Diseño Y Fabricación De Impresora 3D Basada En Robot Paralelo Tipo Delta – Ropar3d

Total Page:16

File Type:pdf, Size:1020Kb

Diseño Y Fabricación De Impresora 3D Basada En Robot Paralelo Tipo Delta – Ropar3d TRABAJO FIN DE GRADO UNIVERSIDAD DE ALMERIA ESCUELATRABAJO FINSUPERIOR DE GRADO DE INGENIERÍA GRADO EN INGENIERÍA MECÁNICA “Diseño y fabricación de impresora 3D Diseñobasada eny robot paralelo tipo Delta – fabricaciónRoPar3D” de impresora 3D basada en robot paralelo tipo Delta – RoPar3D [Subtítulo del documento] UNIVERSIDAD DE ALMERÍA Curso 2019/2020 DiegoAlumno/a Miguel Parra: Martínez [Fecha] Diego Miguel Parra Martínez Director/es: Manuel Ángel Aguilar Torres Fernando José Aguilar Torres Diseño y fabricación de impresora 3D basada en robot paralelo tipo Delta – RoPar3D Autor Diego Miguel Parra Martínez Director Codirector Aguilar Torres, Manuel Ángel Aguilar Torres, Fernando José El presente Trabajo de Fin de Grado de la Escuela Superior de Ingeniería de la Universidad de Almería (UAL) se distribuye con licencia Creative Commons Reconocimiento-No comercial-Compartir Igual 4.0 International CC BY-NC-SA https://creativecommons.org/licenses/by-nc-sa/4.0/ A mis padres por su apoyo incondicional durante estos años ESCUELA SUPERIOR DE INGENIERÍA Contenido Agradecimientos 7 Relación de Figuras 8 Relación de Tablas 11 Glosario 12 Abreviaturas, Siglas y Acrónimos 16 1. Interés y objetivos 17 1.1. Introducción 17 1.2. Motivación personal 18 1.3. Justificación 19 1.4. Objetivos 20 2. MARCO TEÓRICO (I): ESTADO ACTUAL DE LA IMPRESIÓN 3D FDM 21 2.1 Definición y origen. 21 2.2 Prototipado Rápido vs Fabricación Aditiva. 22 2.3 Historia y evolución. 23 2.4 Movimiento RepRap, Movimiento Maker y DIY. 26 2.5 Ventajas de la impresión 3D. 27 2.6 Impresión 3D industrial vs. Impresión 3D doméstica. 30 2.7 Tecnologías de impresión 3D. 34 Modelado por Deposición Fundida (FDM) 39 3. MARCO TEÓRICO (II): ESTADO ACTUAL ROBOT PARALELO DELTA 49 3.1 Origen y definición hitos. 49 3.2 Uso actual. 50 4. ESTRUCTURA DEL TRABAJO Y CRONOGRAMA 51 4.1. Fases del proyecto. 51 4.2 Cronograma. 53 5. MATERIALES Y MÉTODOS. 56 5.1 Materiales. 56 Diseño y fabricación de impresora 3D basada en robot paralelo tipo Delta – RoPar3D UNIVERSIDAD DE ALMERIA Herramientas informáticas. 56 Máquina 3D materiales y pruebas de impresión. 57 Otros materiales. 58 5.2 Metodología. 59 6. DISEÑO Y FABRICACIÓN. 60 6.1 Análisis técnico-mecánico. 60 6.2 Diseño en 3D utilizando SolidWorks®. 63 6.2.1 Diseño estructura. 64 6.2.2 Diseño robot prototipo RoPar3D. 69 6.3 Prototipado de la máquina usando impresión 3D. 100 6.4 Creación de la lista de materiales (BOM) y selección de componentes. 116 Componentes Mecánicos 116 Componentes eléctricos 119 BOM 128 6.5 Electrónica y programación. 131 6.6 Puesta en marcha. 135 6.7 Estudio comparativo entre tipos de impresoras. 139 TEST 1: Cubo XYZ 139 TEST 2: Benchy 141 TEST 3: Jarrón 141 TEST 4: Búho 142 COMPARATIVA DE TIEMPOS 143 7. COMPETENCIAS. 144 7.1 Competencias básicas. 144 7.2 Competencias Curriculares Transversales (CCT). 146 7.3 Competencias Específicas. 147 8. RESULTADOS Y DISCUSIÓN. 149 8.1 Diseño de las piezas en SolidWorks®. 149 Diego Miguel Parra Martínez ESCUELA SUPERIOR DE INGENIERÍA 8.2 Construcción de Ropar3D. 149 9. VIABILIDAD ECONÓMICA. 151 10. VIABILIDAD AMBIENTAL. 152 11. CONCLUSIONES. 153 11.1 Conclusiones. 153 11.2 Conclusiones personales 154 11.3 Proyección de futuro. 154 11.4 Propuestas de mejora. 155 11.4.1 Cartelas en los perfiles 155 11.4.2. Cabezal láser. 156 11.4.3. Pinza hidráulica / Pinza de vacío para implementación robot “pick and place”. 156 11.4.5 Cubierta para tapar los motores y la parte electrónica. 157 11.4.6 Doble extrusión. 157 BIBLIOGRAFIA 158 ANEXOS 161 Diseño y fabricación de impresora 3D basada en robot paralelo tipo Delta – RoPar3D UNIVERSIDAD DE ALMERIA Agradecimientos El presente proyecto fin de grado fue realizado bajo la supervisión de D. Manuel Ángel Aguilar Torres y D. Fernando José Aguilar Torres a quienes me gustaría en este apartado de la memoria del TFG, expresar mi sincero agradecimiento por aceptar mi propuesta sin dudarlo. Además, agradezco su entusiasmo, asistencia e implicación continua durante la realización de todo el proyecto. También me gustaría dar las gracias a mi familia y amigos que me han apoyado y han estado siempre ahí en todos los momentos durante mis años de estudio. Sé que, sin ellos, sin su apoyo incondicional, este proyecto no habría sido posible. Por último, destacar a las personas más cercanas y más importantes para mí, y a quienes les dedico este proyecto: mis padres y mi pareja. Sin ellos no habría disfrutado tanto cada momento de la realización de este proyecto. Al igual que en mi vida personal, a lo largo de mis años de estudio y durante la elaboración de este proyecto, han sido un pilar fundamental y por ello les estaré eternamente agradecido. A todos, gracias. Diego Miguel Parra Martínez 7 ESCUELA SUPERIOR DE INGENIERÍA Relación de Figuras Figura 1: Diagrama de la impresora de Charles Hull vs. Impresora por Estereolitografía de 2015. 23 Figura 2: Experimento fotográfico del artista François Willème. 23 Figura 3: Imagen de la primera patente de impresión 3D por Charles Hull. 24 Figura 4: Ilustración del proceso de codificación de la información en formas geométricas. 25 Figura 5: Proceso del sinterizado selectivo por láser. 36 Figura 6: Proceso de fabricación por laminado (LOM). 37 Figura 7: Proceso de impresión por SLA. 38 Figura 8: Proceso de fabricación por extrusión de material fundido (FDM). 39 Figura 9: Eje de coordenadas. 42 Figura 10: Impresora CoreXY. y Sistema de movimiento impresora CoreXY. 44 Figura 11: Tipos de impresoras de arquitectura cartesiana. 45 Figura 12: Impresora 3D cartesiana vs. Impresoras 3D delta. 46 Figura 13: Diseño impresora 3D basada en robot paralelo tipo delta. 47 Figura 14: Diagrama robot paralelo. Fuente: Patente US. Nº(4,976,582) 49 Figura 15: Robot paralelo en línea de producción. 50 Figura 16: Anycubic Kossel Plus. 57 Figura 17: AM8, cartesiana diseño propio. 57 Figura 18: Diagramas cotas RoPar3D. 62 Figura 19: Perfil aluminio estructural Motedis - 20x20 Tipo-B Ranura 6. 64 Figura 20: Representación del volumen de trabajo del robot paralelo ABB IRB360 FlexPicker. 65 Figura 21: Diseño pieza esquinera. 65 Figura 22: Diseño pieza esquinera mediante SolidWorks®. 66 Figura 23: Diseño esquinera de la torre. 66 Figura 24: Estructura prototipo RoPar3D. 67 Figura 25:Base de impresión prototipo RoPar3D. 68 Figura 26: Detalle de la estructura con el soporte del cuerpo del robot del prototipo RoPar3D 68 Figura 27: Cota radio base del cuerpo del robot del prototipo RoPar3D. 69 Figura 28: Sistema tensor del cuerpo del robot del prototipo RoPar3D. 70 Figura 29: Detalle del soporte del cuerpo del robot del prototipo RoPar3D. 70 Figura 30: Detalle del soporte del cuerpo del robot del prototipo RoPar3D. 71 Figura 31: Diseño cuerpo RoPar3D. 72 Figura 32: Comparativa real Cuerpo prototipo y Cuerpo final. 72 Figura 33: Render diseño cuerpo final del robot RoPar3D. 73 Figura 34: Resultado estudio tensiones cuerpo prototipo robot. 73 Figura 35: Resultado estudio tensiones cuerpo final robot. 74 Figura 36: Resultado estudio desplazamientos cuerpo prototipo robot. 74 Figura 37: Resultado estudio desplazamientos cuerpo final robot. 75 Figura 38: Ensamblaje real cuerpo y brazos robot con motores. 75 Figura 39: Render diseño final unión cuerpo del robot RoPar3D. 76 Figura 40: Diseño del brazo prototipo robot del prototipo RoPar3D. 77 Figura 41: Vista explosionada del sistema de engranaje del brazo prototipo robot RoPar3D. 77 Figura 42: Detalle cuerpo con brazos y motores. 78 Diseño y fabricación de impresora 3D basada en robot paralelo tipo Delta – RoPar3D 8 UNIVERSIDAD DE ALMERIA Figura 43: Detalle rueda prototipo izquierda y rueda final derecha. Fuente: Elaboración propia. 78 Figura 44: Croquis envolvente del diente en rueda dentada y perfil de correa GT2. 80 Figura 45: Render diseño rueda dentada 80 dientes para correa GT2. 80 Figura 46: Diagrama solido libre brazo. 81 Figura 47: (Cargas)Ensayo de elementos finitos del brazo prototipo robot RoPar3D. 82 Figura 48: (Tensiones- VonMises). Ensayo de elementos finitos del brazo prototipo robot RoPar3D. 83 Figura 49: (Desplazamientos – URES (mm)). Ensayo de elementos finitos del brazo prototipo robot RoPar3D. 83 Figura 50: Segunda Iteración del diseño del prototipo del brazo de robot RoPar3D. 84 Figura 51: (Tensiones-VonMises). Ensayo de elementos finitos segunda iteración del brazo prototipo robot RoPar3D. 84 Figura 52: (Desplazamientos – URES (mm)). Ensayo de elementos finitos segunda iteración del brazo prototipo robot RoPar3D. 85 Figura 53: Ensamblaje RoPar3D prototipo SolidWorks®. 86 Figura 54: Tercera Iteración del diseño del prototipo del brazo de robot RoPar3D tras ensayo topológico. 86 Figura 55: Tercera Iteración del prototipo brazo de robot RoPar3D. 87 Figura 56: (Tensiones-VonMises). Ensayo de elementos finitos tercera iteración del brazo robot RoPar3D. 88 Figura 57: (Desplazamientos – URES (mm)). Ensayo de elementos finitos tercera iteración brazo robot RoPar3D. 88 Figura 58: Vista explosionada ensamblaje brazo RoPar3D. 89 Figura 59: Ensamblaje real del brazo. Fuente: Elaboración propia. 89 Figura 60: Logo en brazo RoPar3D . Fuente: Elaboración propia. 90 Figura 61: Ensamblaje conjunto efector SolidWorks®. Fuente: Elaboración propia. 90 Figura 62: Modelo 3D efector con parámetros característicos . 91 Figura 63: Detalle ensamblaje final de carrera prototipo SolidWorks®. 91 Figura 64: Detalle ensamblaje final de carrera SolidWorks®. 92 Figura 65: Diseño soporte electrónica SolidWorks®. 93 Figura 66: Diseño soporte placa SBC - Orange Pi (mini pc) SolidWorks®. 93 Figura 67: Diseño soporte mosfet externo cama caliente SolidWorks®. 93 Figura 68: Diseño soporte conector interruptor de alimentación SolidWorks®. 94 Figura 69: Ensamblaje plataforma de impresion SolidWorks®. 94 Figura 70: Soporte portabobinas SolidWorks®. Fuente: Elaboración propia. 95 Figura 71: Refuerzos de esquineras SolidWorks®. Fuente: Elaboración propia. 96 Figura 72: Escuadras SolidWorks®. Fuente: Elaboración propia. 97 Figura 73: RoPar3D primer prototipo. 97 Figura 74: Vista 1 Ensamblaje RoPar3D final en SolidWorks®.
Recommended publications
  • Opas 3D-Tulostuksen Yleisimpiin Tekniikoihin Ja Niiden Haasteiden Ratkaisemiseen
    JOONAS KORTELAINEN Opas 3D-tulostuksen yleisimpiin tekniikoihin ja niiden haasteiden ratkaisemiseen AUTOMAATIOTEKNOLOGIAN KOULUTUSOHJELMA 2019 Tekijä(t) Julkaisun laji Päivämäärä Kortelainen, Joonas Opinnäytetyö, ylempi AMK Joulukuu 2019 Sivumäärä Julkaisun kieli 91 Suomi Julkaisun nimi Opas 3D-tulostuksen yleisimpiin tekniikoihin ja niiden haasteiden ratkaisemiseen Tutkinto-ohjelma Automaatioteknologian koulutusohjelma Tä ssä opinnäytetyössä tuotettiin opas 3D-tulostuksen yleisimpiin ongelmatilanteisiin ja niiden ratkaisemiseen. Käsiteltäviksi 3D-tulostusteknologioiksi valittiin FDM- ja MSLA-teknologiat niiden yleisyyden vuoksi. Tämä tutkimus toteutettiin konkreettisin menetelmin, kokeilemalla ja tuottamalla on- gelmatapauksia tarkoituksella, sekä ratkaisemalla niitä saatavilla olevin keinoin sekä kokemuksen tuoman ratkaisukeskeisen toimintatavan avulla. Tuloksena on tämä opinnäytetyön muotoon kirjoitettu opas valittujen 3D-tulostustek- niikoiden yleisimpiin ongelmiin ja niiden ratkaisuihin. Ratkaisut näihin ongelmiin on tuotu esille ytimekkäästi sekä konkreettisin askelein. Lopuksi oli hyvä huomata, kuinka paljon ongelmia 3D-tulostamisessa näillä valituilla teknologioilla oikeastaan on. Käsitellyt ongelmat ovat yleisimpiä näillä tulostusteknii- koilla esille tulevia ongelmia, mutta muitakin ongelmia saattaa esiintyä. Asiasanat 3D-tulostus, ongelmanratkaisu, 3D-tulostimet Author(s) Type of Publication Date Kortelainen, Joonas Master’s thesis December 2019 ThesisNumberAMK of pages Language of publication: 91 Finnish Title of publication
    [Show full text]
  • 7 Families of Additive Manufacturing According to ASTM F2792 Standards
    7 Families of Additive Manufacturing According to ASTM F2792 Standards VAT Powder Bed Binder Material Photopolymerization Fusion (PBF) Jetting Jetting Alternative Names: Alternative Names: Alternative Names: Alternative Names: SLA™- Stereolithography Apparatus SLS™- Selective Laser Sintering; DMLS™- 3DP™- 3D Printing Polyjet™ DLP™- Digital Light Processing Direct Metal Laser Sintering; SLM™- Selective ExOne SCP™- Smooth Curvatures Printing 3SP™- Scan, Spin, and Selectively Photocure Laser Melting: EBM™- Electron Beam Melting; Voxeljet MJM - Multi-Jet Modeling CLIP™ – Continuous Liquid Interface Production SHS™- Selective Heat Sintering; Projet™ MJF™- Multi-Jet Fusion Description: Description: Description: Description: A vat of liquid photopolymer resin is cured Powdered materials is selectively consolidated Liquid bonding agents are selectively applied Droplets of material are deposited layer by layer through selective exposure to light (via a laser by melting it together using a heat source onto thin layers of powdered material to build up to make parts. Common varieties include jetting or projector) which then initiates polymerization such as a laser or electron beam. The powder parts layer by layer. The binders include organic a photcurable resin and curing it with UV light, and converts the exposed areas to a solid part. surrounding the consolidated part acts and inorganic materials. Metal or ceramic as well as jetting thermally molten materials that assupport material for overhanging features. powdered parts are typically fired in
    [Show full text]
  • The Processing of Binder Jet Multi-Material 3D Printing to Improve Upon Material Properties
    Clemson University TigerPrints All Theses Theses December 2019 The Processing of Binder Jet Multi-Material 3D Printing to Improve upon Material Properties Sara Mohammed Damas Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Damas, Sara Mohammed, "The Processing of Binder Jet Multi-Material 3D Printing to Improve upon Material Properties" (2019). All Theses. 3224. https://tigerprints.clemson.edu/all_theses/3224 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE PROCESSING OF BINDER JET MULTI-MATERIAL 3D PRINTING TO IMPROVE UPON MATERIAL PROPERTIES A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Mechanical Engineering by Sara M. Damas December 2019 Accepted by: Dr. Cameron J. Turner, Committee Chair Dr. Gang Li Dr. Suyi Li ABSTRACT Additive manufacturing methods are becoming more prominent in the world of design and manufacturing due to their reduction of material waste versus traditional machining methods such as milling. As their demand rises, a need to improve their methodologies and produce higher quality products arises. The technology to 3D print has been in around since the 1970’s, and thanks to Scott Crump as of 1989, it is possible to 3D print in layers to obtain a solid component. In today’s present time, we now can multi- material 3D print. However, even though we have the technology for multi-material 3D printing, standards in this field are severely lacking.
    [Show full text]
  • Numerical Modeling and Simulation of Selective Laser Sintering in Polymer Powder Bed Xin Liu
    Numerical modeling and simulation of selective laser sintering in polymer powder bed Xin Liu To cite this version: Xin Liu. Numerical modeling and simulation of selective laser sintering in polymer powder bed. Thermics [physics.class-ph]. Université de Lyon, 2017. English. NNT : 2017LYSEI012. tel-01920677 HAL Id: tel-01920677 https://tel.archives-ouvertes.fr/tel-01920677 Submitted on 13 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : 2017LYSEI012 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée au sein de (Institut National des Sciences Appliquées de Lyon) Ecole Doctorale N° ED162 (MEGA de Lyon) Spécialité/ discipline de doctorat : Thermique et Energétique Soutenue à huis clos le 28/02/2017, par : Xin LIU Numerical Modeling and Simulation of Selective Laser Sintering in Polymer Powder bed Devant le jury composé de : BARRES Claire Maître de conférences HDR INSA-Lyon Examinateur BERGHEAU Jean-Michel Professeur des Universités ENISE-St.Etienn Examinateur REGNIER Gilles Professeur des Universités ENSAM-Paris Rapporteur SCHMIDT Fabrice Professeur des Universités MINES-Albi Rapporteur BOUTAOUS M'hamed Maître de conférences HDR INSA-Lyon Directeur de thèse XIN Shihe Professeur des Universités INSA-Lyon Co-directeur de thèse 1 Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI012/these.pdf © [X.
    [Show full text]
  • Direct and Indirect Laser Sintering of Metals
    Direct and Indirect Laser Sintering of Metals By Montasser Marasy A. Dewidar A Thesis submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Mechanical Engineering Leeds UK May 2002 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. Abstract 11 ABSTRACT Manufacturing functional prototypes and tools using conventional methods usually is a time consuming procedure with multiple steps. The pressure to get products to market faster has resulted in the creation of several Rapid Prototyping (RP) techniques. However, potentially one of the most important areas of Rapid Manufacturing (RM) technology lies in the field of Rapid Tooling (RT). Layer manufacture technologies are gaining increasing attention in the manufacturing sector for the production of polymer mould tooling. Layer manufacture techniques can be used in this potential manufacturing area to produce tooling either indirectly or directly, and powder metal based layer manufacture systems are considered an effective way of producing rapid tooling. Selective Laser Sintering (SLS) is one of available layer manufacture technologies. SLS is a sintering process in which shaped parts are built up layer by layer from bottom to top of powder material. A laser beam scans the powder layer, filling in the outline of each layers CAD-image, and heats the selected powder to fuse it. This work reports the results of an experimental study examining the potential of layer manufacturing processes to deliver production metal tooling for manufacture of polymer components.
    [Show full text]
  • Additive Manufacturing Is Changing the Way Manufacturing
    Additive Manufacturing is changing the way manufacturing gets done, but what is it? How does it work? What are the benefits and limitations? What industries are benefiting the most? ITAMCO answers these questions and examines how 3D printing compares to traditional manufacturing. GUIDE TO ADDITIVE MANUFACTURING TABLE OF CONTENTS WHAT IS ADDITIVE MANUFACTURING?. 3 ADDITIVE MANUFACTURING PROCESSES . .4 MATERIAL TYPES. 9 ADDITIVE MANUFACTURING PROCESSES INFOGRAPHIC . 10 BENEFITS . 12 LIMITATIONS . .12 APPLICATIONS. .14 ADDITIVE MANUFACTURING VERSUS TRADITIONAL MANUFACTURING . 15 2 WHAT IS ADDITIVE MANUFACTURING? Additive manufacturing (AM) or 3D printing is layer-by-layer GROWING NEED FOR AM fabrication of three-dimensional (3D) objects. AM now meets a broad range of needs throughout many industries including: Traditional manufacturing is a subtractive process in which material is removed to produce the final shape. Examples include milling, cutting, • Visualization tool or parts in design turning, drilling, boring, etc. AM offers many advantages in the production • Means to create customized products of parts, but the key benefits are unparalleled design freedom, less hard • Industrial tooling tooling and assembly, and the ability to manufacture single or multiple • Small runs of production parts components from a wide range of materials. • Full-strength, rapid prototyping Surprisingly this seemingly modern technology has been around for nearly • Test complex geometries 40 years. In 1981 automatic methods for producing 3D models were detailed by Hideo Kodama. His published paper described techniques for forming 3D plastic models using ultraviolet (UV) cured layers of photopolymer material. In 1984 Chuck Hull filed a patent coining the term stereolithography, a technique utilizing UV light lasers and a bed or vat or photopolymer resin to produce 3D objects.
    [Show full text]
  • Additive Manufacturing: Analysis of the Economic Context and Evaluation of the Indoor Air Quality, with a Total Quality Management Approach
    DIPARTIMENTO DI ECONOMIA, SOCIETÀ, POLITICA CORSO DI DOTTORATO DI RICERCA IN Economia, Società, Diritto CURRICULUM Economia e Management CICLO XXXI Additive Manufacturing: analysis of the economic context and evaluation of the indoor air quality, with a Total Quality Management approach SETTORE SCIENTIFICO DISCIPLINARE: SECS-P/13-SCIENZE MERCEOLOGICHE RELATORE DOTTORANDA Chiar.ma Prof.ssa Federica Murmura Dott.ssa Laura Bravi CO TUTOR Ing. Francesco Balducci Anno Accademico 2017/2018 Summary INTRODUCTION CHAPTER 1: ADDITIVE MANUFACTURING: IS IT THE FUTURE? ABSTRACT .......................................................................................................................... 10 1.1 Additive and Subtractive Manufacturing ...................................................................... 10 1.2 The road towards Additive Manufacturing ................................................................... 13 1.2.1 Prehistory of AM .................................................................................................... 14 1.2.2 First attempts to modern AM ................................................................................. 16 1.2.3 The RepRap project ................................................................................................ 19 1.2.4 The Fab@Home project ......................................................................................... 23 1.3 AM today: 3D printing in the digitalization of manufacturing ..................................... 24 1.3.1 The main Additive Manufacturing
    [Show full text]
  • High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology
    materials Review A New Approach to Micromachining: High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology Paweł Fiedor 1 and Joanna Ortyl 1,2,* 1 Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; pawel.fi[email protected] 2 Photo HiTech Ltd., Bobrzy´nskiego14, 30-348 Cracow, Poland * Correspondence: [email protected] Received: 9 June 2020; Accepted: 29 June 2020; Published: 1 July 2020 Abstract: The following article introduces technologies that build three dimensional (3D) objects by adding layer-upon-layer of material, also called additive manufacturing technologies. Furthermore, most important features supporting the conscious choice of 3D printing methods for applications in micro and nanomanufacturing are covered. The micromanufacturing method covers photopolymerization-based methods such as stereolithography (SLA), digital light processing (DLP), the liquid crystal display–DLP coupled method, two-photon polymerization (TPP), and inkjet-based methods. Functional photocurable materials, with magnetic, conductive, or specific optical applications in the 3D printing processes are also reviewed. Keywords: 3D printing; high-resolution; additive manufacturing; photopolymerization; industry 4.0; stereolithography; two-photon polymerization 1. Introduction Three dimensional (3D) printing is currently an extremely important branch of Research and Development (R&D) departments. This is because of its rapid prototyping, swift elimination of design errors, and improvements of the product at the prototyping stage. This approach significantly accelerates the implementation of new solutions without incurring significant production costs and eliminating in-production testing of underdeveloped models. Thanks to 3D printing techniques, making a prototype with complex geometry has become possible in a short time with unprecedented precision [1].
    [Show full text]
  • History of Additive Manufacturing
    Wohlers Report 2014 History of Additive Manufacturing History of additive This 34‐page document is a part of Wohlers Report 2014 and was created for its readers. The document chronicles the history of additive manufacturing manufacturing (AM) and 3D printing, beginning with the initial by Terry Wohlers and Tim Gornet commercialization of stereolithography in 1987 to May 2013. Developments from May 2013 through April 2014 are available in the complete 276‐page version of the report. An analysis of AM, from the earliest inventions in the 1960s to the 1990s, is included in the final several pages of this document. Additive manufacturing first emerged in 1987 with stereolithography (SL) from 3D Systems, a process that solidifies thin layers of ultraviolet (UV) light‐sensitive liquid polymer using a laser. The SLA‐1, the first commercially available AM system in the world, was the precursor of the once popular SLA 250 machine. (SLA stands for StereoLithography Apparatus.) The Viper SLA product from 3D Systems replaced the SLA 250 many years ago. In 1988, 3D Systems and Ciba‐Geigy partnered in SL materials development and commercialized the first‐generation acrylate resins. DuPont’s Somos stereolithography machine and materials were developed the same year. Loctite also entered the SL resin business in the late 1980s, but remained in the industry only until 1993. After 3D Systems commercialized SL in the U.S., Japan’s NTT Data CMET and Sony/D‐MEC commercialized versions of stereolithography in 1988 and 1989, respectively. NTT Data CMET (now a part of Teijin Seiki, a subsidiary of Nabtesco) called its system Solid Object Ultraviolet Plotter (SOUP), while Sony/D‐MEC (now D‐MEC) called its product Solid Creation System (SCS).
    [Show full text]
  • Manufatura Aditiva Na Transformação Digital - Uma Estratégia a Cumprir
    Manufatura Aditiva na transformação digital - uma estratégia a cumprir Martinho Oliveira EMaRT Group – Emerging: Materials, Research, Technology CICECO – Aveiro’s Institute of Materials Diretor - Escola Superior Aveiro-Norte Universidade de Aveiro Webinar "Digital Take off | Manufatura aditiva na Transformação Digital“ 28 de Maio de 2020 By Microsoft Teams SCHOOL OF DESIGN, MANAGEMENT AND PRODUCTION TECHNOLOGIES NORTHERN AVEIRO Technology | Product development | Materials Oliveira de Azeméis Industrial activity: Plastic and mould industry Car components Metalworking Footwear Cork industry Food products PORTUGAL2 AM landscape (hardware, software, materials, post-processing systems Source: AMFG, 2019 number of polymer and metal AM systems manufacturers Polymer AM manufacturers Metal AM manufacturers Source: AMFG, 2019 Sales evolution of materials and money spent in AM production Sales of materials for polymer powder bed fusion. Money spent annually on part production using AM. Figures are in millions of dollars. Figures are in millions of dollars. Source: Wohlers Report 2019. Source: Wohlers Report 2020 AM: opportunities, key industries and limitations AM is being recognized across different industries Opportunities for AM: decline of some traditional manufacturing sectors environment sustainable products an production methods innovative products and production lines/flux customization global economy centered in the individual 3 key industries: Automotive, Aerospace, Medical Automotive: new products to market quickly and in a cost effective
    [Show full text]
  • Additive Manufacturing – Integration of Functions in EMI-Shields
    1 Royal Institute of Technology Master Thesis Additive Manufacturing – Integration of Functions in EMI-shields Author: Author: André JOHANSSON KUCERA Alexandra LIDHOLM Course: Course: MG212X, Degree Project in Production SE202X, Degree Project Engineering and Management in Solid Mechanics Supervisor KTH: Supervisor KTH: Amir RASHID, Bo ALFREDSSON, professor in Industrial professor in Solid Production Mechanics Examiner KTH: Examiner KTH: Amir RASHID Bo ALFREDSSON Supervisor Saab AB: Mussie GEBRETNSAE June 2019 i Abstract Additive manufacturing enables a simplified production process of components with complex geometry based on computer aided three-dimensional design. The technology of creating components layer-by-layer allows an efficient process with the ability to design parts with specific properties which can be difficult to obtain when conventional manufacturing methods are used. In this master thesis, an EMI shield was analyzed where the choice of manufacturing process was of interest. Producing the shield with additive manufacturing, instead of conventional methods, and how to integrate different materials in the process were investigated. The possibility to produce the shield and its components in the same process would result in a shorter production process with less process steps and would be an effective approach for future applications. In the current EMI shield, each component has a specific function with high demands in terms of temperature resistance, weight and EMC. These requirements must be taken into account when choosing manufacturing method and suitable materials in order to obtain desired characteristics of the shield. In the analysis of creating an electromagnetic interference (EMI) shield with multi-materials, a comprehensive literature study was conducted where different AM methods and available materials were investigated.
    [Show full text]
  • Opportunities and Scope of Desktop 3D Printers in India
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-8 Issue-6, August 2019 Opportunities and Scope of Desktop 3D Printers in India Vishwa Poswal, Ram Dayal, Ravi Kant Gupta in many fields of engineering and industry such as aircraft, Abstract. AM is an advanced manufacturing technology used dental restorations, medical implants, automotive products, for fabricating parts in layers, from a CAD file. Various methods construction and prototyping [3]. With the reduced cost and and materials have been developed to cater to its expanding size of 3D printers in the recent-past, the category of personal applications. AM has seen tremendous growth in the recent past. While growth in the technical aspect is essential for the or desktop 3D printers was introduced. Personal or low-cost development of new techniques, growth in the economic aspect desktop 3D printers are those AM machines which have a unit provides the need of innovation. With its ever-increasing cost of less than $5,000 [4]. Personal 3D printers are chiefly industrial and personal applications, the 3D printing technology based on FDM, as complex geometrical parts can be produced has experienced advancements in both the aspects. Yet its full safely in an office-friendly environment using thermoplastics potential has not been harnessed in developing countries. In this [5]. Hence, the range of its applications were expanded to work, it is proposed to optimize the existing desktop 3D printers for developing countries. A market survey was conducted to homes, schools, offices, libraries and laboratories. recognise the lagging areas and the design modifications were When compared to industrial 3D printers, the market made accordingly to produce a compact, efficient and segment of personal 3D printers is recent, yet, it has achieved cost-effective personal 3D printer for the respective needs and an average annual growth rate of about 170% from 2008 to applications in developing countries.
    [Show full text]