Smithsonian Miscellaneous Collections

Total Page:16

File Type:pdf, Size:1020Kb

Smithsonian Miscellaneous Collections SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 85, NUMBER 7 EFFECTIVENESS IN NATURE OF THE SO-CALLED PROTECTIVE ADAPTATIONS IN THE ANIMAL KINGDOM, CHIEFLY AS ILLUSTRATED BY THE FOOD HABITS OF NEARCTIC BIRDS BY W. L. McATEE Bureau of Biological Survey U. S. Department of Agriculture (PUBLICATION! 3125) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION MARCH 15, 1932 Z-tfc JSorb (§a(timoxc {pveoe BAI.TIJIUKl;;, MD., U. ,S. A. Smithsonian Miscellaneous Collections Vol. 85, No. 7 EFFFXTIVENESS IN NATURE OF THE SO-CALLED PROTECTIVE ADAPTATIONS IN THE ANIMAL KINGDOM. CHIEFLY AS ILLUSTRATED BY THE FOOD HABITS OF NEARCTIC BIRDS By W. L. McATEE ERRATA Page 56. In the table Identifications of Lepidoptera, the middle column is a relic from a set of calculations of the percentages of identifications among all insects. The appended figures are to be substituted as represent- ing the percentages of identifications among all Lepidoptera. In explanation of the third column in this table, it may be said that it differs from others given further on in the work by omission of figures for families not represented among the food identifications. Percentage of identifications anionf! all Lepidoptera 2.6992 .0270 .0270 .8060 .0919 •2055 .0108 .0270 .0108 .0108 .4706 .0324 .9412 .0378 •6383 6.IOI5 .0216 .3678 •3570 .15' '8 .8438 1 1 .4458 .0487 .0054 •3191 .0054 .0108 .2218 .61 [J .7248 68.5670 1.2279 3-5:^76 entry for the family Diopsidae Page 86. The figure i before the decimal in the should be deleted. " " " " the heading Pages 102-105. Insert the word aquatic after the word all in for the middle column on each of these pages, with the exception of that at the bottom of page 105. EFFECTIVENESS IN NATURE OF THE SO-CALLED PROTECTIVE ADAPTATIONS IN THE ANIMAL KINGDOM, CHIEFLY AS ILLUSTRATED BY THE FOOD FIABITS OF NEARCTIC BIRDS By W. L. McATEE bureau of biological survey, u. s. department of agricultukk CONTENTS p^^^^ Introduction 2 Protective adaptations 4 Animals eaten by Nearctic birds 6 Data cited and how obtained 6 Identifications of animal food 8 Protozoa (one-celled animals) 9 Porifera (sponges) 10 Coelenterata (hydras, jellyfishes, sea-anemones) 11 Platyhelminthes (flatworms, flukes) 13 Nemathelminthes (threadworms, roundworms) 13 Trochelmintlies (rotifers) 13 Molluscoida (corallines, lampshells) 13 Echinodermata (sea-cucumbers, sea urcliins, starfishes) 14 Annulata (worms) 15 Arthropoda (jointed animals) 16 Crustacea (crabs, shrimps, sowbugs) 17 Myriapoda (thousandlegs, centipedes) 22 Insecta (insects) 24 Aptera f wingless insects) 27 Odonata (dragonflies, damselflies) 28 Agnatha (mayflies) 20 Plecoptera (stoneflies) 30 Isoptera (termites) 31 Orthopteroidea (embracing the following 5 groups) ,^2 Dermaptera (earwigs) ;^j Cheleutoptera (walkingsticks) 33 Saltatoria (grasshoppers, locusts, crickets) 3 I Paleoptera (roaches) 38 Dictyoptera (mantids) 3;) Corrodentia (psocids) 39 Mallophaga (biting lice ) 40 Siphonaptera (fleas) 40 Thysanoptera (thrips) 40 Rhynchota (bugs, cicadas, leafhoppers, scale insects) 41 Neuropteroidea (dobsonflies, snakeflies, scorpionflies, ant- lions, caddisflies) 49 Lcpidoptera (mciths, butterflies) 52 Smithsonian Miscellaneous Collections, Vol. 85, No. 7. I 2 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 85 PAGE Coleoptera (beetles) 63 Mecaptera (scorpionflies) 84 Diptera (flies ) 84 Hymenoptera (ants, bees, wasps) 88 Arachnida (scorpions, spiders, ticks, etc.) 97 Mollusca (snails, slugs, mussels, limpets) loi Chordata (lancelets, tunicates, vertebrates) no Pisces (fishes ) 112 Amphibia (salamanders, toads, frogs ) 120 Reptilia (turtles, lizards, snakes) 123 Aves (birds) 126 Mammalia (mammals) 131 Discussion I35 Indiscriminancy of predators other than birds 136 More theoretical aspects of indiscriminancy by predators 140 Indiscriminancy of normal checks other than predators 141 Relative importance of natural checks 141 Summary I43 Bibliography MS INTRODUCTION In a previous paper ^ the writer set forth reasons for beheving that the results of experimental tests of the effectiveness of the so- called protective adaptations in protecting animals from their enemies are not trustworthy indications of what occurs under natural condi- tions. In the present contribution he proposes to show just what insects and other animals are actually preyed upon by wild birds of the United States, Canada, and Alaska, giving also incidental notes on other enemies. This evidence reflecting food habits under natural conditions goes far to show how little the alleged protective devices have to do with choice of food by vertebrates. Judging from the literature of the subject since 1912, the con- tentions of the article on the experimental study of the food habits of animals seem to have been generally admitted, or at least regarded as too well supported to be lightly attacked. Only one essay has been seen l)y the writer, that seems in any way a reply, namely an account of " Experiments and Observations Bearing on the Explanation of Form and Colouring," "" by C. F. M. Swynnerton, who refers to my criticism of the experimental method as " rather over-vigorous." The vigor of the criticism is admitted l)ut in view of the absurdity of the arguments against which it was directed, it can hardly be considered 'The experimental method of testing the efficiency of warning and cryptic coloration in protecting animals from their enemies. Proc. Acad. Nat. Sci. Philadelphia, June 1912, pp. 281-364 (Sept. 6, 1912). * Journ. Linn. See, Zool., vol. 33, pp. 203-385, London, June 30, 1919. NO. 7 PROTECTIVE ADAPTATIONS McATEE 3 excessive. Undeniably selectionists have lieen absurd in their ch's- " " quisitions on adaptations ; for instance eye-spots on a butterfly's wings are to direct the attack of enemies to a nonvital spot, while "eye-spots" on a caterpillar are "terrifying" and prevent even a touch where merely a touch would be fatal ; in numerous species of birds the male is colored red and black or orange and black, characteristics that selectionists say have been developed by sexual selection as an attraction to the opposite sex, yet the females of these birds are supposed to be repelled by the same colors in possible insect prey ; red insects are said to be warningly, red fruits invitingly colored, and so on. A popular foible of similar type is that of sports- men who hold up to admiration the marvelous protective coloration of game birds, and in the next breath complain of severe depredations on these birds by " vermin." But this is digressing and the writer is glad to acknowledge that if all of the experimenters had been as critical of their methods and conclusions as Mr. Sw^ynnerton, the tone of his former paper would have been quite dififerent. For instance Mr. Swynnerton carried on more experiments than any of the authors reviewed in the previous communication, before he, according to his own confession, learned how to experiment. This in itself confirms the writer's charges that the experiments he reviewed were both inadequate and misinterpreted. It may further be stated that the principal conclusions Mr. Swynner- ton draws from his experiments and observations would have been agreed to in advance by anyone experienced in the study of bird food. Thus he concludes that birds show preferences among the food items available to them, and that predatory animals of various groups show more or less agreement in preferences. From his general experience with birds he decides also that " Unless through sheer impossible hardness, size, etc., there is practically no such thing as ' inedibility,' and he appreciates that a group of insects, limited in numbers as are butterflies, will not be taken by insectivorous birds out of proportion to their abundance as compared to all insects available. These things did not require experimental test for they are cor- roborated in every thorough report on the natural feeding habits of birds. What can not l)e admitted, however, is that preferences of birds learned by feeding them upon some certain group of insects to an extent far greater than the birds ever prey upon them in nature, reflect normal feeding habits, nor that there is evidence of intensive enough feeding by discriminating enemies upon any group of insects 'A brief preliminary statement of a few of the results of five years' special testing of the theories of mimiery. Proc. Ent. Soc. Lond., 1915, pp. xxxii-xliii. ; 4 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 85 to meet the requirements of the selection theories. We further can not admit what the experimenters imply, namely, that the analyses of the stomach contents of birds fail to reveal the approximate num- bers present of certain insects (such as butterflies) which they believe are eaten to a considerable extent. This point will be discussed later. So much for what has happened between the previous paper and the present, which as stated, will be devoted chiefly to an exposition of the animal food of nearctic birds, with special reference to the so-called protective adaptations. PROTECTIVE ADAPTATIONS The characteristics of animals that are usually classed as protective adaptations include resemblance to generalities or details of the en- vironment, whether through color or other modification of the animal itself or utilization by it of materials from the environment for concealment, the possession of protective bristles, spines, hard in- teguments, stings, poisonous bites, and the like, and nauseous or irritating odors or tastes. There are animals with actually poisonous properties among many of
Recommended publications
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • A New Cetoniinae for the French Polynesia Fauna (Coleoptera, Scarabaeidae)
    Bulletin de la Société entomologique de France, 120 (3), 2015 : 379-381. A new Cetoniinae for the French Polynesia fauna (Coleoptera, Scarabaeidae) by Thibault RAMAGE 9 quartier de la Glacière, F – 29900 Concarneau <[email protected]> Abstract. – The Cetoniinae fauna of French Polynesia was restricted until now to a single introduced species, Protaetia fusca (Herbst, 1790). A second species is here reported from Tahiti, Glycyphana stolata (Fabricius, 1781). P. fusca is also reported from the Marquesas Islands for the first time. Résumé. – Une nouvelle Cétoine pour la faune de Polynésie française (Coleoptera, Scarabaeidae). La faune des Cetoniinae de Polynésie française, qui ne comprenait jusqu’à présent qu’une espèce introduite, Protaetia fusca (Herbst, 1790), compte désormais une seconde espèce, connue en Polynésie pour l’instant de Tahiti seulement, Glycyphana stolata (Fabricius, 1781). P. fusca est également citée pour la première fois des Marquises. Keywords. – Glycyphana stolata, Protaetia fusca, Cetoniini, French Polynesia. _________________ Until now only one species of Cetoniinae was known in French Polynesia, Protaetia fusca (Herbst, 1790) (PAULIAN, 1998). This species was reported only from the Society Islands, and it appears that it is also present in the Marquesas Islands. A second Cetoniinae, Glycyphana stolata (Fabricius, 1781), has been collected recently on Tahiti. It seems that G. stolata is now settled in French Polynesia and will probably spread in the different archipelagoes. Abbreviations. – CTR, Thibault Ramage’s personal collection, Concarneau ; MNHN, Muséum national d’Histoire naturelle, Paris. Family Scarabaeidae Latreille, 1802 Subfamily Cetoniinae Leach, 1815 Tribe Cetoniini Leach, 1815 Genus Glycyphana Burmeister, 1842 Glycyphana (Glycyphaniola) stolata (Fabricius, 1781) Cetonia stolata Fabricius, 1781 : 58.
    [Show full text]
  • Coleoptera: Scarabaeidae: Cetoniinae) in the New World, with a Species Checklist and Descriptions of Two New Genera and Species from Mexico and Martinique
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2019 KEYS TO ADULTS OF ALL GENERA AND LARVAE OF 19 SPECIES OF GYMNETINI (COLEOPTERA: SCARABAEIDAE: CETONIINAE) IN THE NEW WORLD, WITH A SPECIES CHECKLIST AND DESCRIPTIONS OF TWO NEW GENERA AND SPECIES FROM MEXICO AND MARTINIQUE Brett C. Ratcliffe Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Coleopterists Bulletin, 73(1): 1–26. 2019. KEYS TO ADULTS OF ALL GENERA AND LARVAE OF 19 SPECIES OF GYMNETINI (COLEOPTERA:SCARABAEIDAE:CETONIINAE) IN THE NEW WORLD, WITH A SPECIES CHECKLIST AND DESCRIPTIONS OF TWO NEW GENERA AND SPECIES FROM MEXICO AND MARTINIQUE BRETT C. RATCLIFFE Systematics Research Collections, University of Nebraska State Museum W-436 Nebraska Hall, University of Nebraska Lincoln, NE 68588-0514, USA [email protected] ABSTRACT Keys to adults of all 27 genera and larvae of 19 species in 10 genera of Gymnetini that occur in the New World are presented. Supplementing the key to adults is a checklist of all species, their synonyms, and all literature citations associated with the nomenclatural epithets. Two new genera, Gymnephoria Ratcliffe and Madiana Ratcliffe and Rom´e,with one new species each, are described from Mexico and Martinique, respectively. Key Words: flower chafers, taxonomy, new species, identification, nomenclature, synonyms DOI.org/10.1649/0010-065X-73.1.1 Zoobank.org/urn:lsid:zoobank.org:pub:DABCC591-6424-4546-A8D0-32B5DE6B69AA Our generation is the first to fully appreciate the key is provided for 19 species in 10 genera of the threats facing millions of species, known New World larval Gymnetini.
    [Show full text]
  • Mimicry and Defense
    3/24/2015 Professor Donald McFarlane Mimicry and Defense Protective Strategies Camouflage (“Cryptic coloration”) Diverse Coloration Diversion Structures Startle Structures 2 1 3/24/2015 Camouflage (“Cryptic coloration”) Minimize 3d shape, e.g. flatfish Halibut (Hippoglossus hippoglossus) 3 4 2 3/24/2015 Counter‐Shading 5 Disruptive Coloration 6 3 3/24/2015 Polymorphism – Cepeae snails 7 Polymorphism – Oophaga granuliferus 8 4 3/24/2015 Polymorphism – 9 Polymorphism – Oophaga Geographic locations of study populations and their color patterns. (A) Map of the pacific coast of Colombia showing the three study localities: in blue Oophaga histrionica, in orange O. lehmanni, and in green the pHYB population. (B) Examples of color patterns of individuals from the pHYB population (1–4) and the pattern from a hybrid between Oophaga histrionica and O. lehmanni bred in the laboratory (H) 10 5 3/24/2015 Diversion Structures 11 Startle Structures 12 6 3/24/2015 Warning Coloration (Aposematic coloration) Advertise organism as distasteful, toxic or venomous Problem: Predators must learn by attacking prey; predator learning is costly to prey. Therefore strong selective pressure to STANDARDIZE on a few colors/patterns. This is MULLERIAN MIMICRY. Most common is yellow/black, or red/yellow/black 13 Warning Coloration (Aposematic coloration) Bumblebee (Bombus Black and yellow mangrove snake (Boiga sp.) Sand Wasp (bembix oculata) dendrophila) Yellow‐banded poison dart frog (Dendrobates leucomelas Fire salamander ( Salamandra salamandra) 14 7 3/24/2015 Warning Coloration (Aposematic coloration) coral snakes (Micrurus sp.) ~ 50 species in two families, all venomous 15 Batesian Mimicry 1862 –Henry Walter Bates; “A Naturalist on the River Amazons” 16 8 3/24/2015 Batesian Mimicry Batesian mimics “cheat” –they lack toxins, venom, etc.
    [Show full text]
  • Predatory Behavior of Jumping Spiders
    Annual Reviews www.annualreviews.org/aronline Annu Rev. Entomol. 19%. 41:287-308 Copyrighl8 1996 by Annual Reviews Inc. All rights reserved PREDATORY BEHAVIOR OF JUMPING SPIDERS R. R. Jackson and S. D. Pollard Department of Zoology, University of Canterbury, Christchurch, New Zealand KEY WORDS: salticids, salticid eyes, Portia, predatory versatility, aggressive mimicry ABSTRACT Salticids, the largest family of spiders, have unique eyes, acute vision, and elaborate vision-mediated predatory behavior, which is more pronounced than in any other spider group. Diverse predatory strategies have evolved, including araneophagy,aggressive mimicry, myrmicophagy ,and prey-specific preycatch- ing behavior. Salticids are also distinctive for development of behavioral flexi- bility, including conditional predatory strategies, the use of trial-and-error to solve predatory problems, and the undertaking of detours to reach prey. Predatory behavior of araneophagic salticids has undergone local adaptation to local prey, and there is evidence of predator-prey coevolution. Trade-offs between mating and predatory strategies appear to be important in ant-mimicking and araneo- phagic species. INTRODUCTION With over 4000 described species (1 l), jumping spiders (Salticidae) compose by Fordham University on 04/13/13. For personal use only. the largest family of spiders. They are characterized as cursorial, diurnal predators with excellent eyesight. Although spider eyes usually lack the struc- tural complexity required for acute vision, salticids have unique, complex eyes with resolution abilities without known parallels in animals of comparable size Annu. Rev. Entomol. 1996.41:287-308. Downloaded from www.annualreviews.org (98). Salticids are the end-product of an evolutionary process in which a small silk-producing animal with a simple nervous system acquires acute vision, resulting in a diverse array of complex predatory strategies.
    [Show full text]
  • Contact: Sondra Katzen 708.688.8351 [email protected]
    Contact: Sondra Katzen 708.688.8351 [email protected] Amazing Arachnids Fact Sheet Opening Amazing Arachnids is open from Saturday, May 26, through Monday, September 3. It features two sections—Art and Science of Arachnids and Mission Safari Maze . Purpose ° To provide Brookfield Zoo guests with an engaging and interactive experience where they can discover the incredible attributes of arachnids and how the species has played an important role in our lives. ° To inspire guests to gain a better understanding of arachnids and other species that could then lead to a greater appreciation for them. Location Brookfield Zoo’s West Mall Art and Science of Arachnids Art and Science of Arachnids invites guests to discover the cultural connections of these eight-legged creatures that have weaved their way into a variety of genres, including music, art, folklore, medicine, conservation, film, and literature. In addition to engaging, hands-on interactives, the exhibit features 100 live arachnids found around the world, making it the largest public collection of arachnids in North America. ° Arachnid Species —the live collection is primarily composed of tarantulas and scorpions with a sampling of whip scorpions and true spiders. Species include: Blue femur beauty tarantula Mahogany tree spider Brazilian blue violet tarantula Metallic pink toe tarantula Brazilian pink bloom tarantula Mexican fireleg tarantula Burgundy goliath birdeater Mexican red knee tarantula Columbian pumpkin patch tarantula Mozambique golden baboon tarantula Chaco golden knee
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • Hundreds of Species of Aquatic Macroinvertebrates Live in Illinois In
    Illinois A B aquatic sowbug Asellus sp. Photograph © Paul P.Tinerella AAqquuaattiicc mayfly A. adult Hexagenia sp.; B. nymph Isonychia sp. MMaaccrrooiinnvveerrtteebbrraatteess Photographs © Michael R. Jeffords northern clearwater crayfish Orconectes propinquus Photograph © Michael R. Jeffords ruby spot damselfly Hetaerina americana Photograph © Michael R. Jeffords aquatic snail Pleurocera acutum Photograph © Jochen Gerber,The Field Museum of Natural History predaceous diving beetle Dytiscus circumcinctus Photograph © Paul P.Tinerella monkeyface mussel Quadrula metanevra common skimmer dragonfly - nymph Libellula sp. Photograph © Kevin S. Cummings Photograph © Paul P.Tinerella water scavenger beetle Hydrochara sp. Photograph © Steve J.Taylor devil crayfish Cambarus diogenes A B Photograph © ChristopherTaylor dobsonfly Corydalus sp. A. larva; B. adult Photographs © Michael R. Jeffords common darner dragonfly - nymph Aeshna sp. Photograph © Paul P.Tinerella giant water bug Belostoma lutarium Photograph © Paul P.Tinerella aquatic worm Slavina appendiculata Photograph © Mark J. Wetzel water boatman Trichocorixa calva Photograph © Paul P.Tinerella aquatic mite Order Prostigmata Photograph © Michael R. Jeffords backswimmer Notonecta irrorata Photograph © Paul P.Tinerella leech - adult and young Class Hirudinea pygmy backswimmer Neoplea striola mosquito - larva Toxorhynchites sp. fishing spider Dolomedes sp. Photograph © William N. Roston Photograph © Paul P.Tinerella Photograph © Michael R. Jeffords Photograph © Paul P.Tinerella Species List Species are not shown in proportion to actual size. undreds of species of aquatic macroinvertebrates live in Illinois in a Kingdom Animalia Hvariety of habitats. Some of the habitats have flowing water while Phylum Annelida Class Clitellata Family Naididae aquatic worm Slavina appendiculata This poster was made possible by: others contain still water. In order to survive in water, these organisms Class Hirudinea leech must be able to breathe, find food, protect themselves, move and reproduce.
    [Show full text]
  • Overview of Upland Rice Research Proceedings of the 1982 Bouaké, Ivory Coast Upland Rice Workshop
    AN OVERVIEW OF UPLAND RICE RESEARCH PROCEEDINGS OF THE 1982 BOUAKÉ, IVORY COAST UPLAND RICE WORKSHOP 1984 INTERNATIONAL RICE RESEARCH INSTITUTE LOS BAÑOS, LAGUNA, PHILIPPINES P. O. BOX 933, MANILA, PHILIPPINES The International Rice Research Institute (IRRI) was established in 1960 by the Ford and Rockefeller Foundations with the help and approval of the Government of the Philippines. Today IRRl is one of 13 nonprofit international research and training centers supported by the Consultative Group for International Agricultural Research (CGIAR). The CGIAR is sponsored by the Food and Agriculture Organization (FAO) of the United Nations, the International Bank for Reconstruction and Development (World Bank), and the United Nations Development Programme (UNDP). The CGIAR consists of 50 donor countries, international and regional organizations, and private foundations. IRRl receives support, through the CGIAR, from a number of donors including: the Asian Development Bank the European Economic Community the Ford Foundation the International Development Research Centre the International Fund for Agricultural Development the OPEC Special Fund the Rockefeller Foundation the United Nations Development Programme the World Bank and the international aid agencies of the following governments: Australia Belgium Brazil Canada China Denmark Fed. Rep. Germany India Italy Japan Mexico Netherlands New Zealand Philippines Saudi Arabia Spain Sweden Switzerland United Kingdom United States The responsibility for this publication rests with the International Rice Research Institute. ISBN 971-104-121-9 CONTENTS FOREWORD v BASE PAPERS Upland rice in Africa IITA 3 WARDA 21 Upland rice in Asia IRRI 45 Upland rice in India 69 D. M. Maurya and C. P. Vaish Upland rice in Latin America CIAT 93 EMBRAPA 121 ENVIRONMENTAL CHARACTERIZATION AND CLASSIFICATION Rice production calendar for the Ivory Coast 137 J.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Distribution Patterns of Pelagic Gastropods at the Cape Verde Islands Holger Ossenbrügger
    Distribution patterns of pelagic gastropods at the Cape Verde Islands Holger Ossenbrügger* Semester thesis 2010 *GEOMAR | Helmholtz Centre for Ocean Research Kiel Marine Ecology | Evolutionary Ecology of Marine Fishes Düsternbrooker Weg 20 | 24105 Kiel | Germany Contact: [email protected] Contents 1. Introduction . .2 1.1. Pteropods . 2 1.2. Heteropods . 3 1.3. Hydrography . 4 2. Material and Methods . 5 3. Results and Discussion . 7 3.1. Pteropods . 7 3.1.1. Species Composition . 7 3.1.2. Spatial Density Distribution near Senghor Seamount . .. 9 3.1.3. Diel Vertical Migration . 11 3.2. Heteropods . 17 3.2.1. Species Composition . .17 3.2.2. Spatial Density Distribution near Senghor Seamount . .17 3.2.3. Diel Vertical Migration . 18 4. Summary and directions for future research . 19 References . 20 Acknowledgements . 21 Attachment . .22 1. Introduction 1.1. Pteropods Pteropods belong to the phylum of the Mollusca. They are part of the class Gastropoda and located in the order Ophistobranchia. The pteropods are divided into the orders Thecosomata and Gymnosomata. They are small to medium sized animals, ranging from little more than 1mm for example in many members of the Genus Limacina to larger species such as Cymbulia peroni, which reaches a pseudoconch length of 65mm. The mostly shell bearing Thecosomata are known from about 74 recent species worldwide and are divided into five families. The Limacinidae are small gastropods with a sinistrally coiled shell; they can completely retract their body into the shell. Seven recent species of the genus Limacina are known. The Cavoliniidae is the largest of the thecosomate families with about 47 species with quite unusually formed shells.
    [Show full text]