A Functional and Structural Study of Three Bacterial Nucleic Acid

Total Page:16

File Type:pdf, Size:1020Kb

A Functional and Structural Study of Three Bacterial Nucleic Acid Faculty of Science and Technology A functional and structural study of three bacterial nucleic acid-interacting proteins The story of a Ferric Uptake Regulator, an Oligoribonuclease and an ATP-dependent DNA ligase Kristel Berg A dissertation for the degree of Philosophiae Doctor – November 2019 A functional and structural study of three bacterial nucleic acid-interacting proteins The story of a Ferric Uptake Regulator, an Oligoribonuclease and an ATP-dependent DNA ligase Kristel Berg A dissertation for the degree of Philosophiae Doctor Department of Chemistry Faculty of Science and Technology November 2019 To Terje, Malvin and Sigrid Acknowledgments This work was carried out at the Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology at The University of Tromsø - The Arctic University of Norway. Financial support was granted by the UiT – The Arctic University of Norway. I would also like to acknowledge the financial support and training from BioStruct, the Norwegian Graduate School in Structural Biology and BioCat, the Norwegian Graduate School in Biocatalysis. My sincerest gratitude goes to my main supervisor Ingar Leiros for giving me the opportunity to work on this project. I highly appreciate the encouragement, humour, and great patience I received from you all these years and I feel grateful to have had such a supportive, understanding and positive supervisor throughout this journey’s ups and downs. Your impressive scientific knowledge has been valuable, and I have learnt a lot from you. Thank you also for the immense amount of time and effort you have brought into finalizing the papers and this thesis. It has been a pleasure to have Hege Lynum Pedersen as my co-supervisor from day one. You have provided me great support and encouragement, both work-related and in life outside of the lab. I appreciate your expert advice and mentoring in the lab. Your friendship, caring personality and infectious laughter has really mattered to me these years. To my co-supervisors Atle Noralf Larsen and Yvonne Pietrowski, thank you for giving me the opportunity to contribute to your exciting project. Your belief in me and the project was a huge game changer and motivation boost just when I needed it the most. Thank you for your excellent supervision throughout the experiments. I also appreciate your easy-going- and caring personalities and the patience and support you have shown. I am also sincerely thankful for the opportunity to work on the ligase project under the guidance of my co-supervisor Adele Williamson. Thank you for sharing your knowledge, creativity and your many ideas. You are truly inspiring and a great mentor. Your positive attitude and friendship have also contributed greatly to the nice atmosphere at work. The time and effort you have donated in guiding me through the writing of this thesis, from the other side of the globe, is impressive and highly appreciated. To all my supervisors – I owe you lots of gratitude for valuable input and expert advice towards finalizing this thesis. You have taught me to be a better scientist and it has been a pleasure to work with you all. Previous Head of Department Ronny Helland and previous Director of NorStruct Arne Smalås have also provided great support, thank you. I would like to thank present and former engineers Eva Bjørkeng, Trine Carlsen and Stefan Hauglid for the technical help and practical assistance with the never-ending rounds of protein purifications. Lots of gratitude also goes to Bjarte Aarmo Lund and Marcin Pierechod for valuable advising in my attempts to gain data from Microscale thermophoresis and Biacore SPR analysis. To all employees at Norstruct, for creating such a pleasant working environment, with parties, laughs, meaningless conversations, camaraderie, and scientific discussions. You all made it easy to go to work every morning, even when I felt science plotted against me. My office mates have changed throughout the years, but I have been so lucky to share office with Miriam from the beginning. I appreciate how you have been there for me every day, good or bad, and our nights out on laser light-covered dance floors have been awesome. My most recent office mate, Aili, has also been of great support. To other Norstruct friends, past and present, for supporting me through the joys and hardships both in life and during the course of my studies. I have shared so many laughs with you! I love that you “voluntarily” embraced my crazy ideas. The Norstruct Spice Girls rocks! Additional thanks go to Man Kumari, Susann and Eva for listening, for keeping me sane and for simply being there. I would also like to highlight the smiling face I met by the coffee machine every morning; thank you Kåre-Olav for continuous encouragements, your positive attitude and excellent leading on the Christmas dance floor. Staying active in this process has been important for my PhD survival. So, thank you Susann and Saana for nerdy running conversations and for happily joining me on treadmill breaks. Thank you, Erik, for fun and mindful climbing breaks, moral support and for always being so positive. To my new colleagues at the awesome genetics group at NFH, thank you for your patience when I have been a bit absent-minded this first year. Especially my office girls and my group leader, Kim Præbel, have been of great support. To Hege Devold - I appreciate having a close friend upstairs, especially one with a laughter loud enough to remind me about ongoing coffee breaks. To my great group of friends here in Tromsø, both those close to me since we first met as students about a hundred years ago, and those I got to know more recently – you know who you are and I appreciate each one of you. You bring joy and laughter to my life, with skiing, parties, luxury festival camps, dinners, training, singing (!), random coffee chats and more. Thank you for support, advice and for patiently listening to my frustrations. I look forward to spending more time with you all and contribute more socially. Gratitude also goes to my long-distance friends; Lena, Silvie and Vroni. Thank you for reaching out to me when I was distant in many ways. Our chats have meant more than you know. Most importantly, I wish to express my deepest appreciation to my family. To my parents, I would not be who I am today without your love, encouragement, and backing. You have always done everything in your power to make sure that I can achieve my dreams. I am also thankful for the unwavering support and joy from my sister, my brother in law, my nephew and niece. Dear Terje; your love, patience, support and understanding for what a PhD life is about, have meant the world to me and this thesis could not possible be completed without you. You mean the world to me. To my kids, Sigrid and Malvin, to show you anything is possible. You are an endless source of joy and remind me on a daily basis that the most important part of life is not scientific. I love you so much! Table of Contents Abstract .................................................................................................................................... viii List of papers ............................................................................................................................... ix Abbreviations and acronyms.......................................................................................................... x 1 Introduction ......................................................................................................................... 1 1.1 Nucleic acids – DNA and RNA .......................................................................................... 1 1.2 Nucleic acids and proteins – a complex on and off relationship ......................................... 4 1.2.1 Nucleic acid interacting proteins in prokaryotes........................................................ 4 1.2.2 Gene regulation ...................................................................................................... 9 1.2.3 Transcription factors and DNA recognition ............................................................. 10 1.2.4 Comparing three essential types of nucleic acid binding proteins; a transcription factor, a nuclease and a ligase ............................................................................................. 11 1.3 DNA binding by the Ferric uptake regulator (Fur)............................................................ 17 1.3.1 Iron homeostasis in bacteria .................................................................................. 17 1.3.2 Ferric uptake regulator - a global regulator involved in pathogenesis ....................... 18 1.3.3 Fur mechanism ..................................................................................................... 19 1.3.4 Fur structure......................................................................................................... 21 1.3.5 The Fur regulon (Fur-box) ...................................................................................... 22 1.3.6 Characterization of Fur from the fish pathogen Aliivibrio salmonicida ...................... 25 1.4 The role of oligoribonucleases (Orn) in mRNA decay....................................................... 26 1.4.1 mRNA metabolism in prokaryotes .......................................................................... 26 1.4.2 Oligoribonucleases degrade small RNAs in prokaryotes ........................................... 29 1.4.3 Roles of Orn
Recommended publications
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • Achromobacter Buckle Infection Diagnosed by a 16S Rdna Clone
    Hotta et al. BMC Ophthalmology 2014, 14:142 http://www.biomedcentral.com/1471-2415/14/142 CASE REPORT Open Access Achromobacter buckle infection diagnosed by a 16S rDNA clone library analysis: a case report Fumika Hotta1†, Hiroshi Eguchi1*, Takeshi Naito1†, Yoshinori Mitamura1†, Kohei Kusujima2† and Tomomi Kuwahara3† Abstract Background: In clinical settings, bacterial infections are usually diagnosed by isolation of colonies after laboratory cultivation followed by species identification with biochemical tests. However, biochemical tests result in misidentification due to similar phenotypes of closely related species. In such cases, 16S rDNA sequence analysis is useful. Herein, we report the first case of an Achromobacter-associated buckle infection that was diagnosed by 16S rDNA sequence analysis. This report highlights the significance of Achromobacter spp. in device-related ophthalmic infections. Case presentation: A 56-year-old woman, who had received buckling surgery using a silicone solid tire for retinal detachment eighteen years prior to this study, presented purulent eye discharge and conjunctival hyperemia in her right eye. Buckle infection was suspected and the buckle material was removed. Isolates from cultures of preoperative discharge and from deposits on the operatively removed buckle material were initially identified as Alcaligenes and Corynebacterium species. However, sequence analysis of a 16S rDNA clone library using the DNA extracted from the deposits on the buckle material demonstrated that all of the 16S rDNA sequences most closely matched those of Achromobacter spp. We concluded that the initial misdiagnosis of this case as an Alcaligenes buckle infection was due to the unreliability of the biochemical test in discriminating Achromobacter and Alcaligenes species due to their close taxonomic positions and similar phenotypes.
    [Show full text]
  • Gut Microbiome Alterations in Ulcerative Colitis and After Moxibustion Intervention
    Gut Microbiome Alterations In Ulcerative Colitis And After Moxibustion Intervention Qin Qi Shanghai University of Traditional Chinese Medicine Ya-Nan Liu Shanghai University of Traditional Chinese Medicine Si-Yi Lv Shanghai University of Traditional Chinese Medicine Huan-Gan Wu Shanghai University of Traditional Chinese Medicine Lin-Shuang Zhang Zhejiang Institute for Food and Drug Control Zhan Cao Tongji University School of Medicine Hui-Rong Liu Shanghai University of Traditional Chinese Medicine Xiao-Mei Wang ( [email protected] ) Shanghai University of Traditional Chinese Medicine Lu-Yi Wu Shanghai University of Traditional Chinese Medicine Research Article Keywords: Ulcerative colitis, Moxibustion, Gut microbiota, Metagenomic Posted Date: August 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-789670/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/22 Abstract Background: Recent studies have shown that the pathogenesis of ulcerative colitis (UC) is closely related to the gut microbiota. Moxibustion, a common treatment in traditional Chinese medicine, is the burning of the herb moxa over acupuncture points. Moxibustion has been used to improve the inammation and gastrointestinal dysfunctions in gastrointestinal disorders such as UC. In this study, we investigated whether moxibustion could improve the gut microbial dysbiosis induced by dextran sulphate sodium (DSS). Methods: Twenty-ve male rats were randomly assigned into ve groups: normal (NG), UC model (UC), moxibustion (UC+MOX), mesalazine (UC+MES), and normal rats with moxibustion (NG+MOX). The UC rat model was established by administering DSS solution. The rats in the UC+MOX and NG+MOX groups were treated with moxibustion at Tianshu (bilateral, ST25) points once daily for 7 consecutive days, and the UC+MES group rats were treated with mesalazine once daily for 7 consecutive days.
    [Show full text]
  • Achromobacter Infections and Treatment Options
    AAC Accepted Manuscript Posted Online 17 August 2020 Antimicrob. Agents Chemother. doi:10.1128/AAC.01025-20 Copyright © 2020 American Society for Microbiology. All Rights Reserved. 1 Achromobacter Infections and Treatment Options 2 Burcu Isler 1 2,3 3 Timothy J. Kidd Downloaded from 4 Adam G. Stewart 1,4 5 Patrick Harris 1,2 6 1,4 David L. Paterson http://aac.asm.org/ 7 1. University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, 8 Brisbane, Australia 9 2. Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, 10 Brisbane, Australia on August 18, 2020 at University of Queensland 11 3. University of Queensland, Faculty of Science, School of Chemistry and Molecular 12 Biosciences, Brisbane, Australia 13 4. Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Brisbane, Australia 14 15 Editorial correspondence can be sent to: 16 Professor David Paterson 17 Director 18 UQ Center for Clinical Research 19 Faculty of Medicine 20 The University of Queensland 1 21 Level 8, Building 71/918, UQCCR, RBWH Campus 22 Herston QLD 4029 AUSTRALIA 23 T: +61 7 3346 5500 Downloaded from 24 F: +61 7 3346 5509 25 E: [email protected] 26 http://aac.asm.org/ 27 28 29 on August 18, 2020 at University of Queensland 30 31 32 33 34 35 36 37 38 39 2 40 Abstract 41 Achromobacter is a genus of non-fermenting Gram negative bacteria under order 42 Burkholderiales. Although primarily isolated from respiratory tract of people with cystic Downloaded from 43 fibrosis, Achromobacter spp. can cause a broad range of infections in hosts with other 44 underlying conditions.
    [Show full text]
  • Genome-Wide Investigation of Cellular Functions for Trna Nucleus
    Genome-wide Investigation of Cellular Functions for tRNA Nucleus- Cytoplasm Trafficking in the Yeast Saccharomyces cerevisiae DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hui-Yi Chu Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2012 Dissertation Committee: Anita K. Hopper, Advisor Stephen Osmani Kurt Fredrick Jane Jackman Copyright by Hui-Yi Chu 2012 Abstract In eukaryotic cells tRNAs are transcribed in the nucleus and exported to the cytoplasm for their essential role in protein synthesis. This export event was thought to be unidirectional. Surprisingly, several lines of evidence showed that mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm and their distribution is nutrient-dependent. This newly discovered tRNA retrograde process is conserved from yeast to vertebrates. Although how exactly the tRNA nuclear-cytoplasmic trafficking is regulated is still under investigation, previous studies identified several transporters involved in tRNA subcellular dynamics. At least three members of the β-importin family function in tRNA nuclear-cytoplasmic intracellular movement: (1) Los1 functions in both the tRNA primary export and re-export processes; (2) Mtr10, directly or indirectly, is responsible for the constitutive retrograde import of cytoplasmic tRNA to the nucleus; (3) Msn5 functions solely in the re-export process. In this thesis I focus on the physiological role(s) of the tRNA nuclear retrograde pathway. One possibility is that nuclear accumulation of cytoplasmic tRNA serves to modulate translation of particular transcripts. To test this hypothesis, I compared expression profiles from non-translating mRNAs and polyribosome-bound translating mRNAs collected from msn5Δ and mtr10Δ mutants and wild-type cells, in fed or acute amino acid starvation conditions.
    [Show full text]
  • FUNCTIONAL and MECHANISTIC CHARACTERIZATION of TWO TRNA MODIFYING ENZYMES LAURA CAROLE KEFFER-WILKES Master of Science, Universi
    FUNCTIONAL AND MECHANISTIC CHARACTERIZATION OF TWO TRNA MODIFYING ENZYMES LAURA CAROLE KEFFER-WILKES Master of Science, University of Lethbridge, 2012 A Thesis Submitted to the School of Graduate Studies Of the University of Lethbridge In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY Department of Chemistry and Biochemistry University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Laura Keffer-Wilkes, 2016 FUNCTIONAL AND MECHANISTIC CHARACTERIZATION OF TWO TRNA MODIFYING ENZYMES LAURA CAROLE KEFFER-WILKES Date of Defence: June 28, 2016 Dr. Ute Wieden-Kothe Associate Professor Ph.D. Supervisor Dr. Tony Russell Assistant Professor Ph.D. Thesis Examination Committee Member Dr. Stacey Wetmore Professor Ph.D. Thesis Examination Committee Member Dr. Hans-Joachim Wieden Professor Ph.D. Thesis Examination Committee Member Dr. Eugene Mueller Professor Ph.D. External Examiner University of Louisville Louisville, Kentucky Dr. Elizabeth Schultz Associate Professor Ph.D. Internal External Examiner University of Lethbridge Dr. Michael Gerken Professor Ph.D. Chair, Thesis Examination Committee Abstract The formation of pseudouridine (Ѱ) and 5-methyluridine (m5U) in the T-arm of transfer RNAs (tRNAs) is near-universally conserved. These two modifications are formed in Escherichia coli by the pseudouridine synthase TruB and the S-adenosylmethionine- dependent methyltransferase TrmA, respectively. In this thesis, I investigate the function and mechanisms of these two tRNA modifying enzymes. First, in vitro and in vivo analysis of TruB reveals that this enzyme is acting as a tRNA chaperone which proves a long outstanding hypothesis. Secondly, characterization of ligand binding by TrmA shows that binding is cooperative and disruption of tRNA elbow region tertiary interactions by TrmA is essential for efficient tRNA binding and catalysis, leading to future analysis.
    [Show full text]
  • A Protein Subunit of Human Rnase P, Rpp14, and Its Interacting Partner, OIP2, Have 3؅35؅ Exoribonuclease Activity
    A protein subunit of human RNase P, Rpp14, and its interacting partner, OIP2, have 3؅35؅ exoribonuclease activity Taijiao Jiang and Sidney Altman* Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520 Contributed by Sidney Altman, February 12, 2002 -The processing of precursor tRNAs at their 5؅ and 3؅ termini is a presence of [␣-32P]UTP. Internally labeled SupS1-3Ј was pre fundamental event in the biosynthesis of tRNA. RNase P is gener- pared from internally labeled 5Ј-SupS1-3Ј by removing the 5Ј ally responsible for endonucleolytic removal of a leader sequence leader sequence by using purified human RNase P. For the of precursor tRNA to generate the mature 5؅ terminus. However, synthesis of 5Ј-32P-labeled 5Ј-Tyr-3Ј, transcription reactions were much less is known about the RNase P counterparts or other performed with nonlabeled NTPs, the RNA was purified and proteins that are active at the tRNA 3؅ terminus. Here we show that then was treated with calf intestinal phosphatase, extracted two one of the human RNase P subunits, Rpp14, together with one of times with phenol͞chloroform and one time with chloroform. its interacting protein partners, OIP2, is a 3؅35؅ exoribonuclease Recovery was by ethanol precipitation. 5Ј-Tyr-3Ј was labeled .with a phosphorolytic activity that processes the 3؅ terminus of with [␥-32P]ATP by using polynucleotide kinase precursor tRNA. Immunoprecipitates of a crude human RNase P Adult enhancer factor-1 (AEF) RNA, a single-stranded RNA complex can process both ends of precursor tRNA by hydrolysis, from Drosophila melanogaster (12), was labeled as indicated by but purified RNase P has no exonuclease activity.
    [Show full text]
  • B Number Gene Name Strand Orientation Protein Length Mrna
    list list sample) short list predicted B number Operon ID Gene name assignment Protein length mRNA present mRNA intensity Gene description Protein detected - Strand orientation Membrane protein detected (total list) detected (long list) membrane sample Proteins detected - detected (short list) # of tryptic peptides # of tryptic peptides # of tryptic peptides # of tryptic peptides # of tryptic peptides Functional category detected (membrane Protein detected - total Protein detected - long b0001 thrL + 21 1344 P 1 0 0 0 0 thr operon leader peptide Metabolism of small molecules 1 b0002 thrA + 820 13624 P 39 P 18 P 18 P 18 P(m) 2 aspartokinase I, homoserine dehydrogenase I Metabolism of small molecules 1 b0003 thrB + 310 6781 P 9 P 3 3 P 3 0 homoserine kinase Metabolism of small molecules 1 b0004 thrC + 428 15039 P 18 P 10 P 11 P 10 0 threonine synthase Metabolism of small molecules 1 b0005 b0005 + 98 432 A 5 0 0 0 0 orf, hypothetical protein Open reading frames 2 b0006 yaaA - 258 1047 P 11 P 1 2 P 1 0 orf, hypothetical protein Open reading frames 3 b0007 yaaJ - 476 342 P 8 0 0 0 0 MP-GenProt-PHD inner membrane transport protein Miscellaneous 4 b0008 talB + 317 20561 P 20 P 13 P 16 P 13 0 transaldolase B Metabolism of small molecules 5 b0009 mog + 195 1296 P 7 0 0 0 0 required for the efficient incorporation of molybdate into molybdoproteins Metabolism of small molecules 6 b0010 yaaH - 188 407 A 2 0 0 0 0 PHD orf, hypothetical protein Open reading frames 7 b0011 b0011 - 237 338 P 13 0 0 0 0 putative oxidoreductase Miscellaneous 8 b0012 htgA
    [Show full text]
  • Biosafety Guidelines for Contained Use of Genetically Modified Microorganisms at Pilot and Industrial Scales
    Biosafety Guidelines for Contained Use of Genetically Modified Microorganisms at Pilot and Industrial Scales TECHNICAL BIOSAFETY COMMITTEE (TBC) NATIONAL CENTER FOR GENETIC ENGINEERING AND BIOTECHNOLOGY (BIOTEC) NATIONAL SCIENCE AND TECHNOLOGY DEVELOPMENT AGENCY (NSTDA) MINISTRY OF SCIENCE AND TECHNOLOGY (MOST) 2015 Biosafety Guidelines for Contained Use of Genetically Modified Microorganisms at Pilot and Industrial Scales TECHNICAL BIOSAFETY COMMITTEE (TBC) NATIONAL CENTER FOR GENETIC ENGINEERING AND BIOTECHNOLOGY (BIOTEC) NATIONAL SCIENCE AND TECHNOLOGY DEVELOPMENT AGENCY (NSTDA) MINISTRY OF SCIENCE AND TECHNOLOGY (MOST) 2015 Biosafety Guidelines for Contained Use of Genetically Modified Microorganisms at Pilot and Industrial Scales Technical Biosafety Committee National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency (NSTDA) © National Center for Genetic Engineering and Biotechnology 2015 ISBN : 978-616-12-0386-3 Tel : +66(0)2-564-6700 Fax : +66(0)2-564-6703 E-mail : [email protected] URL : http://www.biotec.or.th Printing House : P.A. Living Printing Co.,Ltd 4 Soi Sirintron 7 Road Sirintron District Bangplad Province Bangkok 10700 Tel : +66(0)2-881 9890 Fax : +66(0)2-881 9894 Preface Genetically Modified Microorganisms (GMMs) were first used in B.E. 2525 to produce insulin in industrial medicine. Currently, GMMs are used in various industries, such as the food, pharmaceutical and bioplastic industries, to manufacture a number of important consumer products. To ensure operator and environmental safety, the Technical Biosafety Committee (TBC) of the National Center for Genetic Engineering and Biotechnology (BIOTEC), the National Science and Technology Development Agency (NSTDA), has prepared guidelines for GMM work, publishing “Biosafety Guidelines for Contained Use of Genetically Modified Microorganisms at Pilot and Industrial Scales” in B.E.
    [Show full text]
  • A Possible Functional Link Between RNA Degradation and Transcription in Bacillus Subtilis
    A possible functional link between RNA degradation and transcription in Bacillus subtilis Dissertation for the award of the degree “Doctor of Philosophy” Division of Mathematics and Natural Sciences of the Georg-August-University Göttingen within the program “Microbiology and Biochemistry” of the Georg-August University School of Science (GAUSS) submitted by Martin Benda from Prague (Czech Republic) Göttingen 2020 Thesis Committee Prof. Dr. Jörg Stülke (Supervisor and 1st Reviewer) Institute for Microbiology and Genetics, Department of General Microbiology, Georg-August-University Göttingen Prof. Dr. Rolf Daniel (2nd Reviewer) Institute for Microbiology and Genetics, Department of Genomic and Applied Microbiology, Georg-August- University Göttingen Prof. Dr. Fabian M. Commichau Institute for Biotechnology, Department of Synthetic Microbiology, Brandenburg University of Technology Cottbus-Senftenberg Additional members of the Examination Board Prof. Dr. Markus Bohnsack Department of Molecular Biology, University Medical Center Göttingen Prof. Dr. Patrick Cramer Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen Prof. Dr. Stefanie Pöggeler Institute for Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg- August-University Göttingen Date of oral examination: September 17th, 2020 I hereby declare that this Ph.D. thesis entitled “A possible functional link between RNA degradation and transcription in Bacillus subtilis” has been written independently and with no other sources and aids than quoted. Martin Benda Acknowledgements First of all, I would like to express my deep thanks to my supervisor Prof. Dr. Jörg Stülke for the great guidance during this work. He put his full trust in me and gave me the opportunity to work on this intricate, but engaging topic of RNA degradation.
    [Show full text]
  • Contamination of Burn Wounds by Achromobacter
    Annals of Burns and Fire Disasters - vol. XXIX - n. 3 - September 2016 CONTAMINATION OF BURN WOUNDS BY ACHROMOBACTER XYLOSOXIDANS FOLLOWED BY SEVERE INFECTION: 10-YEAR ANALYSIS OF A BURN UNIT POPULATION CONTAMINATION DES ZONES BRÛLÉES PAR ACHROMOBACTER XYLOSOXIDANS, ENTRAÎNANT UNE INFECTION SÉVÈRE: ANALYSE SUR 10 ANS * Schulz A., Perbix W., Fuchs P.C., Seyhan H., Schiefer J.L. Department of Plastic Surgery, Hand Surgery, Burn Center, University of Witten/Herdecke, Cologne-Merheim Medical Center (CMMC), Cologne, Germany SUMMARY. Gram-negative infections predominate in burn surgery. Until recently, Achromobacter species were described as sepsis-caus - ing bacteria in immunocompromised patients only. Severe infections associated with Achromobacter species in burn patients have been rarely reported. We retrospectively analyzed all burn patients in our database, who were treated at the Intensive Care Burn Unit (ICBU) of the Cologne Merheim Burn Centre from January 2006 to December 2015, focusing on contamination and infection by Achromobacter species. We identified 20 patients with burns contaminated by Achromobacter species within the 10-year study period. Four of these patients showed signs of infection concomitant with detection of Achromobacter species. Despite receiving complex antibiotic therapy based on antibiogram and resistogram typing, 3 of these patients, who had extensive burns, developed severe sepsis. Two patients ultimately died of multiple organ failure. In 1 case, Achromobacter xylosoxidans was the only isolate detected from the swabs and blood samples taken during the last stage of sepsis. Achromobacter xylosoxidans contamination of wounds of severely burned immunocompromised patients can lead to systemic lethal infection. Close monitoring of burn wounds for contamination by Achromobacter xylosoxidans is essential, and appropriate therapy must be administered as soon as possible.
    [Show full text]
  • Long-Term Phenotypic Evolution of Bacteria
    LETTER doi:10.1038/nature13827 Long-term phenotypic evolution of bacteria Germa´n Plata1,2, Christopher S. Henry3 & Dennis Vitkup1,4 For many decades comparative analyses of protein sequences and is sometimes observed within the same species, a transition from high structures have been used to investigate fundamental principles of to low phenotypic similarity occurs primarily at the genus level. molecular evolution1,2. In contrast, relatively little is known about Analyses of phenotypic evolution, such as the morphological varia- the long-term evolution of species’ phenotypic and genetic properties. tion of beaks in Darwin’s finches3, provided the original impetus and This represents an important gap in our understanding of evolu- context for understanding natural selection. Because the evolutionary tion, as exactly these proprieties play key roles in natural selection importance and physiological role of specific phenotypic traits change and adaptation to diverse environments. Here we perform a com- over time, it is often difficult to connect genotype to phenotype to fit- parative analysis of bacterial growth and gene deletion phenotypes ness across long evolutionary distances, especially for metazoan organ- using hundreds of genome-scale metabolic models. Overall, bacte- isms. For microbial species, on the other hand, the ability to metabolize rial phenotypic evolution can be described by a two-stage process different nutrient sources, although clearly not the only important phe- with a rapid initial phenotypic diversification followed by a slow notype, always remains an essential determinant of their fitness and long-term exponential divergence. The observed average divergence lifestyle. Even though a large-scale comparative analysis of microbial trend, with approximately similar fractions of phenotypic properties phenotypes—such as growth on different nutrients or the impact of changing per unit time, continues for billions of years.
    [Show full text]