Long-Term Phenotypic Evolution of Bacteria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co. -
Supplementary Information
1 Supplementary Information 2 Electron transfer complexes in the gut dictate high abundance circulating 3 metabolites 4 Yuanyuan Liu1,2, William Van Treuren2, Bi-Huei Hou1,2, Steven K. Higginbottom2, Justin 5 L. Sonnenburg2,3,4, and Dylan Dodd1,2† 6 7 1Department of Pathology Stanford University School of Medicine, Stanford, CA, USA; 8 2Department of Microbiology and Immunology, Stanford University School of Medicine, 9 Stanford, CA, USA; 3Chan Zuckerburg Biohub, San Francisco, CA, USA; 4Center for 10 Human Microbiome Studies, Stanford, CA, USA. 11 12 † Correspondence: [email protected] 13 14 Supplementary Tables Supplementary Table 1. Estimates of ATP levels during Stickland metabolism of Phe. Phenylalanine disproportionation Considerations Oxidative Pathway Reductive Pathway Stoichiometry for redox 1 mole Phe 2 moles Phe balance NADH reducing equivalents 2 NADH produced (total) 2 NADH produced 4 NADH consumed Net: 2 NADH consumed ATP from substrate level 1 ATP phosphorylation Ferredoxin reduced (2 e- 1 mole Fdred 2 moles Fdred reduction) Protons translocated through Rnf complex 2 protons 4 protons (assuming 2 protons per mole Fdred)a ATP from ETP (assuming 4 0.5 ATP 1 ATP protons per mole ATP)a Total ATP 1.5 ATP 1 ATP Percentage of total ATP 60% 40% a Estimates are from Buckel and Thauer25. 15 16 Supplementary Table 2. Homologs of electron transfer complexes identified by BLASTp Query (% identity # hits # Phyla (Phylum names) # Families (family names) cutoff)a,b,c Clostridium 551 5 phyla (Firmicutes, 19 families (Clostridiaceae, Lachnospiraceae, -
A Systems-Level Investigation of the Metabolism of Dehalococcoides Mccartyi and the Associated Microbial Community
A Systems-Level Investigation of the Metabolism of Dehalococcoides mccartyi and the Associated Microbial Community by Mohammad Ahsanul Islam A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Mohammad Ahsanul Islam 2014 A Systems-Level Investigation of the Metabolism of Dehalococcoides mccartyi and the Associated Microbial Community Mohammad Ahsanul Islam Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto 2014 Abstract Dehalococcoides mccartyi are a group of strictly anaerobic bacteria important for the detoxification of man-made chloro-organic solvents, most of which are ubiquitous, persistent, and often carcinogenic ground water pollutants. These bacteria exclusively conserve energy for growth from a pollutant detoxification reaction through a novel metabolic process termed organohalide respiration. However, this energy harnessing process is not well elucidated at the level of D. mccartyi metabolism. Also, the underlying reasons behind their robust and rapid growth in mixed consortia as compared to their slow and inefficient growth in pure isolates are unknown. To obtain better insight on D. mccartyi physiology and metabolism, a detailed pan- genome-scale constraint-based mathematical model of metabolism was developed. The model highlighted the energy-starved nature of these bacteria, which probably is linked to their slow growth in isolates. The model also provided a useful framework for subsequent analysis and visualization of high-throughput transcriptomic data of D. mccartyi. Apart from confirming expression of the majority genes of these bacteria, this analysis helped review the annotations of ii metabolic genes. -
European Workshop on Phenotype Microarrays
Florence Conference on Phenotype MicroArray Analysis of Microorganisms The Environment, Agriculture, and Human Health Firenze-Italy, March 19-21, 2008 Programme and Abstracts Florence Conference on Phenotype MicroArray Analysis of Microorganisms The Environment, Agriculture, and Human Health Firenze-Italy, March 19-21, 2008 Programme and Abstracts Edited by: F. Decorosi, L. Giovannetti, E. Tatti, C. Viti Contents Organization page i Partners-Sponsors and Patronages page ii Programme page iii Poster contributions page 1 Abstracts Part I - lectures and oral presentations page 6 Part II - posters page 33 Author index page 60 Participant list page 64 Organizing and Scientific Committee Carlo Viti Department of Agricultural Biotechnology, University of Firenze, Italy Luciana Giovannetti Department of Agricultural Biotechnology, University of Firenze, Italy Alessandro Camussi, Department of Agricultural Biotechnology, Genexpress laboratory, University of Firenze, Italy Barry Bochner, CEO & CSO Biolog, Usa. Fabio Zenna AES - Chemunex , Italy Scientific Secretariat Enrico Tatti Department of Agricultural Biotechnology, University of Firenze, Italy Francesca Decorosi Department of Agricultural Biotechnology, University of Firenze, Italy i Partners-Sponsors and Patronages ANNALS OF MICROBIOLOGY ii Programme iii Wednesday, 19th 15.00 16.45 Registration 16.45-17.00 The Authorities Welcome to Florence University Carlo Viti and Luciana Opening of Florence Conference on Phenotype Giovannetti (Firenze, MicroArrays Italy) Opening lecture 17.00-18.00 Tom -
Achromobacter Buckle Infection Diagnosed by a 16S Rdna Clone
Hotta et al. BMC Ophthalmology 2014, 14:142 http://www.biomedcentral.com/1471-2415/14/142 CASE REPORT Open Access Achromobacter buckle infection diagnosed by a 16S rDNA clone library analysis: a case report Fumika Hotta1†, Hiroshi Eguchi1*, Takeshi Naito1†, Yoshinori Mitamura1†, Kohei Kusujima2† and Tomomi Kuwahara3† Abstract Background: In clinical settings, bacterial infections are usually diagnosed by isolation of colonies after laboratory cultivation followed by species identification with biochemical tests. However, biochemical tests result in misidentification due to similar phenotypes of closely related species. In such cases, 16S rDNA sequence analysis is useful. Herein, we report the first case of an Achromobacter-associated buckle infection that was diagnosed by 16S rDNA sequence analysis. This report highlights the significance of Achromobacter spp. in device-related ophthalmic infections. Case presentation: A 56-year-old woman, who had received buckling surgery using a silicone solid tire for retinal detachment eighteen years prior to this study, presented purulent eye discharge and conjunctival hyperemia in her right eye. Buckle infection was suspected and the buckle material was removed. Isolates from cultures of preoperative discharge and from deposits on the operatively removed buckle material were initially identified as Alcaligenes and Corynebacterium species. However, sequence analysis of a 16S rDNA clone library using the DNA extracted from the deposits on the buckle material demonstrated that all of the 16S rDNA sequences most closely matched those of Achromobacter spp. We concluded that the initial misdiagnosis of this case as an Alcaligenes buckle infection was due to the unreliability of the biochemical test in discriminating Achromobacter and Alcaligenes species due to their close taxonomic positions and similar phenotypes. -
Evolution, Epistasis, and the Genotype-To-Phenotype Problem in Myxococcus Xanthus
Syracuse University SURFACE Dissertations - ALL SURFACE 5-14-2017 Evolution, epistasis, and the genotype-to-phenotype problem in Myxococcus xanthus. Michael Bradley Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Life Sciences Commons Recommended Citation Bradley, Michael, "Evolution, epistasis, and the genotype-to-phenotype problem in Myxococcus xanthus." (2017). Dissertations - ALL. 674. https://surface.syr.edu/etd/674 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract The complex social behavior of M. xanthus makes it an excellent model system to study the relationship between genotype and phenotype. Under nutrient rich conditions, a swarm of M. xanthus cells coordinate their movement outward in search of prey. When starved, cells condense into multicellular structures called aggregates. Taken together, these two aspects of the M. xanthus life cycle display several sub-traits that are used to describe its phenotype. Furthermore, the genome of M. xanthus is large, encoding a predicted 7,314 genes, many of which have been linked to aspects of its multicellular phenotype. This work presented here addresses the genotype-to-phenotype (G2P) problem as it relates to the annotation of a biological process in a model system. The first project addresses G2P from a population genetics approach; we constructed a mutant strain library consisting of 180 single gene knockouts of the ABC transporter superfamily of genes to examine the distribution of mutant phenotypes among an entire group of genes. -
Gut Microbiome Alterations in Ulcerative Colitis and After Moxibustion Intervention
Gut Microbiome Alterations In Ulcerative Colitis And After Moxibustion Intervention Qin Qi Shanghai University of Traditional Chinese Medicine Ya-Nan Liu Shanghai University of Traditional Chinese Medicine Si-Yi Lv Shanghai University of Traditional Chinese Medicine Huan-Gan Wu Shanghai University of Traditional Chinese Medicine Lin-Shuang Zhang Zhejiang Institute for Food and Drug Control Zhan Cao Tongji University School of Medicine Hui-Rong Liu Shanghai University of Traditional Chinese Medicine Xiao-Mei Wang ( [email protected] ) Shanghai University of Traditional Chinese Medicine Lu-Yi Wu Shanghai University of Traditional Chinese Medicine Research Article Keywords: Ulcerative colitis, Moxibustion, Gut microbiota, Metagenomic Posted Date: August 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-789670/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/22 Abstract Background: Recent studies have shown that the pathogenesis of ulcerative colitis (UC) is closely related to the gut microbiota. Moxibustion, a common treatment in traditional Chinese medicine, is the burning of the herb moxa over acupuncture points. Moxibustion has been used to improve the inammation and gastrointestinal dysfunctions in gastrointestinal disorders such as UC. In this study, we investigated whether moxibustion could improve the gut microbial dysbiosis induced by dextran sulphate sodium (DSS). Methods: Twenty-ve male rats were randomly assigned into ve groups: normal (NG), UC model (UC), moxibustion (UC+MOX), mesalazine (UC+MES), and normal rats with moxibustion (NG+MOX). The UC rat model was established by administering DSS solution. The rats in the UC+MOX and NG+MOX groups were treated with moxibustion at Tianshu (bilateral, ST25) points once daily for 7 consecutive days, and the UC+MES group rats were treated with mesalazine once daily for 7 consecutive days. -
Microbial Diversity of Drilling Fluids from 3000 M Deep Koyna Pilot
Science Reports Sci. Dril., 27, 1–23, 2020 https://doi.org/10.5194/sd-27-1-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Microbial diversity of drilling fluids from 3000 m deep Koyna pilot borehole provides insights into the deep biosphere of continental earth crust Himadri Bose1, Avishek Dutta1, Ajoy Roy2, Abhishek Gupta1, Sourav Mukhopadhyay1, Balaram Mohapatra1, Jayeeta Sarkar1, Sukanta Roy3, Sufia K. Kazy2, and Pinaki Sar1 1Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India 2Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India 3Ministry of Earth Sciences, Borehole Geophysics Research Laboratory, Karad, 415114, Maharashtra, India Correspondence: Pinaki Sar ([email protected], [email protected]) Received: 24 June 2019 – Revised: 25 September 2019 – Accepted: 16 December 2019 – Published: 27 May 2020 Abstract. Scientific deep drilling of the Koyna pilot borehole into the continental crust up to a depth of 3000 m below the surface at the Deccan Traps, India, provided a unique opportunity to explore microbial life within the deep granitic bedrock of the Archaean Eon. Microbial communities of the returned drilling fluid (fluid re- turned to the mud tank from the underground during the drilling operation; designated here as DF) sampled during the drilling operation of the Koyna pilot borehole at a depth range of 1681–2908 metres below the surface (m b.s.) were explored to gain a glimpse of the deep biosphere underneath the continental crust. Change of pH 2− to alkalinity, reduced abundance of Si and Al, but enrichment of Fe, Ca and SO4 in the samples from deeper horizons suggested a gradual infusion of elements or ions from the crystalline bedrock, leading to an observed geochemical shift in the DF. -
Statistical Methods for Comparative Phenomics Using High-Throughput Phenotype Microarrays
The International Journal of Biostatistics Volume 6, Issue 1 2010 Article 29 Statistical Methods for Comparative Phenomics Using High-Throughput Phenotype Microarrays Joseph Sturino, Texas A&M University Ivan Zorych, Texas A&M University Bani Mallick, Texas A&M University Karina Pokusaeva, Texas A&M University Ying-Ying Chang, Texas A&M University Raymond J. Carroll, Texas A&M University Nikolay Bliznuyk, Texas A&M University Recommended Citation: Sturino, Joseph; Zorych, Ivan; Mallick, Bani; Pokusaeva, Karina; Chang, Ying-Ying; Carroll, Raymond J.; and Bliznuyk, Nikolay (2010) "Statistical Methods for Comparative Phenomics Using High-Throughput Phenotype Microarrays," The International Journal of Biostatistics: Vol. 6: Iss. 1, Article 29. DOI: 10.2202/1557-4679.1227 Statistical Methods for Comparative Phenomics Using High-Throughput Phenotype Microarrays Joseph Sturino, Ivan Zorych, Bani Mallick, Karina Pokusaeva, Ying-Ying Chang, Raymond J. Carroll, and Nikolay Bliznuyk Abstract We propose statistical methods for comparing phenomics data generated by the Biolog Phenotype Microarray (PM) platform for high-throughput phenotyping. Instead of the routinely used visual inspection of data with no sound inferential basis, we develop two approaches. The first approach is based on quantifying the distance between mean or median curves from two treatments and then applying a permutation test; we also consider a permutation test applied to areas under mean curves. The second approach employs functional principal component analysis. Properties of the proposed methods are investigated on both simulated data and data sets from the PM platform. KEYWORDS: functional data analysis, principal components, permutation tests, phenotype microarrays, high-throughput phenotyping, phenomics, Biolog Author Notes: Zorych and Bliznyuk were supported by the Texas A&M Postdoctoral Training Program of the National Cancer Institute (CA90301). -
Achromobacter Infections and Treatment Options
AAC Accepted Manuscript Posted Online 17 August 2020 Antimicrob. Agents Chemother. doi:10.1128/AAC.01025-20 Copyright © 2020 American Society for Microbiology. All Rights Reserved. 1 Achromobacter Infections and Treatment Options 2 Burcu Isler 1 2,3 3 Timothy J. Kidd Downloaded from 4 Adam G. Stewart 1,4 5 Patrick Harris 1,2 6 1,4 David L. Paterson http://aac.asm.org/ 7 1. University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, 8 Brisbane, Australia 9 2. Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, 10 Brisbane, Australia on August 18, 2020 at University of Queensland 11 3. University of Queensland, Faculty of Science, School of Chemistry and Molecular 12 Biosciences, Brisbane, Australia 13 4. Infectious Diseases Unit, Royal Brisbane and Women’s Hospital, Brisbane, Australia 14 15 Editorial correspondence can be sent to: 16 Professor David Paterson 17 Director 18 UQ Center for Clinical Research 19 Faculty of Medicine 20 The University of Queensland 1 21 Level 8, Building 71/918, UQCCR, RBWH Campus 22 Herston QLD 4029 AUSTRALIA 23 T: +61 7 3346 5500 Downloaded from 24 F: +61 7 3346 5509 25 E: [email protected] 26 http://aac.asm.org/ 27 28 29 on August 18, 2020 at University of Queensland 30 31 32 33 34 35 36 37 38 39 2 40 Abstract 41 Achromobacter is a genus of non-fermenting Gram negative bacteria under order 42 Burkholderiales. Although primarily isolated from respiratory tract of people with cystic Downloaded from 43 fibrosis, Achromobacter spp. can cause a broad range of infections in hosts with other 44 underlying conditions. -
Biolog Phenotype Microarray: a Tool for the Identification of Multidrug Resistance Efflux
bioRxiv preprint doi: https://doi.org/10.1101/344879; this version posted June 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Biolog phenotype microarray: a tool for the identification of multidrug resistance efflux 2 pumps inducers 3 Blanco, P., Corona, F., Martínez, JL*. 4 Centro Nacional de Biotecnología. CSIC. Darwin 3. 28049-Madrid. Spain. 5 6 7 * Corresponding author 8 Phone: +34 915854542 9 emails: 10 PB: [email protected] 11 FC: [email protected] 12 JLM:[email protected] 13 Running title: Discovering novel effectors of multidrug efflux pumps 1 bioRxiv preprint doi: https://doi.org/10.1101/344879; this version posted June 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 Overexpression of multidrug resistance efflux pumps is a relevant mechanism of antibiotic 3 resistance for bacterial pathogens. These systems use to present low levels of basal 4 expression. However, they can be induced by environmental signals or stresses which can 5 lead to situations of phenotypic induced resistance. In contrast to efflux pumps substrates, 6 inducers of these systems have not been thoroughly studied. In this work, we have applied a 7 novel high-throughput methodology in order to identify inducer molecules of the 8 Stenotrophomonas maltophilia SmeVWX and SmeYZ efflux pumps. -
EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated