the (Australia), directed by computer system of data proc- derivatization of mixture of diuretics standards with the essing Varian MsWorkstation 6.9, with a system of three same concentration was conducted. All samples were quadruples. Auxiliary equipment: thermostat VLM EC1 analyzed by chromatographic-mass spectrometric method. (Germany), evaporator in nitrogen stream Liebisch (Ger- The recovery degree was calculated by taking the ratio of many), centrifuge OPN-3Y4.2 (Russia), shaker Heidolph peak height obtained at the retention time for the analyte Vibramax 110 (Germany), oven Binder (Germany), pH- of interest compared to that obtained from an IS in spiked meter inoLab pH level 1 (Germany), analytical balance urine and mixture of standards. KERN ABS (Germany), pipettes of adjustable volume Eppendorf (Germany) 0 - 20 µl, 20 - 200 µl, 100 - 1000 µl, 2.5. Method Validation 500 - 5000 µl. To determine all parameters (capability to identification, 2.3. Instrumental Parameters selectivity, detection limit), that are necessary for suit- ability of verification in accordance with ISO/IEC 17025: Instrumental parameters of chromatographic determina- 2006 [17], the investigation was performed. Linearity, tion: carrier gas—helium, flow rate—1 ml·min–1, injector accuracy and precision were not examined since the me- temperature—290˚C, injector mode—split 20; volume of thod is intended for confirmation and is not intended for sample injected—2 µl; flushing liquid—acetone, source temperature—225˚C, interface temperature—250˚C; SIM quantitative determination of diuretics, as established in Width—0.7; Scan Time—0.2 s; start of the ion current [17,18]. Therefore more consideration was given to defi- registration—5.3 min. Instrumental parameters of tandem nite identification of the analyte in urine. mass spectrometry: auxiliary gas pressure (argon) on the second quadruple—2.10 - 1.65 mTorr, electron energy at Table 2. Characteristic ions of diuretics in Selected Ion Mo- nitoring mode. the source—20 eV. Registration mode: selected ion moni- toring (SIM) or multiple reaction monitoring (MRM).
Recommended publications
  • High-Throughput Screening Studies of Inhibition of Human Carbonic Anhydrase II and Bacterial Flagella Antimicrobial Activity
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 5-2010 High-Throughput Screening Studies of Inhibition of Human Carbonic Anhydrase II and Bacterial Flagella Antimicrobial Activity Albert A. Barrese III Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Biology Commons Recommended Citation Barrese, Albert A. III, "High-Throughput Screening Studies of Inhibition of Human Carbonic Anhydrase II and Bacterial Flagella Antimicrobial Activity" (2010). Dissertations. 500. https://scholarworks.wmich.edu/dissertations/500 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. HIGH-THROUGHPUT SCREENING STUDIES OF INHIBITION OF HUMAN CARBONIC ANHYDRASE II AND BACTERIAL FLAGELLA ANTIMICROBIAL ACTIVITY by Albert A. Barrese III A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Biological Sciences Advisor: Brian C. Tripp, Ph.D. Western Michigan University Kalamazoo, Michigan May 2010 UMI Number: 3410393 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UMI 3410393 Copyright 2010 by ProQuest LLC.
    [Show full text]
  • DIURETICS Diuretics Are Drugs That Promote the Output of Urine Excreted by the Kidneys
    DIURETICS Diuretics are drugs that promote the output of urine excreted by the Kidneys. The primary action of most diuretics is the direct inhibition of Na+ transport at one or more of the four major anatomical sites along the nephron, where Na+ reabsorption takes place. The increased excretion of water and electrolytes by the kidneys is dependent on three different processes viz., glomerular filtration, tubular reabsorption (active and passive) and tubular secretion. Diuretics are very effective in the treatment of Cardiac oedema, specifically the one related with congestive heart failure. They are employed extensively in various types of disorders, for example, nephritic syndrome, diabetes insipidus, nutritional oedema, cirrhosis of the liver, hypertension, oedema of pregnancy and also to lower intraocular and cerebrospinal fluid pressure. Therapeutic Uses of Diuretics i) Congestive Heart Failure: The choice of the diuretic would depend on the severity of the disorder. In an emergency like acute pulmonary oedema, intravenous Furosemide or Sodium ethacrynate may be given. In less severe cases. Hydrochlorothiazide or Chlorthalidone may be used. Potassium-sparing diuretics like Spironolactone or Triamterene may be added to thiazide therapy. ii) Essential hypertension: The thiazides usually sever as primary antihypertensive agents. They may be used as sole agents in patients with mild hypertension or combined with other antihypertensives in more severe cases. iii) Hepatic cirrhosis: Potassium-sparing diuretics like Spironolactone may be employed. If Spironolactone alone fails, then a thiazide diuretic can be added cautiously. Furosemide or Ethacrymnic acid may have to be used if the oedema is regractory, together with spironolactone to lessen potassium loss. Serum potassium levels should be monitored periodically.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] BMJ Open Pediatric drug utilization in the Western Pacific region: Australia, Japan, South Korea, Hong Kong and Taiwan Journal: BMJ Open ManuscriptFor ID peerbmjopen-2019-032426 review only Article Type: Research Date Submitted by the 27-Jun-2019 Author: Complete List of Authors: Brauer, Ruth; University College London, Research Department of Practice and Policy, School of Pharmacy Wong, Ian; University College London, Research Department of Practice and Policy, School of Pharmacy; University of Hong Kong, Centre for Safe Medication Practice and Research, Department
    [Show full text]
  • The Uricosuric Effect in Rats of E5050, a New Derivative of Ethanolamine, Involves Inhibition of the Tubular Postsecretory Reabsorption of Urate
    The Uricosuric Effect in Rats of E5050, a New Derivative of Ethanolamine, Involves Inhibition of the Tubular Postsecretory Reabsorption of Urate Haruko Sugino and Hideyo Shimada Department of Clinical Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108, Japan Received January 27, 1995 Accepted April 20, 1995 ABSTRACT-N-{3-[4 (2",6"-Dimethylheptyl)phenyl]butanoyl}ethanolamine (E5050), a newly synthesized compound, was shown recently to induce uricosuria in humans via inhibition of the postsecretory reabsorp- tion of urate. We examined the effects of this compound on urate excretion in rats loaded with oxonate and compared these effects with those of the uricosuric drugs trichlormethiazide and probenecid. When ad- ministered i.p., E5050 (0.3 - 15 mg/kg) increased the urinary excretion rate of urate and the ratio of urate clearance to inulin clearance in a dose-dependent manner, while the urine volume increased only slightly, and the glomerular filtration rate and plasma urate level were not changed. No paradoxical effect on urate excretion was observed. In contrast, trichlormethiazide and probenecid had a biphasic effect on urate excretion. In a pyrazinoic acid suppression test, the uricosuric effect of E5050 was completely inhibited by pretreatment with pyrazinoic acid. In a phenolsulfonphthalein (PSP) test, E5050 did not affect urinary PSP excretion, while probenecid strongly decreased such excretion. Thus, E5050 also appears to be uricosuric in rats. Keywords: E5050, Uricosuric drug, Pyrazinoic acid, Phenolsulfonphthalein, Urate excretion The renal handling of urate can be explained by the the tubular transport of urate. four-component theory (1); That is, plasma urate is In contrast to the above-described drugs, only a few filtered from the blood at the glomerulus and subsequent- drugs seem to exert a uricosuric action by the selective in- ly undergoes presecretory reabsorption, secretion and hibition of the presecretory or postsecretory reabsorption postsecretory reabsorption at the renal tubule.
    [Show full text]
  • Using Medications, Cosmetics, Or Eating Certain Foods Can Increase Sensitivity to Ultraviolet Radiation
    USING MEDICATIONS, COSMETICS, OR EATING CERTAIN FOODS CAN INCREASE SENSITIVITY TO ULTRAVIOLET RADIATION. INDIVIDUALS SHOULD CONSULT A PHYSICIAN BEFORE USING A SUNLAMP, IF THEY ARE TAKING MEDICATIONS. THE ITEMS LISTED ARE POTENTIAL PHOTOSENSITIZING AGENTS THAT MAY INCREASE SENSITIVITY TO ULTRAVIOLET LIGHT THAT MAY RESULT IN A PHOTOTOXIC OR PHOTOALLERGIC RESPONSES. PHOTOSENSITIZING MEDICATIONS Acetazolamide Amiloride+Hydrochlorothizide Amiodarone Amitriptyline Amoxapine Astemizole Atenolol+Chlorthalidone Auranofin Azatadine (Optimine) Azatidine+Pseudoephedrine Bendroflumethiazide Benzthiazide Bromodiphenhydramine Bromopheniramine Captopril Captopril+Hydrochlorothiazide Carbaamazepine Chlordiazepoxide+Amitriptyline Chlorothiazide Chlorpheniramine Chlorpheniramin+DPseudoephedrine Chlorpromazine Chlorpheniramine+Phenylopropanolamine Chlorpropamide Chlorprothixene Chlorthalidone Chlorthalidone+Reserpine Ciprofloxacin Clemastine Clofazime ClonidineChlorthalisone+Coal Tar Coal Tar Contraceptive (oral) Cyclobenzaprine Cyproheptadine Dacarcazine Danazol Demeclocycline Desipramine Dexchlorpheniramine Diclofenac Diflunisal Ditiazem Diphenhydramine Diphenylpyraline Doxepin Doxycycline Doxycycline Hyclate Enalapril Enalapril+Hydrochlorothiazide Erythromycin Ethylsuccinate+Sulfisoxazole Estrogens Estrogens Ethionamide Etretinate Floxuridine Flucytosine Fluorouracil Fluphenazine Flubiprofen Flutamide Gentamicin Glipizide Glyburide Gold Salts (compounds) Gold Sodium Thiomalate Griseofulvin Griseofulvin Ultramicrosize Griseofulvin+Hydrochlorothiazide Haloperidol
    [Show full text]
  • A New Diuretic That Does Not Reduce Renal Handling of Uric Acid in Rats, S-8666 Yukio YONETANI, Kazumi IWAKI, Mitsuo ISHII and H
    A New Diuretic That Does Not Reduce Renal Handling of Uric Acid in Rats, S-8666 Yukio YONETANI, Kazumi IWAKI, Mitsuo ISHII and Hiroshi HARADA ShionogiResearch Laboratories, Shionogi & Co., Ltd., Fukushima-ku,Osaka 553, Japan AcceptedJanuary 6, 1987 Abstract-The uric acid-retaining effects of diuretics were studied using sodium restricted spontaneously hypertensive rats. Test agents were administered orally once a day for two weeks. Diuretic thiazides such as trichlormethiazide and hydrochlorothiazide and loop diuretics such as furosemide and indacrinone clearly reduced the renal function for uric acid excretion in treatment which produced major effects such as diuresis, saluresis and hypotension. However, a new diuretic with uricosuric activity, S-8666, developed in our laboratories, had no effect on the renal handling of uric acid at doses which showed major effects similar to those of other diuretics. The results should aid the understanding of the utility of S-8666 as a new diuretic antihypertensive which does not cause hyperuricemia during therapy. The high incidence of hyperuricemia to 8666), which is active in rats and chimpanzees hypertension (1, 2) has required the develop (8). We tried to find whether S-8666 affects ment of a new generation of diuretic anti uric acid excretion at a dose which produces hypertensives, which do not cause hyper a major effect, in comparison with other uricemia. Uricosuric diuretics such as tienilic diuretics. Our findings support the utility of acid (3) and indacrinone (4) have recently S-8666 as a new diuretic antihypertensive been studied as such candidates. However, which does not cause hyperuricemia. the results have shown the need for careful testing (5, 6).
    [Show full text]
  • Comparison of Absorbents and Drugs for Internal Decorporation
    Biological and Pharmaceutical Bulletin Advance Publication by J-STAGE Advance Publication DOI:10.1248/bpb.b15-00728 December 25, 2015 Biol. Pharm. Bull. Regular Article Comparison of Absorbents and Drugs for Internal Decorporation of Radiocesium: Advances of Polyvinyl Alcohol Hydrogel Microsphere Preparations Containing Magnetite and Prussian Blue. Izumi Tanaka, Hiroshi Ishihara*, Haruko Yakumaru, Mika Tanaka, Kazuko Yokochi, Katsushi Tajima, Makoto Akashi Internal Decorporation Research Team, Research Program for Radiation Medicine, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-85555, Japan *Corresponding author. Internal Decorporation Research Team, Research Program for Radiation Medicine, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-85555, Japan. Tel: +81-43-206-3162; Fax: +81-43-284-1769; Email: [email protected] Ⓒ 2015 The Pharmaceutical Society of Japan Summary Radiocesium nuclides, used as a gamma ray source in various types of industrial equipments and found in nuclear waste, are strictly controlled to avoid their leakage into the environment. When large amounts of radiocesium are accidentally incorporated into the human body, decorporation therapy should be considered. Although standard decorporation methods have been studied since the 1960s and were established in the 1970s with the drug Radiogardase® (a Prussian blue preparation), application of recent advances in pharmacokinetics and ethical standards could improve these methods. Here we designed a modern dosage form of hydrogel containing cesium-absorbents to alleviate intestinal mucosa irritation due to the cesium-binding capacity of the absorbents. The effectiveness of the dosage form on fecal excretion was confirmed by quantitative mouse experiments.
    [Show full text]
  • SUPPLEMENTARY FILE Dose Doubling, Relative Potency, and Dose Equivalence of Potassium Sparing Diuretics Affecting Blood Pressure
    SUPPLEMENTARY FILE Dose Doubling, Relative Potency, and Dose Equivalence of Potassium Sparing Diuretics Affecting Blood Pressure and Serum Potassium: Systematic Review and Meta-Analyses George C. Roush,1,2 Michael E. Ernst3, John B. Kostis4, Shamima Yeasmin,2 and Domenic A. Sica5 1Corresponding author 2UCONN School of Medicine and St. Vincent’s Medical Center, Department of Medicine, Bridgeport, CT, USA 3University of Iowa Hospital and Clinics, Department of Family Medicine, Iowa City, IA, USA 4Cardiovascular Institute, UMDNJ-Robert Wood Johnson Medical School, Chairman, Department of Medicine, New Brunswick, NJ, USA 5Department of Medicine and Pharmacology, Virginia Commonwealth University, Richmond, VA, USA METHOD FOR OBTAINING DOSE EQUIVALENCIES To obtain dose equivalency, a generalized method assumes that (1) changes in SBP caused by the log doses of the two drugs, A & B, are linear and fail to “bottom out” at higher doses and (2) dose-response effects for the two drugs are parallel. These assumptions were supported by the data. The general model is: SBP change = I – D*ln(Dose) – E*(1 if drug=A) – E*(0 if drug is B), where I, D, and E are constants. For drug B to compensate for its lesser potency: I – D*ln(Dose of A) – E*1 must equal I –D*ln(Dose of B) – E*0. This comes out to Dose of A = Dose of B*Exp(E/D). REFERENCES FOR META-ANALYSES TRIAMTERENE Kohvakka A, Salo H, Gordin A, Eisalo A. Antihypertensive and biochemical effects of different doses of hydrochlorothiazide alone or in combination with triamterene. Acta Med Scand. 1986;219(4):381-6.
    [Show full text]
  • 38 Scientific Publications in Support of My Testimony I. Effect Of
    Scientific Publications In Support of My Testimony I. Effect Of Furosemide On Performance Of Thoroughbreds Racing In The United States And Canada. Gross DK, Morley PS, Hinchcliff KW, Wittum TE. II. Furosemide Reduces Accumulated Oxygen Deficit In Horses During Brief Intense Exertion. K. W. Hinchcliff, K. H. McKeever, W. W. Muir, and R. A. Sams III. Furosemide-Induced Changes In Plasma And Blood Volume Of Horses. K. W. Hinchcliff, K. H. McKeever, W. W. Muir III IV. Effects Of Dehydration On Thermoregulatory Responses Of Horses During Low- Intensity Exercise. J. R. Naylor, W. M. Bayly, P. D. Gollnick, G. L. Brengelmann, and D. R. Hodgson V. Review Of Furosemide In Horse Racing: Its Effects And Regulation. L.R. Soma1, C.E. Uboh2 VI. Hemoconcentration and Oxygen Carrying Capacity Alteration in Race Horses Following Administration of Furosemide Prior to Speed Work, A Pilot Study. Sheila Lyons DVM, FACVSMR VII. The Use of Blood Doping as an Ergogenic Aid. Sawka, Michael N. Ph.D., FACSM, (Chair); Joyner, Michael J. M.D.; Miles, D. S. Ph.D., FACSM; Robertson, Robert J. Ph.D., FACSM; Spriet, Lawrence L. Ph.D., FACSM; Young, Andrew J. Ph.D., FACSM VIII. Fracture Risk In Patients Treated With Loop Diuretics. L. Rejnmark, P. Vestergaard, L. Mosekilde IX. Soft Palate Problems And Bleeding In Racehorses? The Answer Is On The Tip Of The Horse’s Tongue. Robert Cook FRCVS, PhD X. An Endoscopic Test For Bit-Induced Nasopharyngeal Asphyxia As A Cause Of Exercise-Induced Pulmonary Haemorrhage In The Horse. Robert Cook FRCVS, PhD XI. New York State Racing and Wagering Board Task Force On Racehorse Health and Safety, Official Report, Investigation Of Equine Fatalities At Aqueduct 2011-2012 Fall/Winter Meet.
    [Show full text]
  • The Effect of Trichlormethiazide in Autosomal Dominant Polycystic
    www.nature.com/scientificreports OPEN The efect of trichlormethiazide in autosomal dominant polycystic kidney disease patients receiving tolvaptan: a randomized crossover controlled trial Kiyotaka Uchiyama1,2*, Chigusa Kitayama3, Akane Yanai4 & Yoshitaka Ishibashi2 The vasopressin V2 receptor antagonist tolvaptan delays the progression of autosomal dominant polycystic kidney disease (ADPKD). However, some patients discontinue tolvaptan because of severe adverse aquaretic events. This open-label, randomized, controlled, counterbalanced, crossover trial investigated the efects of trichlormethiazide, a thiazide diuretic, in patients with ADPKD receiving tolvaptan (n = 10) who randomly received antihypertensive therapy with or without trichlormethiazide for 12 weeks. The primary and secondary outcomes included amount and osmolarity of 24-h urine and health-related quality-of-life (HRQOL) parameters assessed by the Kidney Disease Quality of Life-Short Form questionnaire, renal function slope, and plasma/urinary biomarkers associated with disease progression. There was a signifcant reduction in urine volume (3348 ± 584 vs. 4255 ± 739 mL; P < 0.001) and a signifcant increase in urinary osmolarity (182.5 ± 38.1 vs. 141.5 ± 38.1 mOsm; P = 0.001) in patients treated with trichlormethiazide. Moreover, trichlormethiazide improved the following HRQOL subscales: efects of kidney disease, sleep, emotional role functioning, social functioning, and role/social component summary. No signifcant diferences were noted in renal function slope or plasma/urinary biomarkers between patients treated with and without trichlormethiazide. In patients with ADPKD treated with tolvaptan, trichlormethiazide may improve tolvaptan tolerability and HRQOL parameters. Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic renal disorder and one of the leading causes of end-stage kidney disease1.
    [Show full text]
  • Effect of Low-Dose Spironolactone on Resistant Hypertension in Type 2
    Djoumessi et al. BMC Res Notes (2016) 9:187 DOI 10.1186/s13104-016-1987-5 BMC Research Notes RESEARCH ARTICLE Open Access Effect of low‑dose spironolactone on resistant hypertension in type 2 diabetes mellitus: a randomized controlled trial in a sub‑Saharan African population Romance Nguetse Djoumessi1†, Jean Jacques N. Noubiap2,3†, Francois Folefack Kaze1, Mickael Essouma4, Alain Patrick Menanga1, Andre Pascal Kengne5, Jean Claude Mbanya1,6,7 and Eugene Sobngwi1,6,7* Abstract Background: Low-dose spironolactone has been proven to be effective for resistant hypertension in the general population, but this has yet to be confirmed in type 2 diabetic (T2DM) patients. We assessed the efficacy of a low- dose spironolactone on resistant hypertension in a sub-Saharan African population of T2DM patients from Cameroon. Methods: This was a four-week single blinded randomized controlled trial in 17 subjects presenting with resist- ant hypertension in specialized diabetes care units in Cameroon. They were randomly assigned to treatment with a daily 25 mg of spironolactone (n 9) or to an alternative antihypertensive regimen (n 8), on top of any ongoing regimen and prevailing lifestyle prescriptions.= They were seen at the start of the treatment,= then 2 and 4 weeks later. The primary outcome was change in office and self-measured blood pressure (BP) during follow-up, and secondary outcomes were changes in serum potassium, sodium, and creatinine levels. Results: Compared with alternative treatment, low-dose spironolactone was associated with significant decrease in office systolic BP ( 33 vs. 14 mmHg; p 0.024), and in diastolic BP ( 14 vs.
    [Show full text]