University of Cincinnati

Total Page:16

File Type:pdf, Size:1020Kb

University of Cincinnati UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Dust Grain Growth and Disk Evolution of a Set of Young Stellar Objects A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) in the department of Physics of the McMicken College of Arts and Sciences 2008 by William Joseph Carpenter B.S. The Ohio State University, 1998 M.S. Miami University of Ohio, 2001 Committee Chair: Prof. Michael Sitko, Ph.D. Abstract This work investigates the observed properties of a sample of young stellar systems using two computer-modeling codes, DUSTY and the Whitney TTSRE codes, to fit the spectra of many objects. The parameters of these computer models are used to attempt to answer several basic questions related to circumstellar disk evolution. Silicate band strengths and millimeter spectral indexes are related to grain growth and are found to be reasonably correlated for the group of models. Circumstellar disk self-shadowing can effect the spectral shape of far infrared data and the relation between the two are studied showing a possible correlation, however other factors can effect the shape of the far infrared data and so a firm correlation can not be confirmed. Six objects out of the nearly 50 stars fit with DUSTY are fit with the Whitney code. Chronological age estimates are compared with model parameters but no correlation could be found between either silicate band strength or millimeter spectral index and the objects’ ages. This indicates that the evolutionary ages and chronological ages of this set of objects are not closely related. For two stars, HD 31648 and HD 163296, time dependent data exists showing differences in the near infrared region. To fit the differing data, the inner radius of the model disk needed to move outwards and the geometrical thickness of the model disk needed to increase. This provides a possible disk evolution scenario to explain the differing spectra. iii iv Acknowledgements I express my deep gratitude to Prof. Sitko for all of his patient assistance in the completion of this project. I also thank him for giving me the opportunity to visit telescopes both in Arizona and Hawaii- even if it was up on a mountain and not down by the beach. I thank Moshe Elitzur, Barb Whitney, and all those legions of people that came before me and wrote the codes used in this project so I didn’t have to. Finally, I super thank my wonderful wife, Amelia, for having such patience with me during these years and for supporting me so much! I also want to thank the two new Carpenters, Ali and Jimmy, for being so awfully cute and also for not demanding TOO much of my time and allowing me to finish! v Table of Contents 1. Introduction 11 2. Background Science 14 2.1. Young Star Formation 14 2.2. Circumstellar Material 16 2.3. Light Interaction with Dust 21 2.4. SED Modeling Codes 30 2.5. Nature and Use of the DUSTY Code 30 2.6. Nature and Use of the Whitney Code 40 3. DUSTY Fits and Results 54 3.1. AA Tau 63 3.2. AB Aur 64 3.3. BF Ori 66 3.4. BFS60 67 3.5. CO Ori 68 3.6. CQ Tau 70 3.7. CW Tau 72 3.8. CY Tau 73 3.9. DG Tau 75 3.10. DL Tau 77 3.11. DM Tau 78 3.12. GI Tau 80 3.13. GK Tau 81 1 3.14. GM Aur 83 3.15. GW Ori 85 3.16. HD 31648 86 3.17. HD 35187 88 3.18. HD 37806 89 3.19. HD 45677 90 3.20. HD 50138 93 3.21. HD 58647 94 3.22. HD 98800 96 3.23. HD 100546 98 3.24. HD 135344 (SAO 206462) 100 3.25. HD 141569 102 3.26. HD 163296 104 3.27. HD 169142 106 3.28. HD 190073 108 3.29. HD 250550 109 3.30. Hen 3-600 110 3.31. HK Ori 112 3.32. HL Tau 114 3.33. HP Tau 116 3.34. HP Tau G2 117 3.35. HP Tau G3 118 3.36. HR 4796 120 2 3.37. LkCa 15 121 3.38. LkCa 21 123 3.39. NV Ori 124 3.40. RR Tau 125 3.41. RW Aur 127 3.42. RY Ori 129 3.43. RY Tau 130 3.44. SU Aur 131 3.45. TW Hya 133 3.46. UX Ori 134 3.47. UY Aur 136 3.48. V590 Mon 137 3.49. V594 Cas 138 3.50. XZ Tau 140 3.51. Grain Growth and Settling Correlation 141 3.52. Disk Inner Wall and Self Shadowing Correlation Study 143 4. Whitney Code Fits and Results 150 4.1. HD 31648 155 4.2. HD 163296 162 4.3. Inner Disk Analysis 169 4.4. HD 100546 174 4.5. HD 135344 (SAO 206462) 179 4.6. HD 169142 183 3 4.7. AB Aur 190 4.8. Discussion 194 5. Conclusions 198 6. References 202 7. Appendix A 215 4 List of Figures 2-1 Sample SED and drawing of a Class II object 15 2-2 Basic flared disk model 18 2-3 More complex disk model with hole and ‘puffed up’ inner rim 19 2-4 Example close up SED of the NIR spectral region of HD 163296 20 2-5 Cartoon showing two suggested sources of excess NIR emission 20 2-6 Cartoon of stellar radiation incident on a grain and resulting emission 22 2-7 Wavelength dependence of Qabs 24 2-8 Wavelength dependence of Qabs for several grain sizes 25 2-9 Emission spectra of a 1000K blackbody and three grain types 25 2-10 Temperature vs. stellar distance for several grain types 27 2-11 Temperature vs. stellar distance for several grain sizes 27 2-12 DUSTY SED internal coded DL-Silicates and C# Mie code DL-Silicates 30 2-13 The DUSTY code model 31 2-14 An example of DUSTY halo disk reheating 33 2-15 The SED of HD 31648 as an example of limited grain growth 37 2-16 The SED of XZ Tau as an example of more advanced grain growth 38 2-17 An example SED of a ‘toy’ model for an early stage stellar system 39 2-18 The SED of HD 58647 40 2-19 Density plots of inner disk region and halo envelope 41 2-20 The SED of HD 135344 42 2-21 Cutaways diagrams showing cavity wall shape 43 2-22 Flattened envelope density structure and inner region disk structure 44 5 2-23 Schematic of the four dust file regions 45 2-24 Image file showing a face on object 48 2-25 Example of the same model with different photon counts 49 2-26 Whitney code produced model of Type 0 SED 50 2-27 Whitney code produced model of Type II SED 51 2-28 Density plot of a Whitney model disk with flaring parameter B=1.12 52 2-29 Density plot of a Whitney model disk with flaring parameter B=0.86 52 3-1 Comparison of pyroxene60 with olivine 56 3-2 Comparison of adding graphite and increasing the grain size 57 3-3 Comparison of replacing DL-Silicates with pyroxene 58 3-4 The SED and DUSTY model of AA Tau 63 3-5 The SED and DUSTY Model of AB Aur 64 3-6 The SED and DUSTY model of BF Ori 66 3-7 The SED and DUSTY model of bfs60 67 3-8 The SED and DUSTY model of CO Ori 68 3-9 The SED and DUSTY model of CQ Tau 70 3-10 The SED and DUSTY model of CW Tau 72 3-11 The SED and DUSTY model of CY Tau 73 3-12 The SED and DUSTY model of DG Tau 75 3-13 The SED and DUSTY model of DL Tau 77 3-14 The SED and DUSTY model of DM Tau 78 3-15 The SED and DUSTY model of GI Tau 80 3-16 The SED and DUSTY model of GK Tau 81 6 3-17 The SED and DUSTY model of GM Aur 83 3-18 The SED and DUSTY model of GW Ori 85 3-19 The SED and DUSTY model of HD 31648 86 3-20 The SED and DUSTY model of HD 35187 88 3-21 The SED and DUSTY model of HD 37806 89 3-22 The 1980 SED and DUSTY model of HD 45677 90 3-23 The 1992 SED and DUSTY model of HD 45677 91 3-24 The SED and DUSTY model of HD 50138 93 3-25 The SED and DUSTY model of HD 58647 consisting of a disk and 94 blackbody 3-26 The SED and DUSTY model of HD 58647 consisting of a large grain 95 halo 3-27 The SED and DUSTY model of HD 98800 96 3-28 The SED and DUSTY model of HD 100546 98 3-29 The SED and DUSTY model of HD 135344 100 3-30 The SED and DUSTY model of HD 141569 102 3-31 The SED and DUSTY model of HD 163296 104 3-32 The SED and DUSTY model of HD 169142 106 3-33 The SED and DUSTY model of HD 190073 108 3-34 The SED and DUSTY model of HD 250550 109 3-35 The SED and DUSTY model of Hen 3-600 110 3-36 The SED and DUSTY model of HK Ori 112 3-37 The SED and DUSTY model of HL Tau 114 7 3-38 The SED and DUSTY model of HP Tau 116 3-39 The SED and DUSTY model of HP Tau G2 117 3-40 The SED and DUSTY model of HP Tau G3 118 3-41 The SED and DUSTY model of HR 4796 120 3-42 The SED and DUSTY model of LickCa 15 121 3-43 The SED and DUSTY model of LickCa 21 123 3-44 The SED and DUSTY model of NV Ori 124 3-45 The SED and DUSTY model of RR Tau 125 3-46 The SED and DUSTY model of RW Aur 127 3-47 The SED and DUSTY model of RY Ori 129 3-48 The SED and DUSTY model of RY Tau 130 3-49 The SED and DUSTY model of SU Aur 131 3-50 The SED and DUSTY model of TW Hya 133 3-51 The SED and DUSTY model of UX Ori 134 3-52 The SED and DUSTY model of UY Aur 136 3-53 The SED and DUSTY model of V590 Mon 137 3-54 The SED and DUSTY model of V594 Cas 138 3-55 The SED and DUSTY model of XZ Tau 140 3-56 Band/continuum ratio and millimeter spectral index correlation 142 3-57 12µm/25µm correlation plot showing all selected objects 145 3-58 12µm/25µm correlation plot with “questionable” objects removed 145 3-59 12µm/60µm correlation plot showing all selected objects 146 3-60 12µm/60µm correlation plot with “questionable” objects removed 146 8 3-61 25µm/60µm correlation plot showing all selected objects 147 3-62 25µm/60µm correlation plot with “questionable” objects removed 147 4-1 The 1996 SED and Whitney model of HD 31648 155 4-2 The 2004 SED and Whitney model of HD 31648 155 4-3 Model Comparison of HD 31648 from 1996 and 2004 156 4-4 Surface brightness plot of HD 31648 158 4-5 Temperature
Recommended publications
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • THE YOUNG ASTRONOMERS NEWSLETTER Volume 23 Number 6 STUDY + LEARN = POWER May 2015
    THE YOUNG ASTRONOMERS NEWSLETTER Volume 23 Number 6 STUDY + LEARN = POWER May 2015 ****************************************************************************************************************************** AUSTRALIAN CRATER HIDDEN STARS A team of geophysicists has found the twin scars of Scientists found a bright nebula around the Milky the impacts of a huge meteorite that broke in two Way”s nearby star 48 Librae in a patch of sky that moments before it slammed into the Earth millions of appears totally black in visible light but appears in infra- years ago in central Australia. It is the largest impact red. They said: "This cluster is probably a group of very zone ever found on Earth – 400 kilometers wide. young stars forming inside a previously undiscovered “YELLOW BALLS” molecular cloud, and the 48 Librae nebula apparently is Citizen scientists recently found a new class of due to a huge cloud of dust around the star.” curiosities that had gone unrecognized before: yellow HUBBLE IS 25! balls. Many "citizen scientist" projects make up the Hubble, the first telescope to revolutionize modern Zooniverse website which relies on “crowd-sourcing” to astronomy and change our view of the universe by help process scientific data. offering glimpses of distant galaxies, has marked its 25th The rounded features are not actually yellow but year in space. A senior scientist said: "Hubble absolutely appear that way in the infrared images the telescope has changed the way humans look at the universe and sends to Earth. See: http://www.spxdaily.com/images- our place in it." lg/yellow-balls-process-star-formation-lg.jpg A DISTANT PLANET and http://www.zooniverse.org The Spitzer Space Telescope teamed up with CANADA’S NEW TMT TELESCOPE Poland’s OGLE telescope in Chile to find a remote gas Canada and an international partnership are funding planet about 13,000 light-years away, making it one of the construction of the Thirty Meter Telescope - the top the most distant planets known.
    [Show full text]
  • La Constellation Du Cocher Ou Auriga ( Latin )
    DansDans lala ss éérierie lesles constellationsconstellations lala constellationconstellation dudu CocherCocher ouou AurigaAuriga (( LatinLatin )) - Repérage - Caractéristiques - Histoire Constellation d’hiver, le Cocher fait partie des 48 constellations originellement répertoriées par Ptolémée dans son Almageste*. Superficie 657 deg² à comparer aux 1 255 deg² d’Hercule par exemple… * L'Almageste (qui est l'arabisation du grec ancien megistos (byblos) signifiant grand (livre)) est une œuvre de Claude Ptolémée datant du IIe siècle étant la somme des connaissances les plus avancées de son époque Patrice D écembre 2008 en mathématiques et en astronomie. L'Almageste contient également un catalogue d'étoiles. LocalisationLocalisation RepRep ééragerage • Le Cocher est une constellation très étendue traversée par la Voie Lactée et riche en amas d'étoiles, la constellation du Cocher se signale d'abord par son étoile principale, Capella. • Si la Grande Ourse est visible, Capella se situe dans la direction pointée par le grand chariot, à une vingtaine de degrés vers l’ Est. • Capella - Presque aussi brillante que Véga de la Lyre et d'une luminosité supérieure à celle de Rigel d'Orion. FormeForme • Partiellement circumpolaire, observée depuis une latitude de 45° Nord, la constellation dessine sensiblement un pentagone formé dans le sens des aiguilles d'une montre par Capella α Aur, ς Aur, ß du Taureau située juste à la limite sud de la constellation, puis en remontant vers le nord, θ Aur et ß Aur. • L'autre élément remarquable de la constellation est formé par les trois petites "chevrettes" η, ζ et ε Aur, qui forment un triangle serré au Sud de Capella. CaractCaract ééristiquesristiques CapellaCapella Capella (α Aurigae) appartient au groupe de tête des étoiles les plus éclatantes de nos nuits.
    [Show full text]
  • Chemical-Composition-Of-The-Circumstellar-Disk-Around-AB-Aurigae.Pdf (1.034Mb)
    Astronomy & Astrophysics manuscript no. AB_Aur_final c ESO 2015 May 12, 2015 Chemical composition of the circumstellar disk around AB Aurigae S. Pacheco-Vázquez1 , A. Fuente1, M. Agúndez2, C. Pinte6, 7, T. Alonso-Albi1, R. Neri3, J. Cernicharo2,J. R. Goicoechea2, O. Berné4, 5, L. Wiesenfeld6, R. Bachiller1, and B. Lefloch6 1 Observatorio Astronómico Nacional (OAN), Apdo 112, E-28803 Alcalá de Henares, Madrid, Spain e-mail: [email protected], [email protected] 2 Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, C/ Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco, Spain e-mail: [email protected] 3 Institut de Radioastronomie Millimétrique, 300 Rue de la Piscine, F-38406 Saint Martin d’Hères, France 4 Université de Toulouse, UPS-OMP, IRAP, Toulouse, France 5 CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France 6 Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Université UJF-Grenoble 1/CNRS-INSU, F-38041 Grenoble, France 7 UMI-FCA, CNRS/INSU, France (UMI 3386), and Dept. de Astronomía, Universidad de Chile, Santiago, Chile e-mail: [email protected] Received September 15, 1996; accepted March 16, 1997 ABSTRACT Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is paramount for understanding the chemical evolution of the gas in warm disks. Methods. We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (A Chemical Survey of Sun-like Star-forming Regions).
    [Show full text]
  • The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST),
    A&A 468, 353–377 (2007) Astronomy DOI: 10.1051/0004-6361:20065724 & c ESO 2007 Astrophysics The XMM-Newton extended survey of the Taurus molecular cloud Special feature The XMM-Newton extended survey of the Taurus molecular cloud (XEST), M. Güdel1, K. R. Briggs1, K. Arzner1, M. Audard2,, J. Bouvier3, E. D. Feigelson4, E. Franciosini5, A. Glauser1, N. Grosso3, G. Micela5, J.-L. Monin3, T. Montmerle3, D. L. Padgett6, F. Palla7, I. Pillitteri8, L. Rebull6, L. Scelsi8, B. Silva9,10, S. L. Skinner11, B. Stelzer5, and A. Telleschi1 1 Paul Scherrer Institut, Würenlingen and Villigen, 5232 Villigen PSI, Switzerland e-mail: [email protected] 2 Columbia Astrophysics Laboratory, Mail Code 5247, 550 West 120th Street, New York, NY 10027, USA 3 Laboratoire d’Astrophysique de Grenoble, Université Joseph Fourier - CNRS, BP 53, 38041 Grenoble Cedex, France 4 Department of Astronomy & Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802, USA 5 INAF - Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy 6 Spitzer Science Center, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125, USA 7 INAF - Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi, 5, 50125 Firenze, Italy 8 Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy 9 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150 Porto, Portugal 10 Departamento de Matemática Aplicada, Faculdade de Ciêcias da Universidade do Porto, 4169 Porto, Portugal 11 CASA, 389, University of Colorado, Boulder, CO 80309-0389, USA Received 31 May 2006 / Accepted 5 August 2006 ABSTRACT Context.
    [Show full text]
  • Ring Structure in the MWC 480 Disk Revealed by ALMA? Yao Liu1,2, Giovanni Dipierro3, Enrico Ragusa4, Giuseppe Lodato4, Gregory J
    A&A 622, A75 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834157 & © ESO 2019 Astrophysics Ring structure in the MWC 480 disk revealed by ALMA? Yao Liu1,2, Giovanni Dipierro3, Enrico Ragusa4, Giuseppe Lodato4, Gregory J. Herczeg5, Feng Long5, Daniel Harsono6, Yann Boehler7,8, Francois Menard8, Doug Johnstone9,10, Ilaria Pascucci11,12, Paola Pinilla13, Colette Salyk14, Gerrit van der Plas8, Sylvie Cabrit8,15, William J. Fischer16, Nathan Hendler11, Carlo F. Manara17, Brunella Nisini18, Elisabetta Rigliaco19, Henning Avenhaus1, Andrea Banzatti11, and Michael Gully-Santiago20 1 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 2 Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008, PR China e-mail: [email protected] 3 Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK 4 Dipartimento di Fisica, Universita` Degli Studi di Milano, Via Celoria, 16, Milano, 20133, Italy 5 Kavli Institute for Astronomy and Astrophysics, Peking University, Yiheyuan 5, Haidian Qu, 100871 Beijing, PR China 6 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands 7 Rice University, Department of Physics and Astronomy, Main Street, 77005 Houston, USA 8 Université Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France 9 NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada 10 Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]
  • Astronomy 111 Recitation #1
    Astronomy 142 Recitation #10 5 April 2013 Formulas to remember Leavitt's Law (classical Cepheid variables): MV =−2.77 log Π− 1.69 d mMVV−=5log 10 pc Hubble’s Law (galaxies in the uniform Universal expansion): vr = Hd0 -1 -1 -1 -1 H0 = 74.2 km sec Mpc= 22.8 km sec Mly Redshift z =(λλ − 00) λ SN Ia magnitude(dereddened) 00 d mMVV=++5log 25 Mpc 0 MV = −19.14 dE dm Black hole accretion Lc= = εε2 , ≈ 0.1. dt dt Eddington luminosity 25 4 3GMmpe m c 2eL LL<= ; M> E 4 25 23e Gmpe m c Workshop problems Warning! The workshop problems you will do in groups in Recitation are a crucial part of the process of building up your command of the concepts important in AST 142 and subsequent courses. Do not, therefore, do your work on scratch paper and discard it. Better for each of you to keep your own account of each problem, in some sort of bound notebook. 1. (Team discussion) A type Ia supernova happens when a the mass of a white dwarf, accreting material from a close-by normal or giant stellar companions, approaches the Stoner-Anderson- Chandrasekhar mass, MM= 1.4 . Review your previous experience with degenerate stars and answer the following questions, in order. a. If mass is added to a white dwarf, does its radius get larger, smaller, or stay the same? Is this different from what happens when mass is added to an ordinary, nondegenerate star? 2013 University of Rochester 1 All rights reserved Astronomy 142, Spring 2013 b.
    [Show full text]
  • GIARPS High-Resolution Observations of T Tauri Stars (Ghost). II
    Astronomy & Astrophysics manuscript no. 38534corr c ESO 2020 August 6, 2020 GIARPS High-resolution Observations of T Tauri stars (GHOsT) II. Connecting atomic and molecular winds in protoplanetary disks Gangi, M.1, Nisini, B.1, Antoniucci, S.1, Giannini, T.1, Biazzo, K.1, Alcalá, J. M.2, Frasca, A.3, Munari, U.4, Arkharov, A. A.5, Harutyunyan, A.6, Manara, C.F.7, Rigliaco, E.8, and Vitali, F.1 1 INAF - Osservatorio Astronomico di Roma - Via Frascati 33, 00078 Monte Porzio Catone, Italy e-mail: [email protected] 2 INAF - Osservatorio Astronomico di Capodimonte - Salita Moiariello 16, 80131 Napoli, Italy 3 INAF - Osservatorio Astrofisico di Catania - Via S. Sofia 78, 95123 Catania, Italy 4 INAF–Osservatorio Astronomico di Padova, via dell’Osservatorio 8, 36012 Asiago (VI), Italy 5 Central Astronomical Observatory of Pulkovo, Pulkovskoe shosse 65, 196140 St. Petersburg, Russia 6 Fundación Galileo Galilei - INAF - Telescopio Nazionale Galileo, 38700 Brena˜ Baja, Santa Cruz de Tenerife, Spain 7 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany 8 INAF–Osservatorio Astronomico di Padova, vicolo dell’ Osservatorio 5, 35122, Padova, Italy Received Month XX, XXXX; accepted Month XX, XXXX ABSTRACT Aims. In the framework of the GIARPS High-resolution Observations of T Tauri stars (GHOsT) project, we aim to characterize the atomic and molecular winds in a sample of classical T Tauri stars (CTTs) of the Taurus-Auriga region. Methods. We analyzed the flux calibrated [O i] 630 nm and H2 2.12 µm lines in a sample of 36 CTTs observed at the Telescopio Nazionale Galileo with the HARPS and GIANO spectrographs.
    [Show full text]
  • Tracing Planet-Induced Structures in Circumstellar Disks Using Molecular Lines
    Astronomy & Astrophysics manuscript no. ober2015_astro-ph c ESO 2018 November 5, 2018 Tracing planet-induced structures in circumstellar disks using molecular lines F. Ober1, S. Wolf1, A. L. Uribe2; 3 and H. H. Klahr2 1 Institute of Theoretical Physics and Astrophysics, University of Kiel, Leibnizstraße 15, 24118 Kiel, Germany e-mail: [email protected] 2 Max Planck Institute for Astronomy, Königstuhl, 69117 Heidelberg, Germany 3 University of Chicago, The Department of Astronomy and Astrophysik, 5640 S. Ellis Ave, IL 60637 Chicago Received, 17/03/2015 / Accepted, 11/05/2015 ABSTRACT Context. Circumstellar disks are considered to be the birthplace of planets. Specific structures like spiral arms, gaps, and cavities are characteristic indicators of planet-disk interaction. Investigating these structures can provide insights into the growth of protoplanets and the physical properties of the disk. Aims. We investigate the feasibility of using molecular lines to trace planet-induced structures in circumstellar disks. Methods. Based on 3D hydrodynamic simulations of planet-disk interactions obtained with the PLUTO code, we perform self- consistent temperature calculations and produce N-LTE molecular line velocity-channel maps and spectra of these disks using our new N-LTE line radiative transfer code Mol3D. Subsequently, we simulate ALMA observations using the CASA simulator. We consider two nearly face-on inclinations, five disk masses, seven disk radii, and two different typical pre-main-sequence host stars (T Tauri, Herbig Ae) at a distance of 140 pc. We calculate up to 141 individual velocity-channel maps for five molecules/isotopoloques (12C16O, 12C18O, HCO+, HCN, and CS) in a total of 32 rotational transitions to investigate the frequency dependence of the structures indicated above.
    [Show full text]
  • Symposium on Telescope Science
    Proceedings for the 26th Annual Conference of the Society for Astronomical Sciences Symposium on Telescope Science Editors: Brian D. Warner Jerry Foote David A. Kenyon Dale Mais May 22-24, 2007 Northwoods Resort, Big Bear Lake, CA Reprints of Papers Distribution of reprints of papers by any author of a given paper, either before or after the publication of the proceedings is allowed under the following guidelines. 1. The copyright remains with the author(s). 2. Under no circumstances may anyone other than the author(s) of a paper distribute a reprint without the express written permission of all author(s) of the paper. 3. Limited excerpts may be used in a review of the reprint as long as the inclusion of the excerpts is NOT used to make or imply an endorsement by the Society for Astronomical Sciences of any product or service. Notice The preceding “Reprint of Papers” supersedes the one that appeared in the original print version Disclaimer The acceptance of a paper for the SAS proceedings can not be used to imply or infer an endorsement by the Society for Astronomical Sciences of any product, service, or method mentioned in the paper. Published by the Society for Astronomical Sciences, Inc. First printed: May 2007 ISBN: 0-9714693-6-9 Table of Contents Table of Contents PREFACE 7 CONFERENCE SPONSORS 9 Submitted Papers THE OLIN EGGEN PROJECT ARNE HENDEN 13 AMATEUR AND PROFESSIONAL ASTRONOMER COLLABORATION EXOPLANET RESEARCH PROGRAMS AND TECHNIQUES RON BISSINGER 17 EXOPLANET OBSERVING TIPS BRUCE L. GARY 23 STUDY OF CEPHEID VARIABLES AS A JOINT SPECTROSCOPY PROJECT THOMAS C.
    [Show full text]
  • U.S. Naval Observatory Washington, DC 20392-5420 This Report Covers the Period July 2001 Through June Dynamical Astronomy in Order to Meet Future Needs
    1 U.S. Naval Observatory Washington, DC 20392-5420 This report covers the period July 2001 through June dynamical astronomy in order to meet future needs. J. 2002. Bangert continued to serve as Department head. I. PERSONNEL A. Civilian Personnel A. Almanacs and Other Publications Marie R. Lukac retired from the Astronomical Appli- cations Department. The Nautical Almanac Office ͑NAO͒, a division of the Scott G. Crane, Lisa Nelson Moreau, Steven E. Peil, and Astronomical Applications Department ͑AA͒, is responsible Alan L. Smith joined the Time Service ͑TS͒ Department. for the printed publications of the Department. S. Howard is Phyllis Cook and Phu Mai departed. Chief of the NAO. The NAO collaborates with Her Majes- Brian Luzum and head James R. Ray left the Earth Ori- ty’s Nautical Almanac Office ͑HMNAO͒ of the United King- entation ͑EO͒ Department. dom to produce The Astronomical Almanac, The Astronomi- Ralph A. Gaume became head of the Astrometry Depart- cal Almanac Online, The Nautical Almanac, The Air ment ͑AD͒ in June 2002. Added to the staff were Trudy Almanac, and Astronomical Phenomena. The two almanac Tillman, Stephanie Potter, and Charles Crawford. In the In- offices meet twice yearly to discuss and agree upon policy, strument Shop, Tie Siemers, formerly a contractor, was hired science, and technical changes to the almanacs, especially to fulltime. Ellis R. Holdenried retired. Also departing were The Astronomical Almanac. Charles Crawford and Brian Pohl. Each almanac edition contains data for 1 year. These pub- William Ketzeback and John Horne left the Flagstaff Sta- lications are now on a well-established production schedule.
    [Show full text]