Controlled Nuclear Fusion. INSTITUTION Atomic Energy Commission, Washington, D.C

Total Page:16

File Type:pdf, Size:1020Kb

Controlled Nuclear Fusion. INSTITUTION Atomic Energy Commission, Washington, D.C DOCUMENT RESUME ED 107 520 SE 019 209 AUTHOR Glasstone, Samuel TITLE Controlled Nuclear Fusion. INSTITUTION Atomic Energy Commission, Washington, D.C. Office of Information Services. PUB DATE 74 NOTE 95p. 'AVAILABLE FROM USAEC Technical Information Center, P.0. Box 62, Oak Ridge, TN 37830 EDRS PRICE MF-$0.76 HC-$4.43 PLUS POSTAGE DESCRIPTORS *Energy; *Nuclear Physics; Physics; Radioisotopes; *Scientific Research IDENTIFIERS AEC; Atomic Energy Comthission; NuclearReactors ABSTRACT This publication isone of a series of information booklets for the general public publishedby The United States Atomic Energy 'Commission. Among the topics discussedare: Importance of Fusion Energy; Conditions for NuclearFusion; Thermonuclear Reactions in Plasmas; Plasma Confinement byMagnetic Fields; Experiments With Plasmas; -High-Temperature Plasma Studies;Ntciear Fusion Reactors With Magnetic Confinement; InertialConfinement; and Nuclear Fusion Research Programs. A reading list andfree-loan film list are included. Scho-AS and public librariesmay obtain the booklets without charge. (BT) US DEPARTMENT OFHEALTH. EDUCATION & WELFARE NATIONAL INSTITUTE OF EDUCATION THIS DOCUMENT HAS(TEEN REPRO OUCED EXACTLY ASRECEIVED FROM THE PERSON OR ORGANQATION ORIGIN ATING IT POIN Tf 0FVIEW OR OPINIONS STATED DO NOT NECESSARILY SENT OFFICIAL NATIONAL REPRE INSTITUTE OF EDUCATION POSITION OR POLICY ,:t, This is madeavailable by ,, ERDA , Research 7 iUnited States Energy ,:3and DevelopmentAdministration . Center 't, _i" Technical Information c.o. Oak Ridge,TN37830 Nuclear energyis playing a vital role in the life of every man, woman, and child inthe United States today. In the years ahead it will affect increasingly all the peoples of the earth. Itisessentialthatall Americans gain an understanding of this vital force if they are to discharge thoughtfully their responsibilities as citizens and if they are to realize fully the myriad benefits that nuclear energy offers them. The United States' Atomic Energy Com- mission provides this booklet to help you achieve such understanding. I 3 TIlE AUTHOR Samuel Glasstone Ph.D. (1922), D.Sc. (1926)- ,University of London, inPhysical Chemistryholds a preeminent position as a lucid expositor of scientific subject matter. He has written 34 books, sometimes with the cooperation of other scientists. In 1959 the American Society of Mechanical Engineers awarded him the Worcester Reed Warner Medal in recognition of his "outstanding contribution to permanent engineering literature in ... writings on atomic energy "(in 1968 he received the Arthur Holly Compton Award from the American Nuclear Society for "his distinguished contribu- tions to nuclear science and engineering education". Dr. Glasstone's best known book in the nuclear field is Sourcebook on Atomic Energy, first published in 1950 and revised in 1958 and 1967, it is still a best seller. He has also written for scientists and engineers about reactor theory. nuclear engineering, nuclear weapons, and controlled thermo- nuclear research, as wellas various aspects of physical chemistry. 5 IMPORTANCE OF FUSION ENERGY 5 Need for Energy Sources 6 Nuclear Energy 7 Nuclear Fusion Energy 8 CONDITIONS FOR NUCLEAR FUSION 8 Realization of Fusion 9 Requirements for Fusion Reactions 10 Deuterium and Tritium Fusion 13 ,High-EnergyRequirement 14 THERMONUCLEAR REACTIONS IN PLASMAS 14 Thermonuclear Reactions 15 Plasmas. Fourth State of Matter 16 Critical Ignition Temperature 18 PLASMA CONFINEMENTBY MAGNETIC FIELDS 18 Need for Confinement 19 Magnetic Confinement and Plasma Density 21 The Lawson Criterion 22 The Significance of Beta 23 Motion of Plasma Particles in a Magnetic Field 25 Particle Drift in Magnetic Fields 27 Open-ended and Closed Confinement 29 Plasma Diffusion 3i- , Plasma Instabilities 33 Factors Affecting Confinement Times 36EXPERIMENTS WITH PLASMAS 36 Plasma Formation 37 Plasma Heating 39 Plasma Diagnostic Techniques 40 HIGH-TEMPERATURE PLASMA STUDIES 40 Understanding Plasma Behavior 42 Low-Beta Pinch 45 High-Beta Pinch 49Stellarator Systems 53 Tokamak Systems 56-Magnetic-Mirror Systems 63 Internal-Ring Systems 3 65 NUCLEAR FUSION REACTORS WITH MAGNETIC CONFINEMENT 65 Toroidal Confinement System 68 Environmental Aspects 69 Direct Conversion Reactor 71 INERTIAL CONFINEMENT 71 Heating by Laser Beams 74 Laser-Fusion Reactor 76 NUCLEAR FUSION RESEARCH PROGRAMS 76Support by U. S. Government and Industry 77 Historical Outline 80 United States Programs 80 Foreign Programs 82 CONCLUSION 1 85 READING LIST 6 87 MOTION PICTURES Vic /ear 111.,10n.Oh: pro(c,.,1)j 1011(11 .,101 and HI )tyr, ;oh:raj(tlicir energy. VIO 1111; 4.1Creit)pc'd to produce electrical /mil 0' OilCarib.It .sale. aila lb111ci, eVI.Nb In ablIlldallcc ordinar1 water. The cloiterium 01 114 °coin) proud(' citotis.,r1-7 elk:rift lu Nan4 f C/ 'L 111110' Pc'/itli'tI1iC/If a! _tor 111('111(c In rate uj con.s1011010,1 1car,. 110/(c. 10 ',mild ti111,(1011 rcac tor by dhow the(ar I 9 Y M 4 - IMPORTANCE OF FUSION ENERGY Need for EnergySources The availability of energy (or power)for the operation of machinery has been a decisive factor inthe improvment of man's standard of thing. With the steadyrise in population andinthe use of mechanical devices toincreasethe productivity of labor, the world's powerrequirements are growing rapidly. In the past, the chief sourcesofenergy were the fossil fuelscoal, oil, and natural gas-and, to a smaller extent, water power. Theincreasing demand for energy has spurred worldwide exploration forfuels, especially for oil, and so far the newly discovered reserveshave kept pace with consumption. Although this appears to be a satisfactorysituation, there are limitations. First, thetime must come, possibly by the end of the present century, when the reservesbegin to dwindle and a shortage of fossil fuelsbecomes a definite prospect.And, second,the distribution of oil and coal reservesis such that many industrialized countries must import their fuel supplies atconsiderable cost. Furthermore, the combustion of fossil fuels, especiallycoal, causes prob- lems of atmospheric pollution by producingoxides of sulfur and nitrogen and fine particles of ash. A newand clean source of energy with a basicfuel that is cheap, abundant, and available to all, would thus be a greatboon to mankind. Scientists hope that nuclear fusion willprovide such an energy source. In order tounderstand this processitis necessaryto know something about thebackground of nuclear energy. Photo I.Large loop prominences on the sun, caused by a locally intense magnetic field. The U. S. programin con- trolled '.lsionis devoted to research on fusion reactions similar to those fromwhich the sun derives its energy. 5 Nuclear Energy Soon after radioactivitywas discovered at the end of the 19th century. physicistsbeganto conjecture about the energy. which they called 'atomic energy,"that was appar- ently stored within the atom. Later.when the nuclear theory 01 the atom was developed in 1911.scientists realized that it was the nucleus. the centralpart of the atom, that was the source of this energy.* Hence. it shouldbe called "nuclear energy" rather than atomicenergy. Until 1939. however,no one knew how this energy could bereleased in a useful manner. In the course of his studies in1905 on the theory of retativity. Albert Einstein showedthat mass and energywere, in asense. equivalent. Consequently.energy should be liberated in any process associatedwith a net decrease in mass. By considering the measuredmasses of atomic nuclei, it became apparent that therewere two general ways whereby nuclear energy could be martsavailable by using reactions accompanied by a decrease inmass. One is by the splitting (fission) of the heaviest nucleiinto nuclei of intermediate mass. and the other is by the combination(fusion) of some of the lightest nuclei. Actually, there are many othernuclear processes that are accompanied bya liberation of energy. But only with nuclear fission and fusionis there the possibility of producing more energy than is consumedduring the reaction. In other words. only for these reactionsis there 4 prospCct that the process. once started,can be self-sustaining like a fire. The discovery of nuclear fissionin 1939 revealed anew and highly concentrated source ofenergy. Some 6 years later, this energy was first used in the atomic bomb, andsince that time nuclear reactors have been developed inwhich fission energy is liberated as heat and convertedinto electric power.t The *Ior a description of atomic theory,see Inner Space. The Structure of the Atom, another booklet in this series. +See uelear Reactors and Nuclear Power Plants,other booklets in this series. 6 ,mpact of nuclear fission energyis already being felt in many countries. In 1973, about =I%of the electricity used inthe United States was generated innuclear reactor power plants and this proportion is expected toincrease to more than 20% by 1980. But fissionis not the complete solution tothe energy problem. Itis true that the world resourcesof the basic materials, namelyuranium and thorium minerals, are fairly abundant. There are,however, many countries that either do not possess theseminerals or do not have the means for producing nuclear fuelsfrom them. Furthermore, special precautions must be takenin the operation of fission power plants to prevent undesirableenvironmental effects. Nuclear Fusion Energy fusion of Itis such considerationsthat make nuclear exceptional interest as apossible source of power.The fuel is "hell% y hydrogen" or a form (isotope)of hydrogen. called that is present
Recommended publications
  • Stellarators. Present Status and Future Planning
    STELLARATORS Present Status and Future Planning H. Wobig, Garching IMax-Planck-Institut für Plasmaphysikl magnetic axis Fig. 1 — Period of toroidally dosed magnetic surfaces. The stellarator is a closed toroidal device open-ended configurations like mirror ma­ designed to confine a hot plasma In a ma­ chines (see EN, 12 8/9) there are always gnetic field. It is one of the oldest concepts plasma particles which escape the confine­ magnetic surfaces is investigated by field to have been investigated in the search for ment volume along the magnetic field and line integration. The topology of the field controlled thermonuclear fusion. an isotropic distribution function cannot be lines is determined by the rotational trans­ The basic idea of the stellarator was maintained. If this anisotropy is too strong form or twist number 1/27t (or+), which is developed by Lyman Spitzer, Professor of it gives rise to instabilities and enhanced the number of revolutions of a field line Astronomy at Princeton in 19511). Experi­ plasma losses. It is mainly to avoid these around the magnetic axis during one toroi­ mental studies began in 1952 and after the disadvantages that toroidal confinement dal revolution. declassification of fusion research in 1958 has been preferred. The need for a helical field can be under­ the idea was picked up by other research In toroidal configurations, the currents stood from a look at the particle orbits. groups. In Europe, the first stellarators which generate the confining magnetic Charged particles tend to follow the field were built in the Max-Planck Institute for fields can be classified under three lines and unless these are helical, because Physics and Astrophysics in Munich and categories : of inhomogeneities, the particles will drift later at Culham, Moscow and Karkhov.
    [Show full text]
  • Concepts for a Deuterium-Deuterium Fusion Reactor
    Concepts for a deuterium-deuterium fusion reactor Roberto Onofrio1, 2 1Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universit`adi Padova, Via Marzolo 8, Padova 35131, Italy 2Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755, USA We revisit the assumption that reactors based on deuterium-deuterium (D-D) fusion processes have to be necessarily developed after the successful completion of experiments and demonstrations for deuterium-tritium (D-T) fusion reactors. Two possible mechanisms for enhancing the reactivity are discussed. Hard tails in the energy distribution of the nuclei, through the so-called κ-distribution, allow to boost the number of energetic nuclei available for fusion reactions. At higher temperatures − − than usually considered in D-T plasmas, vacuum polarization effects from real e+e and µ+µ pairs may provide further speed-up due to their contribution to screening of the Coulomb barrier. Furthermore, the energy collection system can benefit from the absence of the lithium blanket, both in simplicity and compactness. The usual thermal cycle can be bypassed with comparable efficiency levels using hadronic calorimetry and third-generation photovoltaic cells, possibly allowing to extend the use of fusion reactors to broader contexts, most notably maritime transport. I. INTRODUCTION high yield scintillating materials and hadronic calorime- try with third-generation photovoltaic cells. This could lead to energy conversion at an initially nearly compara- It is usually assumed that the first commercial fusion ble efficiency with respect to a thermal cycle, with un- reactors will be based on D-T mixtures, and within this known margins for improvement, and within a compact frame a well-defined path has been paved with the ongo- design.
    [Show full text]
  • Controlled Nuclear Fusion
    Controlled Nuclear Fusion HANNAH SILVER, SPENCER LUKE, PETER TING, ADAM BARRETT, TORY TILTON, GABE KARP, TIMOTHY BERWIND Nuclear Fusion Thermonuclear fusion is the process by which nuclei of low atomic weight such as hydrogen combine to form nuclei of higher atomic weight such as helium. two isotopes of hydrogen, deuterium (composed of a hydrogen nucleus containing one neutrons and one proton) and tritium (a hydrogen nucleus containing two neutrons and one proton), provide the most energetically favorable fusion reactants. in the fusion process, some of the mass of the original nuclei is lost and transformed to energy in the form of high-energy particles. energy from fusion reactions is the most basic form of energy in the universe; our sun and all other stars produce energy through thermonuclear fusion reactions. Nuclear Fusion Overview Two nuclei fuse together to form one larger nucleus Fusion occurs in the sun, supernovae explosion, and right after the big bang Occurs in the stars Initially, research failed Nuclear weapon research renewed interest The Science of Nuclear Fusion Fusion in stars is mostly of hydrogen (H1 & H2) Electrically charged hydrogen atoms repel each other. The heat from stars speeds up hydrogen atoms Nuclei move so fast, they push through the repulsive electric force Reaction creates radiant & thermal energy Controlled Fusion uses two main elements Deuterium is found in sea water and can be extracted using sea water Tritium can be made from lithium When the thermal energy output exceeds input, the equation is self-sustaining and called a thermonuclear reaction 1929 1939 1954 1976 1988 1993 2003 Prediction Quantitativ ZETA JET Project Japanese Princeton ITER using e=mc2, e theory Tokomak Generates that energy explaining 10 from fusion is fusion.
    [Show full text]
  • Can 250+ Fusions Per Muon Be Achieved?
    CAN 250+ FUSIONS PER MUON BE ACHIEVED? CONF-870448—1 Steven E. Jones DE87 010472 Brigham Young University Dept. of Physics and Astronomy Provo, UT 84602 U.S.A. INTRODUCTION Nuclear fusion of hydrogen isotopes can be induced by negative muons (u) in reactions such as: y- + d + t + o + n -s- u- (1) t J N This reaction is analagous to the nuclear fusion reaction achieved in stars in which hydrogen isotopes (such as deuterium, d, and tritium, t) at very high temperatures first penetrate the Coulomb repulsive barrier and then fuse together to produce an alpha particle (a) and a neutron (n), releasing energy which reaches the earth as light and heat. Life in the universe depends on fusion energy. In the case of reaction (1), the muon in general reappears after inducing fusion so that the reaction can be repeated many (N) times. Thus, the muon may serve as an effective catalyst for nuclear fusion. Muon- catalyzed fusion is unique in that it proceeds rapidly in deuterium-tritium mixtures at relatively cold temperatures, e.g. room temperature. The need for plasma temperatures to initiate fusion is overcome by the presence of the nuon. In analogy to an ordinary hydrogen molecule, the nuon binds together the deuteron and triton in a very small molecule. Since the muonic mass is so large, the dtp molecule is tiny, so small that the deuteron and triton are induced to fuse together in about a picosecond - one millionth of the nuon lifetime. We could speak here of nuonlc confinement, in lieu of the gravitational confinement found in stars, or MASTER DISTRIBUTION OF THIS BBCUMENT IS UNLIMITED magnetic or inertial confinement of hot plasmas favored in earth-bound attempts at imitating stellar fusion.
    [Show full text]
  • Inertial Electrostatic Confinement Fusor Cody Boyd Virginia Commonwealth University
    Virginia Commonwealth University VCU Scholars Compass Capstone Design Expo Posters College of Engineering 2015 Inertial Electrostatic Confinement Fusor Cody Boyd Virginia Commonwealth University Brian Hortelano Virginia Commonwealth University Yonathan Kassaye Virginia Commonwealth University See next page for additional authors Follow this and additional works at: https://scholarscompass.vcu.edu/capstone Part of the Engineering Commons © The Author(s) Downloaded from https://scholarscompass.vcu.edu/capstone/40 This Poster is brought to you for free and open access by the College of Engineering at VCU Scholars Compass. It has been accepted for inclusion in Capstone Design Expo Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Authors Cody Boyd, Brian Hortelano, Yonathan Kassaye, Dimitris Killinger, Adam Stanfield, Jordan Stark, Thomas Veilleux, and Nick Reuter This poster is available at VCU Scholars Compass: https://scholarscompass.vcu.edu/capstone/40 Team Members: Cody Boyd, Brian Hortelano, Yonathan Kassaye, Dimitris Killinger, Adam Stanfield, Jordan Stark, Thomas Veilleux Inertial Electrostatic Faculty Advisor: Dr. Sama Bilbao Y Leon, Mr. James G. Miller Sponsor: Confinement Fusor Dominion Virginia Power What is Fusion? Shielding Computational Modeling Because the D-D fusion reaction One of the potential uses of the fusor will be to results in the production of neutrons irradiate materials and see how they behave after and X-rays, shielding is necessary to certain levels of both fast and thermal neutron protect users from the radiation exposure. To reduce the amount of time and produced by the fusor. A Monte Carlo resources spent testing, a computational model n-Particle (MCNP) model was using XOOPIC, a particle interaction software, developed to calculate the necessary was developed to model the fusor.
    [Show full text]
  • NEWSLETTER Issue No. 7 September 2017
    NEWSLETTER September 2017 Issue no. 7 Nuclear Industry Group Newsletter September 2017 Contents Notes from the Chair ................................................................................... 3 IOP Group Officers Forum .......................................................................... 4 NIG Committee Elections ............................................................................ 6 Nuclear Industry Group Career Contribution Prize 2017 .......................... 7 Event – Gen IV Reactors by Richard Stainsby (NNL) ................................ 8 Event – Nuclear Security by Robert Rodger (NNL) and Graham Urwin (RWM) ......................................................................................................... 12 Event – The UK’s Nuclear Future by Dame Sue Ion ................................ 13 Event – Regulatory Challenges for Nuclear New Build by Mike Finnerty. .................................................................................................................... 15 Event – European Nuclear Young Generation Forum ............................. 18 Event – Nuclear Fusion, 60 Years on from ZETA by Chris Warrick (UKAEA), Kate Lancaster (York Plasma Institute), David Kingham (Tokamak Energy) and Ian Chapman (UKAEA) ....................................... 19 IOP Materials and Characterisation Group Meetings .............................. 25 “Brexatom” – the implications of the withdrawal for the UK from the Euratom Treaty. ........................................................................................
    [Show full text]
  • Thermonuclear AB-Reactors for Aerospace
    1 Article Micro Thermonuclear Reactor after Ct 9 18 06 AIAA-2006-8104 Micro -Thermonuclear AB-Reactors for Aerospace* Alexander Bolonkin C&R, 1310 Avenue R, #F-6, Brooklyn, NY 11229, USA T/F 718-339-4563, [email protected], [email protected], http://Bolonkin.narod.ru Abstract About fifty years ago, scientists conducted R&D of a thermonuclear reactor that promises a true revolution in the energy industry and, especially, in aerospace. Using such a reactor, aircraft could undertake flights of very long distance and for extended periods and that, of course, decreases a significant cost of aerial transportation, allowing the saving of ever-more expensive imported oil-based fuels. (As of mid-2006, the USA’s DoD has a program to make aircraft fuel from domestic natural gas sources.) The temperature and pressure required for any particular fuel to fuse is known as the Lawson criterion L. Lawson criterion relates to plasma production temperature, plasma density and time. The thermonuclear reaction is realised when L > 1014. There are two main methods of nuclear fusion: inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). Existing thermonuclear reactors are very complex, expensive, large, and heavy. They cannot achieve the Lawson criterion. The author offers several innovations that he first suggested publicly early in 1983 for the AB multi- reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB- Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field.
    [Show full text]
  • Simultaneous Ultra-Fast Imaging and Neutron Emission from a Compact Dense Plasma Focus Fusion Device
    instruments Article Simultaneous Ultra-Fast Imaging and Neutron Emission from a Compact Dense Plasma Focus Fusion Device Nathan Majernik, Seth Pree, Yusuke Sakai, Brian Naranjo, Seth Putterman and James Rosenzweig * ID Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA; [email protected] (N.M.); [email protected] (S.P.); [email protected] (Y.S.); [email protected] (B.N.); [email protected] (S.P.) * Correspondence: [email protected]; Tel.: +310-206-4541 Received: 12 February 2018; Accepted: 5 April 2018; Published: 11 April 2018 Abstract: Recently, there has been intense interest in small dense plasma focus (DPF) devices for use as pulsed neutron and X-ray sources. Although DPFs have been studied for decades and scaling laws for neutron yield versus system discharge current and energy have been established (Milanese, M. et al., Eur. Phys. J. D 2003, 27, 77–81), there are notable deviations at low energies due to contributions from both thermonuclear and beam-target interactions (Schmidt, A. et al., Phys. Rev. Lett. 2012, 109, 1–4). For low energy DPFs (100 s of Joules), other empirical scaling laws have been found (Bures, B.L. et al., Phys. Plasmas 2012, 112702, 1–9). Although theoretical mechanisms to explain this change have been proposed, the cause of this reduced efficiency is not well understood. A new apparatus with advanced diagnostic capabilities allows us to probe this regime, including variants in which a piston gas is employed. Several complementary diagnostics of the pinch dynamics and resulting X-ray neutron production are employed to understand the underlying mechanisms involved.
    [Show full text]
  • Operational Characteristics of the Stabilized Toroidal Pinch Machine, Perhapsatron S-4
    P/2488 USA Operational Characteristics of the Stabilized Toroidal Pinch Machine, Perhapsatron S-4 By J. P. Conner, D. C. H age r m an, J. L. Honsaker, H. J. Karr, J. P. Mize, J. E. Osher, J. A. Phillips and E. J. Stovall Jr. Several investigators1"6 have reported initial success largely inductance-limited and not resistance-limited in stabilizing a pinched discharge through the utiliza- as observed in PS-3. After gas breakdown about 80% tion of an axial Bz magnetic field and conducting of the condenser voltage appears around the secondary, walls, and theoretical work,7"11 with simplifying in agreement with the ratio of source and load induct- assumptions, predicts stabilization under these con- ances. The rate of increase of gas current is at first ditions. At Los Alamos this approach has been large, ~1.3xlOn amp/sec, until the gas current examined in linear (Columbus) and toroidal (Per- contracts to cause an increase in inductance, at which hapsatron) geometries. time the gas current is a good approximation to a sine Perhapsatron S-3 (PS-3), described elsewhere,4 was curve. The gas current maximum is found to rise found to be resistance-limited in that the discharge linearly with primary voltage (Fig. 3), deviating as current did not increase significantly for primary expected at the higher voltages because of saturation vçltages over 12 kv (120 volts/cm). The minor inside of the iron core. diameter of this machine was small, 5.3 cm, and the At the discharge current maximum, the secondary onset of impurity light from wall material in the voltage is not zero, and if one assumes that there is discharge occurred early in the gas current cycle.
    [Show full text]
  • The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey
    The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, U.S.A. (On loan from Westlnghouse Research and Development Center) G. Grieger, Max Planck Institut fur Plasmaphyslk, Garching bel Mun<:hen, West Germany D. J. Lees, U.K.A.E.A. Culham Laboratory, Abingdon, Oxfordshire, England M. S. Rablnovich, P. N. Lebedev Physics Institute, U.S.3.R. Academy of Sciences, Moscow, U.S.S.R. J. L. Shohet, Torsatron-Stellarator Laboratory, University of Wisconsin, Madison, Wisconsin, U.S.A. and X. Uo, Plasma Physics Laboratory Kyoto University, Gokasho, Uj', Japan Abstract The woHlwide development of stellnrator research is reviewed briefly and informally. I OISCLAIWCH _— . vi'Tli^liW r.'r -?- A stellarator is a closed steady-state toroidal device for cer.flning a hot plasma In a magnetic field where the rotational transform Is produced externally, from torsion or colls outside the plasma. This concept was one of the first approaches proposed for obtaining a controlled thsrtnonuclear device. It was suggested and developed at Princeton in the 1950*s. Worldwide efforts were undertaken in the 1960's. The United States stellarator commitment became very small In the 19/0's, but recent progress, especially at Carchlng ;ind Kyoto, loeethar with «ome new insights for attacking hotii theoretics] Issues and engineering concerns have led to a renewed optimism and interest a:; we enter the lQRO's. The stellarator concept was borr In 1951. Legend has it that Lyman Spiczer, Professor of Astronomy at Princeton, read reports of a successful demonstration of controlled thermonuclear fusion by R.
    [Show full text]
  • Formation of Hot, Stable, Long-Lived Field-Reversed Configuration Plasmas on the C-2W Device
    IOP Nuclear Fusion International Atomic Energy Agency Nuclear Fusion Nucl. Fusion Nucl. Fusion 59 (2019) 112009 (16pp) https://doi.org/10.1088/1741-4326/ab0be9 59 Formation of hot, stable, long-lived 2019 field-reversed configuration plasmas © 2019 IAEA, Vienna on the C-2W device NUFUAU H. Gota1 , M.W. Binderbauer1 , T. Tajima1, S. Putvinski1, M. Tuszewski1, 1 1 1 1 112009 B.H. Deng , S.A. Dettrick , D.K. Gupta , S. Korepanov , R.M. Magee1 , T. Roche1 , J.A. Romero1 , A. Smirnov1, V. Sokolov1, Y. Song1, L.C. Steinhauer1 , M.C. Thompson1 , E. Trask1 , A.D. Van H. Gota et al Drie1, X. Yang1, P. Yushmanov1, K. Zhai1 , I. Allfrey1, R. Andow1, E. Barraza1, M. Beall1 , N.G. Bolte1 , E. Bomgardner1, F. Ceccherini1, A. Chirumamilla1, R. Clary1, T. DeHaas1, J.D. Douglass1, A.M. DuBois1 , A. Dunaevsky1, D. Fallah1, P. Feng1, C. Finucane1, D.P. Fulton1, L. Galeotti1, K. Galvin1, E.M. Granstedt1 , M.E. Griswold1, U. Guerrero1, S. Gupta1, Printed in the UK K. Hubbard1, I. Isakov1, J.S. Kinley1, A. Korepanov1, S. Krause1, C.K. Lau1 , H. Leinweber1, J. Leuenberger1, D. Lieurance1, M. Madrid1, NF D. Madura1, T. Matsumoto1, V. Matvienko1, M. Meekins1, R. Mendoza1, R. Michel1, Y. Mok1, M. Morehouse1, M. Nations1 , A. Necas1, 1 1 1 1 1 10.1088/1741-4326/ab0be9 M. Onofri , D. Osin , A. Ottaviano , E. Parke , T.M. Schindler , J.H. Schroeder1, L. Sevier1, D. Sheftman1 , A. Sibley1, M. Signorelli1, R.J. Smith1 , M. Slepchenkov1, G. Snitchler1, J.B. Titus1, J. Ufnal1, Paper T. Valentine1, W. Waggoner1, J.K. Walters1, C.
    [Show full text]
  • 1. Introduction 2. the ROSE Code
    M. Drevlak et al. New results in stellarator optimisation M. Drevlak , C. D. Beidler, J. Geiger, P. Helander, S. Henneberg, C. N¨uhrenberg, Y. Turkin Max-Planck-Institut f¨ur Plasmaphysik, 17491 Greifswald, Germany Email: [email protected] Abstract The ROSE code was written for the optimisation of stellarator equilibria. It uses VMEC for the equilibrium calculation and several different optimising algorithms for adjusting the boundary coefficients of the plasma. Some of the most important capabilities include optimisation for simple coils, the ability to simultaneously optimise vacuum and finite beta field, direct analysis of particle drift orbits and direct shaping of the magnetic field structure. ROSE was used to optimise quasi- isodynamic, quasi-axially symmetric and quasi-helically symmetric stellarator configurations. 1. Introduction The performance of stellarators, characterised by properties related to MHD stability, confinement of fast particles, neoclassical and anomalous transport and engineering complexity, is known to depend strongly on the underlying equilibrium configuration. While the first fully optimised stellarators, HSX and Wendelstein 7-X, have entered operation, new stellarator designs are being considered. In particular, a possible stellarator reactor needs to be optimised beyond the optimisation level achieved for these devices. A strong need for progress has been identified in the confinement of fast particles significantly away from the magnetic axis. At the same time, coil complexity must not exceed the limits of feasibility. 2. The ROSE Code The ROSE [1] code was written for the optimi- VMEC Equilibrium field sation of stellarator equilibria. Like other tools Brents algorithm created for the optimisation of stellarator equilib- Parallel Line−Search VM2MAG B spectrum ria [2] [3], it uses VMEC [4] for the equilibrium Genetic Optimisation mn calculation and several different optimising algo- Harmony Search SURFGEN, Coil complexity rithms for adjusting the coefficients of the bound- Particle Swarm NESCOIL ary shape of the plasma.
    [Show full text]