Notes and News Occurrence of the Amphipod

Total Page:16

File Type:pdf, Size:1020Kb

Notes and News Occurrence of the Amphipod NOTES AND NEWS OCCURRENCE OF THE AMPHIPOD LEUCOTHOIDES POTTSI SHOEMAKER IN THE TUNICATE ECTEINASCIDIA TURBINATA HERDMAN FROM BIG PINE KEY, FLORIDA, U.S.A. BY JAMES DARWIN THOMAS Newfound Harbor Marine Institute, Big Pine Key, Fla. 33043, U.S.A. Specimens of Leucothoide.r pott.ri Shoemaker, 1933 are routinely taken from the tunicate Ecteina.rcidia turbiiiata Herdman, 1880 in the shallow waters at the south- western tip of Big Pine Key, Florida. Observations of the aanphipod within the tunicate show Leucothoide.r pottsi to be an inquiline feeding on food particles brought in by water currents created by the tunicate. E. turbinata is locally abundant and one of the most common ascidians in the West Indian Region (Van Name, 1945). The colony in this species consists of clusters of individuals connected at their base by stolons which also attach the colony to the substrate. Zooids in life are bright orange, and individual zooids reach a maximum size of 20 mm. Most of the amphipods were found in zooids larger than 15 mm. E. turbinata is common in harbors and shallow waters of the Florida Keys, but amphipods were found only in tunicates taken in or around shallow sponge and patch reef communities (1-2 m). Although it has been assumed that species of Leucothoide.r inhabit sponge and ascidian hosts, no specific host-commensal relationships have been documented. Specimens were collected by hand while snorkeling. The transparent nature of the test allows rapid evaluation for the presence of amphipods. Clumps of E. tur- binata were found attached to various substrates. Tunicates found to contain amphipods were put in jars with seawater and transported to the lab for obser- vation. Several clusters of tunicates containing amphipods were taken from the exterior of sponges. Subsequent dissection of these sponges revealed other com- mensal amphipods; Leucothoe .rpi?ztcdYpa (Abildgaard, 1789), Anamixis han.reni Stebbing, 1897, and Colonaa.rtix janicae Heard & Perlmutter, 1977, but no speci- mens of L. pott.ri. L. pott.ri was observed for approximately 40 hours to determine its activities within the tunicate. Several tunicates containing amphipods were placed in a dish of seawater for viewing under the microscope. Two types of behavior were noted for L. pott.ri; a very active random wandering pattern, and a resting state within the tunicate. The wandering activity was usually exhibited after the specimens 108 had been disturbed in some manner. Random wandering began on the exterior of the tunicate in a criss-cross manner. Upon encountering one of the atrial openings (usually the incurrent opening), the amphipod would enter the branchial sac and proceed to the base. The amphipod then returned to the incurrent opening, probed the branchial tentacles and exited to repeat the pattern. One specimen of L. pott.ri was observed in this mode for almost an hour. Amphipods usually remain on or in one specific tunicate rather than wandering from one to another even though the tunicates may be in close proximity or touching. The resting state was the most common pattern of behavior when the tunicates had been undisturbed. Amphipods resting in the branchial sac had reduced pleopodal activity, apparently utilizing the current created by the tunicate as an aid in respiration. Occasionally, L. pottsi was found just inside the excurrent opening between the test and the branchial sac. Feeding, when observed, was filter feeding rather than the active pursuit and handling of food material. At no time was L. pott.ri observed feeding on the host tissue. While feeding, antennae 1 and 2 were drawn ventrally to be scraped by the maxillipeds and gnathopods 1 and 2. Gnathopod 2 was used to clean pereopods 3 to 7 and the urosome by drawing the second gnathopod across these structures. Gnathopod 2 and pereopod 7 were also flexed outward and used to clean the out- side surface of the exoskeleton. Ingested food particles were minute, and gut particle composition from L. pottsi was not recognizable under high magnification (600 X ) . The mandible of L. pottsi lacks a molar and bears a short, one-seg- mented palp. This suggests the species seeks a food source that requires little processing. A peculiar activity for which I could find no obvious function was the constant snapping or flexing of the dactyl of gnathopod 1. This snapping behavior took place almost constantly and could be a sound-producing mechanism or sensory in nature. Ratio of males to females was 1:1 and ovigerous females were frequently seen carrying 10 to 15 eggs of a deep green color. Leucothoide.r was originally a monotypic genus based on L. pott.ri described from the Dry Tortugas by Shoemaker in 1933. In 1955, Barnard described a new species, L. pacifica, from the sponges in Newport Bay, California. Males of L. paci f ica are readily distinguished from all other Leucothoide.r by the convex palm of gnathopod 2 in adult males. Barnard (1974) also described two new species from the Pacific, L. torrida and L. yarrega. Two other species of Leuco- thoide.r were also presented by Barnard, "Leucothoide.r species V from Logger- head Key" and "Leucothoide.r species Q from Albatross 2406" from Loggerhead Key and the Gulf of Mexico respectively. These latter two species are very close to L. pott.ri, differing only in the placement of setules on the margin of coxa 1. The material at hand fits Barnard's species from Loggerhead Key. As Shoemaker's figured specimen of L. pott.ri cannot be located for comparison, the present material will be referred to as L. pottsi until sufficient material can be gathered to establish the validity of the other Caribbean species. .
Recommended publications
  • Sea Squirt Symbionts! Or What I Did on My Summer Vacation… Leah Blasiak 2011 Microbial Diversity Course
    Sea Squirt Symbionts! Or what I did on my summer vacation… Leah Blasiak 2011 Microbial Diversity Course Abstract Microbial symbionts of tunicates (sea squirts) have been recognized for their capacity to produce novel bioactive compounds. However, little is known about most tunicate-associated microbial communities, even in the embryology model organism Ciona intestinalis. In this project I explored 3 local tunicate species (Ciona intestinalis, Molgula manhattensis, and Didemnum vexillum) to identify potential symbiotic bacteria. Tunicate-specific bacterial communities were observed for all three species and their tissue specific location was determined by CARD-FISH. Introduction Tunicates and other marine invertebrates are prolific sources of novel natural products for drug discovery (reviewed in Blunt, 2010). Many of these compounds are biosynthesized by a microbial symbiont of the animal, rather than produced by the animal itself (Schmidt, 2010). For example, the anti-cancer drug patellamide, originally isolated from the colonial ascidian Lissoclinum patella, is now known to be produced by an obligate cyanobacterial symbiont, Prochloron didemni (Schmidt, 2005). Research on such microbial symbionts has focused on their potential for overcoming the “supply problem.” Chemical synthesis of natural products is often challenging and expensive, and isolation of sufficient quantities of drug for clinical trials from wild sources may be impossible or environmentally costly. Culture of the microbial symbiont or heterologous expression of the biosynthetic genes offers a relatively economical solution. Although the microbial origin of many tunicate compounds is now well established, relatively little is known about the extent of such symbiotic associations in tunicates and their biological function. Tunicates (or sea squirts) present an interesting system in which to study bacterial/eukaryotic symbiosis as they are deep-branching members of the Phylum Chordata (Passamaneck, 2005 and Buchsbaum, 1948).
    [Show full text]
  • First Molecular Barcoding and Record of the Indo-Pacific Punctuated Flatworm Maritigrella Fuscopunctata
    First molecular barcoding and record of the Indo-Pacific punctuated flatworm Maritigrella fuscopunctata (Newman & Cannon 2000), (Polycladida: Euryleptidae) from the Mediterranean Sea Adriana Vella, Noel Vella, Mathilde Maslin, Linda Bichlmaier To cite this version: Adriana Vella, Noel Vella, Mathilde Maslin, Linda Bichlmaier. First molecular barcoding and record of the Indo-Pacific punctuated flatworm Maritigrella fuscopunctata (Newman & Cannon 2000), (Poly- cladida: Euryleptidae) from the Mediterranean Sea. J. Black Sea/Mediterranean Environment, 2016, 22, pp.119 - 127. hal-02151343 HAL Id: hal-02151343 https://hal.archives-ouvertes.fr/hal-02151343 Submitted on 8 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. Black Sea/Mediterranean Environment Vol. 22, No. 2: 119-127 (2016) RESEARCH ARTICLE First molecular barcoding and record of the Indo-Pacific punctuated flatworm Maritigrella fuscopunctata (Newman & Cannon 2000), (Polycladida: Euryleptidae) from the Mediterranean Sea Adriana Vella*, Noel Vella, Mathilde Maslin, Linda Bichlmaier Conservation Biology Research Group, Department of Biology, University of Malta, Msida MSD2080, MALTA *Corresponding author: [email protected] Abstract A first record of the punctuated flatworm Maritigrella fuscopunctata (Newman & Cannon 2000) from Maltese waters in the Mediterranean Sea during marine research surveys in summer 2015 is reported in detail.
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • The Essentials of Marine Biotechnology. Frontiers in Marine Science [Online], 8, Article 629629
    ROTTER, A., BARBIER, M., BERTONI, F. et al. 2021. The essentials of marine biotechnology. Frontiers in marine science [online], 8, article 629629. Available from: https://doi.org/10.3389/fmars.2021.629629 The essentials of marine biotechnology. ROTTER, A., BARBIER, M., BERTONI, F. et al. 2021 Copyright © 2021 Rotter, Barbier, Bertoni, Bones, Cancela, Carlsson, Carvalho, Cegłowska, Chirivella-Martorell, Conk Dalay, Cueto, Dailianis, Deniz, Díaz-Marrero, Drakulovic, Dubnika, Edwards, Einarsson, Erdoˇgan, Eroldoˇgan, Ezra, Fazi, FitzGerald, Gargan, Gaudêncio, Gligora Udoviˇc, Ivoševi´c DeNardis, Jónsdóttir, Kataržyt˙e, Klun, Kotta, Ktari, Ljubeši´c, Luki´c Bilela, Mandalakis, Massa-Gallucci, Matijošyt˙e, Mazur-Marzec, Mehiri, Nielsen, Novoveská, Overling˙e, Perale, Ramasamy, Rebours, Reinsch, Reyes, Rinkevich, Robbens, Röttinger, Rudovica, Sabotiˇc, Safarik, Talve, Tasdemir, Theodotou Schneider, Thomas, Toru´nska-Sitarz, Varese and Vasquez.. This article was first published in Frontiers in Marine Science on 16.03.2021. This document was downloaded from https://openair.rgu.ac.uk fmars-08-629629 March 10, 2021 Time: 14:8 # 1 REVIEW published: 16 March 2021 doi: 10.3389/fmars.2021.629629 The Essentials of Marine Biotechnology Ana Rotter1*, Michéle Barbier2, Francesco Bertoni3,4, Atle M. Bones5, M. Leonor Cancela6,7, Jens Carlsson8, Maria F. Carvalho9, Marta Cegłowska10, Jerónimo Chirivella-Martorell11, Meltem Conk Dalay12, Mercedes Cueto13, 14 15 16 17 Edited by: Thanos Dailianis , Irem Deniz , Ana R. Díaz-Marrero , Dragana Drakulovic , 18 19
    [Show full text]
  • Marine Natural Products from Tunicates and Their Associated Microbes
    marine drugs Review Marine Natural Products from Tunicates and Their Associated Microbes Chatragadda Ramesh 1,2,*, Bhushan Rao Tulasi 3, Mohanraju Raju 2, Narsinh Thakur 4 and Laurent Dufossé 5,* 1 Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India 2 Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India; [email protected] 3 Zoology Division, Sri Gurajada Appa Rao Government Degree College, Yellamanchili 531055, India; [email protected] 4 Chemical Oceanography Division (COD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India; [email protected] 5 Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, Ile de La Réunion, France * Correspondence: [email protected] (C.R.); [email protected] (L.D.); Tel.: +91-(0)-832-2450636 (C.R.); +33-668-731-906 (L.D.) Abstract: Marine tunicates are identified as a potential source of marine natural products (MNPs), demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The symbiotic relationship between tunicates and specific microbial groups has revealed the acquisi- tion of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented compounds, “tambjamines”, produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily Citation: Ramesh, C.; Tulasi, B.R.; originated from their bacterial symbionts, which are involved in their chemical defense function, indi- Raju, M.; Thakur, N.; Dufossé, L. cating the ecological role of symbiotic microbial association with tunicates. This review has garnered Marine Natural Products from comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts.
    [Show full text]
  • Ascidiacea: Perophoridae) En Cuba Revista De Biología Tropical, Vol
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Hernández-Zanuy, Aida; Carballo, José Luis; García-Cagide, Alida; Naranjo, Santiago; Esquivel, Macario Distribución y abundancia de la ascidia Ecteinascidia turbinata (Ascidiacea: Perophoridae) en Cuba Revista de Biología Tropical, vol. 55, núm. 1, marzo, 2007, pp. 247-254 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44955126 Abstract Distribution and abundance of the ascidian Ecteinascidia turbinata (Ascidiacea: Perophoridae) in Cuba. Permanently submerged mangrove roots (Rhizophora mangle) are the main habitat of the ascidian Ecteinascidia turbinata in Cuba. It was occasionally found on black coral (Antiphates caribeana) between 22 and 38 meters deep. This species exhibits a wide distribution in all the mangrove keys surrounding the Island of Cuba but does not occur in riparian or fringing mangroves. Populations of this species are abundant in Cuba: in 75 % of the 58 localities sampled the species was present and in 57 % more than 50 % of the roots held at least one colony. The highest colony densities were found in the northern coast of Pinar del Río province with values near one colony per lineal meter of mangrove root. We found the highest density (1.46 col/m) and greatest biomass at Jutías Key, with values between 25 and 660 g/m. The average of wet biomass in the studied mangroves was 73.63 g/m. Rev. Biol. Trop. 55 (1): 247-254. Epub 2007 March. 31. Keywords ascidian, Ecteinascidia turbinata, distribution, abundance, density, biomass, mangrove, Cuba.
    [Show full text]
  • <I>Ecteinascidia Turbinata</I>
    BULLETIN OF MARINE SCIENCE, 65(3): 755–760, 1999 RECOVERY OF ECTEINASCIDIA TURBINATA HERMAN 1880 (ASCIDIACEA: PEROPHORIDAE) POPULATIONS AFTER DIFFERENT LEVELS OF HARVESTING ON A SUSTAINABLE BASIS J. L. Carballo, A. Hernández-Zanuy, S. Naranjo, B. Kukurtzü and Alida García Cagide ABSTRACT The harvesting of Ecteinascidia turbinata on a sustainable basis could be an example for the production of metabolites from marine organisms while protecting natural popu- lations. A research program was carried out in order to determine the recovery capacity of an E. turbinata population, after carrying out harvesting experiments in the Carribbean and Mediterranean Sea. In the Mediterranean, 25, 40 and 100% of the population was collected, with two collections for each group at 45 and 60 d. There was complete recov- ery of the biomass in the 25 and 40% collections after 45 d, but in the 100% collections only 62% of the biomass had recovered after 60 d. In the Caribbean, 25, 50, 75%, and later 100%, collections were carried out. After 16 d there was a recovery of the density of the population but not of the biomass. After 3 mo there was a recovery of density, biom- ass and root coverage in the 100% collection. Natural substances obtained from marine invertebrates are currently one of the main sources of new medication against illnesses such as cancer. For a few years research has been carried out on a substance produced by the colonial tunicate Ecteinascidia turbinata Herdman, 1880, which shows activity against various types of solid tumors (Rinehart et al., 1990; Wright et al., 1990).
    [Show full text]
  • Chordate Ancestry of the Neural Crest: New Insights from Ascidians William R
    Seminars in Cell & Developmental Biology 18 (2007) 481–491 Review Chordate ancestry of the neural crest: New insights from ascidians William R. Jeffery ∗ Department of Biology, University of Maryland, College Park, MD 20742, USA Available online 19 April 2007 Abstract This article reviews new insights from ascidians on the ancestry of vertebrate neural crest (NC) cells. Ascidians have neural crest-like cells (NCLC), which migrate from the dorsal midline, express some of the typical NC markers, and develop into body pigment cells. These characters suggest that primordial NC cells were already present in the common ancestor of the vertebrates and urochordates, which have been recently inferred as sister groups. The primitive role of NCLC may have been in pigment cell dispersal and development. Later, additional functions may have appeared in the vertebrate lineage, resulting in the evolution of definitive NC cells. © 2007 Elsevier Ltd. All rights reserved. Keywords: Neural crest; Neural crest-like cells; Vertebrates; Ascidians; Pigment cells Contents 1. Introduction: evolution of the neural crest.................................................................................. 481 2. Early searches for neural crest in invertebrate chordates ..................................................................... 482 3. Adultation and the complexity of ascidian larvae ........................................................................... 482 4. Migratory neural crest-like cells in Ecteinascidia ..........................................................................
    [Show full text]
  • The Tropical Western Atlantic Perophoridae Ascidiacea Ii. the Genus Ecteinascidia
    BULLETIN OF MARINE SCIENCE, 79(1): 49–70, 2006 THE TROPICAL WESTERN ATLANTIC PEROPHORIDAE ASCIDIACEA II. THE GENUS ECTEINASCIDIA Ivan Goodbody and Linda Cole ABSTRACT Four species of Ecteinascidia occur in the tropical western Atlantic. The char- acteristics of each species are described and their distribution reviewed. Many characteristics are related to zooid size, although others are independent of size. Three species are common and widespread but the fourth,Ecteinascidia conklini Berrill, 1932, is rare and until recently there have been few records of its distribu- tion. Ecteinascidia minuta (Berrill, 1932) is closely related to Ecteinascidia herd- mani Medioni, 1969 from the Mediterranean and further research may show that the two are synonymous. The general characteristics of the family Perophoridae and its two component gen- era Perophora Wiegmann, 1835 and Ecteinascidia Herdman, 1880 were discussed in an earlier paper (Goodbody, 1994). The distinction between the two genera is based primarily on the number of rows of stigmata in the branchial sac, the organization of the alimentary canal, and the form of the testis (Kott, 1985). Most Perophora spe- cies have only four or five rows of stigmata while Ecteinascidia always has more than eight and usually between 12 and 20. In Perophora the gut loop is horizontal and the rectum short, while in Ecteinascidia the gut loop is more open with a long rectum. In both genera the gonads are situated in the gut loop; in Perophora the testis usually has only one or a few testis lobes, while in Ecteinascidia there are many pyriform testis lobes, often arranged in a crescent.
    [Show full text]
  • Claire HAUVILLE Produits Marins Et Cancers : Les Substances En Cours D'essais Cliniques
    UNIVERSITE DE NANTES FACULTE DE PHARMACIE ANNEE 2008 N°48 THESE pour le DIPLOME D’ETAT DE DOCTEUR EN PHARMACIE par Claire HAUVILLE --------------------------------------- Présentée et soutenue publiquement le 20 octobre 2008 Produits marins et cancers : les substances en cours d’essais cliniques. Présidente : Mme Nicole GRIMAUD Maître de Conférences de Pharmacologie Membres du Jury : M. Jean-François BIARD Professeur de Pharmacognosie Mme Martine FOREAU-COUDERT Pharmacien à Sautron 1 Sommaire. Introduction. ........................................................................................................... 7 Partie 1 : Les molécules en essais cliniques de phase II et III……………………………….. 10 I. Les molécules en phase II. ................................................................................................ 10 I.1 Dehydrodidemnine B (Aplidine®) (DDB). ................................................................ 10 1.1.1 Origine et date de découverte. ............................................................................ 11 1.1.2 Structure. ............................................................................................................. 12 1.1.3 Métabolisme in vitro. .......................................................................................... 12 1.1.4 Mode de production actuel……………………………………………………...13 1.1.5 Activité et mécanisme d’action. .......................................................................... 13 A. Activité. ..............................................................................................................
    [Show full text]
  • A Manual of Previously Recorded Non-Indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States
    A Manual of Previously Recorded Non- indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States NOAA Technical Memorandum NOS NCCOS 77 ii Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States government. Citation for this report: Megan O’Connor, Christopher Hawkins and David K. Loomis. 2008. A Manual of Previously Recorded Non-indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States. NOAA Technical Memorandum NOS NCCOS 77, 82 pp. iii A Manual of Previously Recorded Non- indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States. Megan O’Connor, Christopher Hawkins and David K. Loomis. Human Dimensions Research Unit Department of Natural Resources Conservation University of Massachusetts-Amherst Amherst, MA 01003 NOAA Technical Memorandum NOS NCCOS 77 June 2008 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Carlos M. Gutierrez Conrad C. Lautenbacher, Jr. John H. Dunnigan Secretary Administrator Assistant Administrator i TABLE OF CONTENTS SECTION PAGE Manual Description ii A List of Websites Providing Extensive 1 Information on Aquatic Invasive Species Major Taxonomic Groups of Invasive 4 Exotic and Native Transplanted Species, And General Socio-Economic Impacts Caused By Their Invasion Non-Indigenous and Native Transplanted 7 Species by Geographic Region: Description of Tables Table 1. Invasive Aquatic Animals Located 10 In The Great Lakes Region Table 2. Invasive Marine and Estuarine 19 Aquatic Animals Located From Maine To Virginia Table 3. Invasive Marine and Estuarine 23 Aquatic Animals Located From North Carolina to Texas Table 4.
    [Show full text]
  • Distribución Y Abundancia De La Ascidia Ecteinascidia Turbinata (Ascidiacea: Perophoridae) En Cuba
    Distribución y abundancia de la ascidia Ecteinascidia turbinata (Ascidiacea: Perophoridae) en Cuba Aida Hernández-Zanuy1, José Luis Carballo2, Alida García-Cagide1, Santiago Naranjo3 & Macario Esquivel1 1 Instituto de Oceanología del Ministerio de Ciencia Tecnología y Medio Ambiente de Cuba. Ave. 1era y 186 No. 18406, Ciudad Habana, Cuba [email protected] 2 Instituto de Ciencias del Mar y Limnología, UNAM. Mazatlán. A.P.811. Mazatlán 82000. México.FAX: [email protected] 3 Departamento de Biología Marina. Pharma-Mar S.A. Tres Cantos. 2876. Madrid, España. Recibido 10-VII-2002. Corregido 31-I-2006. Aceptado 06-XI-2006. Abstract: Distribution and abundance of the ascidian Ecteinascidia turbinata (Ascidiacea: Perophoridae) in Cuba. Permanently submerged mangrove roots (Rhizophora mangle) are the main habitat of the ascidian Ecteinascidia turbinata in Cuba. It was occasionally found on black coral (Antiphates caribeana) between 22 and 38 meters deep. This species exhibits a wide distribution in all the mangrove keys surrounding the Island of Cuba but does not occur in riparian or fringing mangroves. Populations of this species are abundant in Cuba: in 75 % of the 58 localities sampled the species was present and in 57 % more than 50 % of the roots held at least one colony. The highest colony densities were found in the northern coast of Pinar del Río province with values near one colony per lineal meter of mangrove root. We found the highest density (1.46 col/m) and greatest bio- mass at Jutías Key, with values between 25 and 660 g/m. The average of wet biomass in the studied mangroves was 73.63 g/m.
    [Show full text]