6. Upper and Lower Extremity Procedures

Total Page:16

File Type:pdf, Size:1020Kb

6. Upper and Lower Extremity Procedures BWH 2015 GENERAL SURGERY RESIDENCY PROCEDURAL ANATOMY COURSE 6. UPPER AND LOWER EXTREMITY PROCEDURES Contents LAB OBJECTIVES ........................................................................................................................................................... 2 Knowledge objectives. ............................................................................................................................................. 2 Preparation for lab ................................................................................................................................................... 2 6.1 ORGANIZATION OF THE LIMBS .............................................................................................................................. 3 Upper limb superficial layers ................................................................................................................................... 3 Upper limb investing deep fascia and muscle compartments ................................................................................ 3 Lower limb superficial layers ................................................................................................................................... 5 Lower limb investing deep fascia and muscle compartments ................................................................................ 5 6.2 ORGANIZATION OF MAJOR ARTERIES AND VENAE COMITANTES ........................................................................ 7 Upper limb arteries and venae comitantes ................................................................................................................. 7 Lower limb arteries and venae comitantes ............................................................................................................. 9 LOWER EXTREMITY PROCEDURES ............................................................................................................................. 11 1 Lower extremity fasciotomy: Double‐incision technique .................................................................................. 11 2 Thigh fasciotomy ................................................................................................................................................. 13 3 Foot fasciotomy: 5 compartments – medial, lateral, superficial, calcaneal, and interosseus ......................... 13 4 Forearm fasciotomy: Volar, lateral and extensor compartments‐ ................................................................... 14 5a Popliteal artery exposure: Posterior approach ................................................................................................ 15 5b Popliteal artery exposure: Medial approach for proximal popliteal artery: .................................................... 15 6 Open femoral artery access ................................................................................................................................ 16 6a Femoral endarterectomy/patch angioplasty ................................................................................................... 17 7 Great saphenous vein harvest ............................................................................................................................ 20 Adapted from Clinical Anatomy: The Logical Approach. © T. Van Houten, 1997. All rights reserved. BWH 2015 GENERAL SURGERY RESIDENCY PROCEDURAL ANATOMY COURSE 6. UPPER AND LOWER EXTREMITY PROCEDURES LAB OBJECTIVES Skills objectives 1. Lower extremity fasciotomy: Double‐incision technique 2. Thigh fasciotomy 3. Foot fasciotomy: 5 compartments – medial, lateral, superficial, calcaneal, and interosseus 4. Forearm fasciotomy: Volar, lateral and extensor compartments 5. Popliteal artery exposure: Posterior approach 6. Popliteal artery exposure: Medial approach for proximal popliteal artery: 7. Open femoral artery access 8. Femoral endarterectomy/patch angioplasty 9. Great saphenous vein harvest Knowledge objectives. 1. Describe the fascial compartments and septa of the arm. Of the forearm. List four major neurovascular structures vulnerable at the wrist during a volar forearm compartment release or carpal tunnel release. 2. Describe the fascial compartments and septa of the thigh. Of the crus. Explain the position of the fibular (peroneal) nerve over the proximal fibula. 3. In the adult upper limb, the flexor surfaces of all upper limb joints face anteriorly. In the adult lower limb, the flexor surface of the hip and the dorsiflexor surface of the ankle joint face anteriorly whereas the flexor surfaces of the knee and digits face posteriorly. In general, blood vessels tend to run on the flexor surfaces of joints and to avoid the extensor surfaces. Applying this basic principle, a. Describe the pathways of the cephalic vein and basilic vein in the upper limb from the dorsal venous arch of the hand to their entries into deeper veins proximal to the shoulder joint and elbow joint respectively. b. Describe the pathways of the great saphenous vein and small saphenous vein in the lower limb from the dorsal venous arch of the foot to their entries into deeper veins proximal to the hip joint and knee joint respectively. c. Explain how the (superficial) femoral artery travels from the anterior compartment of the thigh to the posterior surface of the knee joint. Explain how the anterior tibial artery travels from the posterior surface of the knee joint to the anterior compartment of the crus. Preparation for lab Read this guide. Watch videos Adapted from Clinical Anatomy: The Logical Approach. © T. Van Houten, 1997. All rights reserved. BWH 2015 GENERAL SURGERY RESIDENCY PROCEDURAL ANATOMY COURSE 6. UPPER AND LOWER EXTREMITY PROCEDURES 6.1 ORGANIZATION OF THE LIMBS Very generally, the organization of the limbs consists of a superficial layer (skin and subcutaneous fat) and musculoskeletal compartments (bones, joints, and muscles surrounded by investing deep fascia and separated into functional compartments by fascial septa (Figures 6‐1 and 6‐2). The subcutaneous fat (superficial fascia) of the limbs consists of fatty loose connective tissue deep to, and functionally supporting, the skin. The subcutaneous fat of the limbs often contains a distinct membranous layer similar to the Scarpa fascia over the inferior abdomen. Structures found within the subcutaneous fat of the limbs include superficial veins, lymphatic vessels and nodes accompanying superficial veins, and cutaneous nerves and vessels supplying the skin but arising from structures within the deep fascial compartments. The thick investing deep fascia of the limbs is a continuous layer surrounding the muscles, bones, and joints and muscles of the limbs. The deep fascia of the limbs forms distinct fascial compartments by sending fascial septa inward to fuse with the periosteum of the underlying bones and with the fibrous capsules of the joints. Structures within each deep fascial compartment include muscles sharing common functions and the major blood supply and motor innervation of those muscles. Cutaneous nerves and perforating blood vessels supplying the overlying skin leave the deeper neurovascular structures within the fascial compartments and pierce the deep investing fascia surrounding the compartments to enter the subcutaneous fat. Upper limb superficial layers The superficial veins of the upper limb begin at the dorsal venous arch of the hand. The cephalic vein leaves the radial side of the dorsal arch, crosses to the anterior side of the forearm, contributes to the medial cubital vein, and enters the axillary vein proximal to the shoulder joint (Figure 6‐1). The basilic vein leaves the ulnar side of the dorsal venous arch, contributes to the medial cubital vein, and enters the brachial vein proximal to the elbow joint. Upper limb investing deep fascia and muscle compartments The brachial fascia is the deep investing fascia of the arm (brachium). The antebrachial fascia is the deep investing fascia of the forearm (antebrachium). The brachial and antebrachial fascia are continuous at the elbow joint where they fuse with the fibrous joint capsule. At the wrist, the antebrachial fascia thickens to form the extensor and flexor retinacula. Brachial compartments. Lateral and medial intermuscular fascial septa divide the arm muscles into anterior and posterior compartments (Figure 6‐1). Muscles in the anterior brachial compartment flex the shoulder and/or elbow joint and receive their neurovascular supply from the brachial artery and musculocutaneous nerve. The triceps muscle in the posterior brachial compartment extends the elbow joint and receives its neurovascular supply from the radial nerve and deep brachial artery. Antebrachial compartments. The interosseous membrane and the lateral and medial intermuscular fascial septa divide the forearm muscles into anterior and posterior compartments (Figure 6‐1). Thinner transverse fascial septa divide the anterior and posterior compartment muscles into superficial and deep groups. Muscles in the anterior antebrachial compartment flex the wrist and digits and receive their neurovascular supply from the median and ulnar nerves and the radial and ulnar arteries. Muscles in the posterior antebrachial compartment extend the wrist and digits and receive their neurovascular supply from the radial nerve and posterior interosseous branch of the ulnar artery. The mobile wad (of Henry) is a subdivision of the posterior compartment consisting of the brachioradialis, extensor carpi radialis longus, and extensor
Recommended publications
  • Anatomy of the Forearm Musculoskeletal Block - Lecture 9
    Anatomy of the forearm Musculoskeletal Block - Lecture 9 Objective: ✓ List the names of the Flexors and Extensor Group of Forearm (superficial & deep muscles). ✓ Identify the common flexor origin of flexor muscles and their innervation & movements. ✓ Identify supination & pronation and list the muscles produced these 2 movements. ✓ Describe the effect of injury of the muscle or its origin ✓ Identify the common extensor origin of extensor muscles and their innervation & movements. Color index: Important In male’s slides only In female’s slides only Extra information, explanation Editing file Contact us: [email protected] Forearm 1- The forearm extends from the elbow to wrist. 2- It posses two bones radius laterally and ulna medially. 3- The two bones are connected to each other by interosseous membrane. 4- This membrane allows movement of pronation and supination while the two bones are connected together. 5- also it gives origin to the deep muscles. Fascial compartment of the forearm 1- The forearm is enclosed in a sheath of deep fascia, which is attached to the posterior border of ulna (it encircle the forearm completely (Without touching the radius) and return again to the posterior border of the ulna) 2- This fascial sheath together with the interosseous membrane and fibrous intermuscular septa divides the forearm into (anterior and posterior) compartments each having its own muscles, nerves and blood supply. (The radius and ulna are connected by 3 structures: the interosseous membrane, superior radioulnar joint and inferior radioulnar joint). Anterior compartment - FLEXOR GROUP 1- 8 muscles.. 2- They act on the elbow and wrist joints and the fingers.
    [Show full text]
  • Methodical Complex on Gross Anatomy for Ii Course
    MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF UZBEKISTAN BUKHARA STATE MEDICAL INSTITUTE NAMED AFTER ABU ALI IBN SINO DEPARTMENT OF ANATOMY "APPROVED" by Vice-Rector for Academic and educational work, Associate prof. G.J.Jarilkasinova ________________________________ "_____" ________________ 2020 Area of knowledge: 500000 - Health and social care Education field: 510000 - Healthcare Educational direction: 5510100 - Medical business 5111000 - Professional education (5510100 - Medicine business) 5510200 - Pediatric Medicine 5510300 - Medico-prophylactic business 5510400 – Dentistry (by directions) 5510900 – Medico-biological business EDUCATIONAL - METHODICAL COMPLEX ON GROSS ANATOMY FOR II COURSE Bukhara 2020 The scientific program was approved by the Resolution of the Coordination Council No. ___ of August ___, 2020 on the activities of educational and methodological associations in the areas of higher and secondary special and vocational education. The teaching and methodical complex was developed by order of the Ministry of Higher and Secondary Special Education of the Republic of Uzbekistan dated March 1, 2017 No. 107. Compilers: Radjabov A.B. - Head of the Department of Anatomy, Associate Professor Khasanova D.A. - Assistant of the Department of Anatomy, PhD Bobomurodov N.L. - Associate Professor of the Department of Anatomy Reviewers: Davronov R.D. - Head of the Department Histology and Medical biology, Associate Professor Djuraeva G.B. - Head of the Department of the Department of Pathological Anatomy and Judicial Medicine, Associate Professor The working educational program for anatomy is compiled on the basis of working educational curriculum and educational program for the areas of 5510100 - Medical business. This is discussed and approved at the department Protocol № ______ of "____" _______________2020 Head of the chair, associate professor: Radjabov A.B.
    [Show full text]
  • Ultrasonograpic Assessment of Relationship Between the Palmaris Longus Tendon and the Flexor Retinacular Ligament and the Palmar Aponeurosis of the Hand
    Original Article Ultrasonograpic Assessment of Relationship Between the Palmaris Longus Tendon and the Flexor Retinacular Ligament and the Palmar Aponeurosis of the Hand Kadir Ertem1, Ahmet Sığırcı2, Salih Karaca1, Aykut Sığırcı3, Yunus Karakoç4, Saim Yoloğlu5 İnonu University, Faculty of Medicine, ABSTRACT Departments of Orthopedics and Trauma- tology1, Radioloy2, Physiology4 and Biosta- Aim: This study aimed to evaluate the presence of the Palmaris Longus tistics5, Malatya, Turkey Tendon (PLT) and the relationship between the Flexor Retinacular Ligament (FRL) and the Palmar Aponeurosis (PA) of the hand. 319 Mayıs University, Faculty of Medicine, Departments of Orthopaedics and Trauma- Method: 62 voluntary subjects (31 female, 31 male students and per- tology, Samsun, Turkey sonnel from the Inonu University, at the average age 28.38 ± 6.86 years ranging from 19 to 48 years) took part in this study using ultrasound. Eur J Gen Med 2010;7(2):161-166 Received: 16.05.2009 Result: Significant differences were found in the PA p-m-d diameters of subjects between with and without PLT bilaterally, on the right Accepted: 06.07.2009 and the left hand (p<0.05), whereas there was no meaningful differ- ence considering FRL diameters (p>0.05). Furthermore, this ultraso- nographic assessment revealed the continuity of collagen bunches of the PL tendon up to FRL, but not PA. Conclusion: Although not demonstrated by ultrasonography here, the increased thickness of the PA in subjects with a PLT supports the find- ings in the literature in which the structural
    [Show full text]
  • Stretching and Positioning Regime for Upper Limb
    Information for patients and visitors Stretching and Positioning Regime for Upper Limb Physiotherapy Department This leaflet has been designed to remind you of the exercises you Community & Therapy Services have been taught, the correct techniques and who to contact with any queries. For more information about our Trust and the services we provide please visit our website: www.nlg.nhs.uk Information for patients and visitors Muscle Tone Muscle tone is an unconscious low level contraction of your muscles while they are at rest. The purpose of this is to keep your muscles primed and ready to generate movement. Several neurological causes may change a person’s muscle tone to increase or decrease resulting in a lack of movement. Over time, a lack of movement can cause stiffness, pain, and spasticity. In severe cases this may also lead to contractures. Spasticity Spasticity can be defined as a tightening or stiffness of the muscle due to increased muscle tone. It can interfere with normal functioning. It can also greatly increase fatigue. However, exercise, properly done, is vital in managing spasticity. The following tips may prove helpful: • Avoid positions that make the spasticity worse • Daily stretching of muscles to their full length will help to manage the tightness of spasticity, and allow for optimal movement • Moving a tight muscle to a new position may result in an increase in spasticity. If this happens, allow a few minutes for the muscles to relax • When exercising, try to keep head straight • Sudden changes in spasticity may
    [Show full text]
  • Bone Limb Upper
    Shoulder Pectoral girdle (shoulder girdle) Scapula Acromioclavicular joint proximal end of Humerus Clavicle Sternoclavicular joint Bone: Upper limb - 1 Scapula Coracoid proc. 3 angles Superior Inferior Lateral 3 borders Lateral angle Medial Lateral Superior 2 surfaces 3 processes Posterior view: Acromion Right Scapula Spine Coracoid Bone: Upper limb - 2 Scapula 2 surfaces: Costal (Anterior), Posterior Posterior view: Costal (Anterior) view: Right Scapula Right Scapula Bone: Upper limb - 3 Scapula Glenoid cavity: Glenohumeral joint Lateral view: Infraglenoid tubercle Right Scapula Supraglenoid tubercle posterior anterior Bone: Upper limb - 4 Scapula Supraglenoid tubercle: long head of biceps Anterior view: brachii Right Scapula Bone: Upper limb - 5 Scapula Infraglenoid tubercle: long head of triceps brachii Anterior view: Right Scapula (with biceps brachii removed) Bone: Upper limb - 6 Posterior surface of Scapula, Right Acromion; Spine; Spinoglenoid notch Suprspinatous fossa, Infraspinatous fossa Bone: Upper limb - 7 Costal (Anterior) surface of Scapula, Right Subscapular fossa: Shallow concave surface for subscapularis Bone: Upper limb - 8 Superior border Coracoid process Suprascapular notch Suprascapular nerve Posterior view: Right Scapula Bone: Upper limb - 9 Acromial Clavicle end Sternal end S-shaped Acromial end: smaller, oval facet Sternal end: larger,quadrangular facet, with manubrium, 1st rib Conoid tubercle Trapezoid line Right Clavicle Bone: Upper limb - 10 Clavicle Conoid tubercle: inferior
    [Show full text]
  • Design of a Working Model of an Upper Limb Prosthesis: Wrist Mechanism
    DESIGN OF A WORKING MODEL OF AN UPPER LIMB PROSTHESIS: WRIST MECHANISM BY SAHIL VIKAS DANGE A thesis submitted to the Graduate School|New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Mechanical and Aerospace Engineering Written under the direction of Professor William Craelius and Professor Noshir A. Langrana and approved by New Brunswick, New Jersey October, 2017 ABSTRACT OF THE THESIS Design of a working model of an upper limb prosthesis: Wrist Mechanism by Sahil Vikas Dange Thesis Directors: Professor William Craelius and Professor Noshir A. Langrana This thesis demonstrates a new design for an upper limb prosthetic wrist that gives 3 independent degrees of freedom (DOFs) through individual mechanisms. A human wrist has 3 degrees of freedom i.e. Flexion-Extension, Radial- Ulnar deviation and Pronation-Supination. The upper limb prostheses that are currently available in the market generally provide 1 (usually Pronation- Supination) or at most 2 degrees of freedom, which is not sufficient for daily life. For this thesis, a new wrist having all the 3 DOFs was designed in the SolidWorks software, a prototype was 3D printed and a basic analysis of the mechanical properties of the model through SolidWorks simulation was carried out. The prototype mechanisms were then connected to servo motors, with potentiometers as their inputs, that were programmed through an arduino and were tested to see if they work as expected. Faithful recreation of the wrist motions was achieved and the range of motion (ROM) of this prosthesis was similar to the ROM of an actual human wrist.
    [Show full text]
  • Human Functional Anatomy 213 Upper & Lower Limbs Compared
    Human Functional Anatomy 213 week 6 1 Human Functional Anatomy 213 week 6 2 HUMAN FUNCTIONAL ANATOMY 213 DORSAL and VENTRAL, UPPER & LOWER LIMBS COMPARED PREAXIAL and POSTAXIAL THIS WEEKS LAB: Limbs evolved from paddles or fins, each with The hand and Foot 1. Dorsal and ventral sides 2. Preaxial and postaxial edges. In this lecture During Dorsal and ventral, Preaxial and postaxial development, Similarities in structure – Homology? human limbs were 1. Bones the same, but 2. Muscles rotations and 3. Nerves differential Muscles of the Shoulder and Hip/Arm and Thigh growth have The hand and foot modified the Muscles of the leg/foot and forearm/hand overall shape. The preaxial border is closer to the head and therefore supplied by more cranial nerves. We can identify the preaxial and postaxial borders in adult limbs by the first and fifth digits of the hand and foot Veins and nerves Human Functional Anatomy 213 week 6 3 Human Functional Anatomy 213 week 6 4 Similarities in structure - Homology PROXIMAL MUSCLES IN THE UPPER AND LOWER LIMBS Bones and joints Shoulder & Hip – Ball and socket joints Shoulder and arm Hip and thigh Humerus & Femur – Single bone in the proximal segment. Triceps Quadruceps etc Radial nerve Femoral nerve Knee & Elbow – hinge/uniaxial joints. Biceps etc Hamstrings Leg & Forearm – Two bones in the distal segment Musculocutaneous nerve Tibial nerve Tibia & Radius – Preaxial bones. Fibula & ulna – Postaxial bones Deltoid plus Gluteals & TFL posterior axillary muscles plus 6 lateral rotators Axillary nerve and post cord Gluteal nerves Ankle & Wrist – tarsals & carpals Even in the Pectorals Adductors hand and foot we Pectoral nerves Obturator nerve can find homologies between the carpal and tarsal bones.
    [Show full text]
  • Anatomy, Shoulder and Upper Limb, Shoulder Muscles
    Eovaldi BJ, Varacallo M. Anatomy, Shoulder and Upper Limb, Shoulder Muscles. [Updated 2018 Dec 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534836/ Anatomy, Shoulder and Upper Limb, Shoulder Muscles Authors Benjamin J. Eovaldi1; Matthew Varacallo2. Affilations 1 University of Tennessee HSC 2 Department of Orthopaedic Surgery, University of Kentucky School of Medicine Last Update: December 3, 2018. Introduction The shoulder joint (glenohumeral joint) is a ball and socket joint with the most extensive range of motion in the human body. The muscles of the shoulder dynamically function in performing a wide range of motion, specifically the rotator cuff muscles which function to move the shoulder and arm as well as provide structural integrity to the shoulder joint. The different movements of the shoulder are: abduction, adduction, flexion, extension, internal rotation, and external rotation.[1] The central bony structure of the shoulder is the scapula. All the muscles of the shoulder joint interact with the scapula. At the lateral aspect of the scapula is the articular surface of the glenohumeral joint, the glenoid cavity. The glenoid cavity is peripherally surrounded and reinforced by the glenoid labrum, shoulder joint capsule, supporting ligaments, and the myotendinous attachments of the rotator cuff muscles. The muscles of the shoulder play a critical role in providing stability to the shoulder joint. The primary muscle group that supports the shoulder joint is the rotator cuff muscles. The four rotator cuff muscles include:[2] • Supraspinatus • Infraspinatus • Teres minor • Subscapularis. Structure and Function The upper extremity is attached to the appendicular skeleton by way of the sternoclavicular joint.
    [Show full text]
  • Comparison of the Upper and Lower Limbs-A Phylogenetic Concept
    IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 14, Issue 8 Ver. I (Aug. 2015), PP 14-16 www.iosrjournals.org Comparison of the Upper and Lower Limbs-A Phylogenetic Concept Dr.Vandana Sinam1, Dr.Thonthon Daimei2, I Deven Singh3, N Damayanti Devi4 1.Medical officer,2. Senior Resident,3. Assistant Proffessor,4. Professor and Head, Department of Anatomy Regional Institute of Medical Sciences, Imphal, Manipur Abstract: The upper and lower limbs of the human body are phylogenetically homologues of the forelimbs and hind limbs of the quadrupeds. Primates started lifting of the forelimbs off the ground for various functional adaptations as evolution progressed and this led to the deviation of the forelimbs from lower limbs. With the gradual diversification of the functions, morphological evolution of the two limbs follows closely leading to the differences in upper and the lower limbs in the human. Since the inception of the Anatomy as one of the curriculum in medical subjects, the anatomical position has been termed as one that the body stand erect with the eyes looking straight forward and the two upper limbs hanging by the side of the body with the palm facing forward. Therefore in this position the upper limb looked forward with the palm also accordingly faced forward too whilst with the thumb on the lateral side whilst in the lower limb, the big toe which is homologous to the thumb, is placed on the medial side. The anatomical position in the upper limb is not normally a comfortable position as it is kept in this position with effort.
    [Show full text]
  • Anatomical Considerations of Fascial Release in Ulnar Nerve Transposition: a Concept Revisited
    LABORATORY INVESTIGATION J Neurosurg 123:1216–1222, 2015 Anatomical considerations of fascial release in ulnar nerve transposition: a concept revisited Mark A. Mahan, MD,1 Jaime Gasco, MD,2 David B. Mokhtee, MD,3 and Justin M. Brown, MD4 1Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona; 2Division of Neurological Surgery, University of Texas Medical Branch, Galveston, Texas; 3Tulsa Bone and Joint Associates, Tulsa, Oklahoma; and 4Division of Neurosurgery, University of California, San Diego, La Jolla, California OBJECT Surgical transposition of the ulnar nerve to alleviate entrapment may cause otherwise normal structures to become new sources of nerve compression. Recurrent or persistent neuropathy after anterior transposition is commonly attributable to a new distal compression. The authors sought to clarify the anatomical relationship of the ulnar nerve to the common aponeurosis of the humeral head of the flexor carpi ulnaris (FCU) and flexor digitorum superficialis (FDS) muscles following anterior transposition of the nerve. METHODS The intermuscular septa of the proximal forearm were explored in 26 fresh cadaveric specimens. The fibrous septa and common aponeurotic insertions of the flexor-pronator muscle mass were evaluated in relation to the ulnar nerve, with particular attention to the effect of transposition upon the nerve in this region. RESULTS An intermuscular aponeurosis associated with the FCU and FDS muscles was present in all specimens. Transposition consistently resulted in angulation of the nerve during elbow flexion when this fascial septum was not released. The proximal site at which the nerve began to traverse this fascial structure was found to be an average of 3.9 cm (SD 0.7 cm) from the medial epicondyle.
    [Show full text]
  • Compartment Syndrome and Fasciotomy
    Compartment syndrome and fasciotomy The aim of this information sheet is to help answer some of the questions you may have about having a fasciotomy for compartment syndrome. If you have any questions or concerns, please do not hesitate to speak to a doctor or nurse caring for you. What is compartment syndrome? Compartment syndrome occurs due to increased pressure within a confined space or compartment in the calf or thigh. This could be in just one leg or in both legs. If untreated, it can restrict the blood supply to muscles in the affected compartment and can result in necrosis (death) of the muscles. Nerves are also damaged from this pressure. This can result in loss of sensation in the skin and paralysis of the muscles they supply. Rapid diagnosis and treatment to relieve the pressure can lead to complete recovery of the affected muscle. What causes compartment syndrome? If the blood supply to your leg or legs has been interrupted, when blood flow is restored the muscles in the leg/legs swell causing compartment syndrome. If you have been admitted to hospital as an emergency with poor blood supply to the leg, this can happen when the blood flow is restored. The initial injury usually causes swelling of the muscle and tissues within the fascial compartment of the limb. This causes the pressure within the compartment to rise. As time progresses, and as the degree of pressure increases, blood flow to the muscles reduces. This lack of blood flow means that oxygen is not delivered effectively to the muscles and nerve damage begins to occur.
    [Show full text]
  • Supplemental Methods
    Supplemental Methods: Patients: Inclusion criteria were patients 18 years of age and older with a lower trunk or C8-T1 pattern of brachial plexus injury and a minimum of 6 months postoperative follow-up. The indication for brachialis to FDP muscle transfer was a lack of active finger flexion in patients with a history of lower trunk or C8-T1 pattern of brachial plexus injury at greater than 9 months from injury with no sign of nerve recovery on clinical exam as well as electromyogram. Additionally, triceps motor function of BRMC grade 2+ or greater was required to provide significant antagonist force to balance the elbow flexion force generated with firing of the brachialis muscle transfer. Patients were excluded if they were younger than 18 years of age, had a triceps of grade 2 or less, or sustained other injuries which precluded the use of the brachialis or FDP for tendon transfers. Patient demographic data including age, sex, BMI, smoking status, age at time of injury, mechanism of injury, co-morbidities, and history of previous reconstructive surgery. Patients were follow-up at regular intervals following surgery for functional assessment until their functional level had plateaued. Patients initially received a full evaluation for motor strength by the three senior authors (AYS, ATB, RJS), including but not limited to trapezius, supraspinatus, infraspinatus, deltoid, biceps, triceps, pronator teres, flexor digitorum profundus, extensor digitorum communis, extensor carpi radialis longus and brevis, and first dorsal interosseous motor strength. Motor strength was graded using a modified British Medical Research Council Grade (BMRC) 2,15. BMRC grading is reported as follows: M0 – no contraction, no joint motion, and no EMG reinnervation; M1 – EMG reinnervation, but no joint motion; M2 – perceptible joint motion, however insufficient power to act against gravity; M3 – muscle act against gravity; M4 – muscle acts against resistance; and M5 – muscle acts against strong resistance.
    [Show full text]