Native Milkweeds of Idaho
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field Release of the Leaf-Feeding Moth, Hypena Opulenta (Christoph)
United States Department of Field release of the leaf-feeding Agriculture moth, Hypena opulenta Marketing and Regulatory (Christoph) (Lepidoptera: Programs Noctuidae), for classical Animal and Plant Health Inspection biological control of swallow- Service worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Field release of the leaf-feeding moth, Hypena opulenta (Christoph) (Lepidoptera: Noctuidae), for classical biological control of swallow-worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. -
Ipomopsis Sancti-Spiritus in Holy Ghost Canyon with and Without Management Intervention JOYCE MASCHINSKI the Arboretum at Flagstaff
Extinction Risk of Ipomopsis sancti-spiritus in Holy Ghost Canyon With and Without Management Intervention JOYCE MASCHINSKI The Arboretum at Flagstaff Abstract: Small populations are threatened with deterministic and stochastic events that can drive the number of individuals below a critical threshold for survival. Long-term studies allow us to increase our understanding of processes required for their conservation. In the past 7 years, the population of the federally endangered Holy Ghost ipomopsis (Ipomopsis sancti-spiritus) in Holy Ghost Canyon has fluctuated widely from 2047 to 372 plants. Meta- population analysis of average Leslie matrices suggested that I. sancti-spiritus has a high probability of extinction; 60 percent of the demographic transects have negative growth rates. Transects with the greatest likelihood of remaining occupied, the highest h values, and the greatest source of new propagules for maintaining the species in Holy Ghost Canyon are in the sunny lower part of the canyon. In comparison, transects at the top of the canyon have fewer individuals and lower probability of remaining occupied. With management inter- vention to disperse propagules from more fecund to less fecund areas'of the canyon, meta- population modeling indicated decreased (but still a high) risk of extinction within the next 50 years. Thus, although seed augmentation and habitat improvement can improve the chances for I. sancti-spiritus persistence in Holy Ghost Canyon, the species remains at high risk of extinction. Small populations are threatened with determin- rose (Rosa woodsii), poison ivy (Toxicodendron yd- istic and stochastic events that can drive the num- bergii), Indian hemp (Apocynum cannabinum), west- ber of individuals below a critical threshold for ern yarrow (Achilliea millefolium), white ragweed survival (Shaffer 1987, Holsinger 2000). -
Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas
Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Texas milkweed (Asclepias texana), courtesy Bill Carr Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Created in partnership with the Lady Bird Johnson Wildflower Center Design and layout by Elishea Smith Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Introduction This document has been produced to serve as a quick guide to the identification of milkweeds (Asclepias spp.) in Texas. For the species listed in Table 1 below, basic information such as range (in this case county distribution), habitat, and key identification characteristics accompany a photograph of each species. This information comes from a variety of sources that includes the Manual of the Vascular Flora of Texas, Biota of North America Project, knowledge of the authors, and various other publications (cited in the text). All photographs are used with permission and are fully credited to the copyright holder and/or originator. Other items, but in particular scientific publications, traditionally do not require permissions, but only citations to the author(s) if used for scientific and/or nonprofit purposes. Names, both common and scientific, follow those in USDA NRCS (2015). When identifying milkweeds in the field, attention should be focused on the distinguishing characteristics listed for each species. -
Danaus Plexippus)
1. Species: Monarch (butterfly) (Danaus plexippus) 2. Status: Table 1 summarizes the current status of this species or subspecies by various ranking entity and defines the meaning of the status. Table 1. Current status of Danaus plexippus. Entity Status Status Definition NatureServe G4 Species is Apparently Secure At fairly low risk of extinction or elimination due to an extensive range and/or many populations or occurrences, but with possible cause for some concern as a result of local recent declines, threats, or other factors. CNHP S5 Species is Secure At very low risk or extinction or elimination due to a very extensive range, abundant populations or occurrences, and little to no concern from declines or threats. Colorado None N/A State List Status USDA Forest R2 Sensitive Region 2 Regional Forester’s Sensitive Species Service USDI FWSb None N/A a Colorado Natural Heritage Program. b US Department of Interior Fish and Wildlife Service. The 2012 U.S. Forest Service Planning Rule defines Species of Conservation Concern (SCC) as “a species, other than federally recognized threatened, endangered, proposed, or candidate species, that is known to occur in the plan area and for which the regional forester has determined that the best available scientific information indicates substantial concern about the species' capability to persist over the long-term in the plan area” (36 CFR 219.9). This overview was developed to summarize information relating to this species’ consideration to be listed as a SCC on the Rio Grande National Forest, and to aid in the development of plan components and monitoring objectives. -
An Overview on Giant Milkweed (Calotropis Procera (Ait.) Ait. F.)
Journal of Plant Sciences 2015; 3(1-1): 19-23 Published online December 26, 2014 (http://www.sciencepublishinggroup.com/j/jps) doi: 10.11648/j.jps.s.2015030101.13 ISSN: 2331-0723 (Print); ISSN: 2331-0731 (Online) An overview on giant milkweed (Calotropis procera (Ait.) Ait. f.) Chandrawat Payal *, Sharma R. A. Medicinal Plant Research Laboratory, Department of Botany, University of Rajasthan, Jaipur-302004 (Rajasthan), India Email address: [email protected] (C. Payal) To cite this article: Chandrawat Payal, Sharma R. A.. An Overview on Giant Milkweed (Calotropis procera (Ait.) Ait. f.). Journal of Plant Sciences. Special Issue: Medicinal Plants. Vol. 3, No. 1-1, 2015, pp. 19-24. doi: 10.11648/j.jps.s.2015030101.13 Abstract: C. procera in India holds a pride of place largely because of its pharmacological uses and economic values. Arka (C. procera ) an important drug of Ayurveda is known from the earliest time. Traditionally Calotropis is used alone or with other medicines to treat common disease such as fevers, rheumatism, indigestion, cough, cold, eczema, asthma, elephantiasis, nausea, vomiting, and diarrhea. The plant is poisonous can lead to blindness if its juice is put in to the eyes. The silky hairs are using to stuff pillows. The wood is used in impoverished desert areas for a cooking fuel. The stem is useful for making ropes, carpets, fishing nets and sewing thread. The wood is used in making charcoal. C. procera is an ideal plant for monitoring sulphur dioxide emissions in the air. C. procera is a potential plant for bioenergy and biofuel production in semi arid regions of the country. -
Monarch Handout
All About Monarch Butterflies Presented by Rebecca Schoenenberger UCCE Master Gardener Santa Clara County Master Gardener Program Master Gardener program volunteers are trained by the University of California Cooperative Extension. Our mission is to develop, adapt and extend research-based horticultural information and educational programs to the residents of Santa Clara County. Master Gardener Help Desk • E -mail questions using our website: http://mgsantaclara.ucanr.edu/help-desk • Call the Help Desk: 408-282-3105 (9:30 a.m. – 12:30 p.m. Monday through Friday) Bring specimens to the Master Gardener Help Desk Office during Help Desk hours: • 1553 Berger Drive, Building 1, 2nd Floor, San Jose, CA 95112 • Call or bring specimens to the Master Gardeners at the Gamble Garden library in Palo Alto: 650-329-1356 Fridays only, 1-4 p.m. In winter, please call before coming to Gamble. About Monarchs - Life Cycle & Metamorphosis - Migration - Habitat - Threats - Conservation Life Cycle - Egg - Larvae (5 instars) - Pupa - Adult Migration - Eastern: Southeastern Canada, Eastern USA & Central Mexico - Western: Southwestern Canada, Western USA Pacific Wintering Habitat - California Wintering Sites: UCCE Master Gardener Program of Santa Clara County http://mgsantaclara.ucanr.edu ‣ Ardenwood Historic Farm, Fremont, CA ‣ Lighthouse Field State Beach Monarch Grove, Santa Cruz, CA ‣ Natural Bridges State Park, Santa Cruz, CA ‣ Pacific Grove Sanctuary, Pacific Grove, CA ‣ Point Lobos State Park, Carmel, CA ‣ Morro Bay State Park, Morro Bay, CA ‣ Pismo Beach Monarch Butterfly Grove, Oceano, CA ‣ Ellwood Mesa Open Space, Goleta, CA Habitat - Food ‣ Larvae = Milkweed ‣ Adult = Nectar - Shelter ‣ Monterey Pine, Monterey Cypress & Eucalyptus ‣ Moderate Weather Extremes - Space ‣ International Western (California) Shelter Trees • Monterey Pine - Pinus radiata - Fast growing, but short lived. -
DRAFT OAEC NATIVE PLANT LIST FERNS and FERN ALLIES
DRAFT OAEC NATIVE PLANT LIST FERNS and FERN ALLIES: Blechnaceae: Deer Fern Family Giant Chain Fern Woodwardia fimbriata Dennstaedtiaceae: Bracken Fern Bracken Pteridium aquilinum Dryopteridaceae: Wood Fern Family Lady Fern Athyrium filix-femina Wood Fern Dryopteris argutanitum Western Sword Fern Polystichum muitum Polypodiaceae: Polypody Family California Polypody Polypodium californicum Pteridaceae: Brake Family California Maiden-Hair Adiantum jordanii Coffee Fern Pellaea andromedifolia Goldback Fern Pentagramma triangularis Isotaceae: Quillwort Family Isoetes sp? Nuttallii? Selaginellaceae: Spike-Moss Family Selaginella bigelovii GYMNOPSPERMS Pinaceae: Pine Family Douglas-Fir Psuedotsuga menziesii Taxodiaceae: Bald Cypress Family Redwood Sequoia sempervirens ANGIOSPERMS: DICOTS Aceraceae: Maple Family Big-Leaf Maple Acer macrophyllum Box Elder Acer negundo Anacardiaceae: Sumac Family Western Poison Oak Toxicodendron diversilobum Apiaceae: Carrot Family Lomatium( utriculatum) or (carulifolium)? Pepper Grass Perideridia kelloggii Yampah Perideridia gairdneri Sanicula sp? Sweet Cicely Osmorhiza chilensis Unidentified in forest at barn/deer fence gate Angelica Angelica tomentosa Apocynaceae: Dogbane or Indian Hemp Family Apocynum cannabinum Aristolochiaceae Dutchman’s Pipe, Pipevine Aristolochia californica Wild Ginger Asarum caudatum Asteraceae: Sunflower Family Grand Mountain Dandelion Agoseris grandiflora Broad-leaved Aster Aster radulinus Coyote Brush Baccharis pilularis Pearly Everlasting Anaphalis margaritacea Woodland Tarweed Madia -
Open Myers THESIS.Pdf
The Pennsylvania State University The Graduate School School of Science, Engineering, and Technology IMPACT OF OZONE ON MILKWEED (ASCLEPIAS) SPECIES A Thesis in Environmental Pollution Control by Abigail C. Myers 2016 Abigail C. Myers Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2016 The thesis of Abigail C. Myers was reviewed and approved* by the following: Dennis R. Decoteau Professor of Horticulture and Plant Ecosystem Health Thesis Advisor Donald D. Davis Professor of Plant Pathology and Environmental Microbiology Richard Marini Professor of Horticulture Shirley Clark Associate Professor of Environmental Engineering Graduate Program Coordinator, Environmental Engineering and Environmental Pollution Control *Signatures are on file in the Graduate School ii Abstract Tropospheric (or ground level) ozone in ambient concentrations can damage vegetation and interfere with the human respiratory system. Plants as bioindicators of ozone are commonly used to detect phytotoxic levels of tropospheric ozone where physical/chemical/electrical monitoring equipment cannot be utilized due to expense, electrical needs, or availability of instruments. Asclepias syriaca (Common Milkweed) has been effectively used as a bioindicator for ozone. Visual ozone injury on Common Milkweed is characterized as purple stippling of the upper surface of older leaves as the season progresses, the purple coloration of the upper leaf surface may encompass most of the leaf surface. While sensitivity to ozone has been documented on Common Milkweed, less is known about the ozone sensitivity of other Asclepias species and little is known regarding the concentration dose response of Common Milkweed to ozone and timing of visual symptoms. Of the Asclepias species evaluated Tropical Milkweed (A. -
Management Recommendations for Native Insect Pollinators in Texas
Management Recommendations for Native Insect Pollinators in Texas Texas Parks and Wildlife Department • 4200 Smith School Road • Austin, Texas 78744 • (512) 389-4800 Management Recommendations for Native Insect Pollinators in Texas Developed by Michael Warriner and Ben Hutchins Nongame and Rare Species Program Texas Parks and Wildlife Department Acknowledgements Critical content review was provided by Mace Vaughn, Anne Stine, and Jennifer Hopwood, The Xerces Society for Invertebrate Conservation and Shalene Jha Ph.D., University of Texas at Austin. Texas Master Naturalists, Carol Clark and Jessica Womack, provided the early impetus for development of management protocols geared towards native pollinators. Cover photos: Left top to bottom: Ben Hutchins, Cullen Hanks, Eric Isley, Right: Eric Isley Design and layout by Elishea Smith © 2016 Texas Parks and Wildlife Department PWD BK W7000-1813 (04/16) In accordance with Texas State Depository Law, this publication is available at the Texas State Publications Clearinghouse and/or Texas Depository Libraries. TPWD receives federal assistance from the U.S. Fish and Wildlife Service and other federal agencies and is subject to Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and state anti-discrimination laws which prohibit discrimination the basis of race, color, national origin, age, sex or disability. If you believe that you have been discriminated against in any TPWD program, activity or facility, or need more information, please contact Office of Diversity and Inclusive Workforce Management, U.S. -
Plants for Bats
Suggested Native Plants for Bats Nectar Plants for attracting moths:These plants are just suggestions based onfloral traits (flower color, shape, or fragrance) for attracting moths and have not been empirically tested. All information comes from The Lady Bird Johnson's Wildflower Center's plant database. Plant names with * denote species that may be especially high value for bats (based on my opinion). Availability denotes how common a species can be found within nurseries and includes 'common' (found in most nurseries, such as Rainbow Gardens), 'specialized' (only available through nurseries such as Medina Nursery, Natives of Texas, SA Botanical Gardens, or The Nectar Bar), and 'rare' (rarely for sale but can be collected from wild seeds or cuttings). All are native to TX, most are native to Bexar. Common Name Scientific Name Family Light Leaves Water Availability Notes Trees: Sabal palm * Sabal mexicana Arecaceae Sun Evergreen Moderate Common Dead fronds for yellow bats Yaupon holly Ilex vomitoria Aquifoliaceae Any Evergreen Any Common Possumhaw is equally great Desert false willow Chilopsis linearis Bignoniaceae Sun Deciduous Low Common Avoid over-watering Mexican olive Cordia boissieri Boraginaceae Sun/Part Evergreen Low Common Protect from deer Anacua, sandpaper tree * Ehretia anacua Boraginaceae Sun Evergreen Low Common Tough evergreen tree Rusty blackhaw * Viburnum rufidulum Caprifoliaceae Partial Deciduous Low Specialized Protect from deer Anacacho orchid Bauhinia lunarioides Fabaceae Partial Evergreen Low Common South Texas species -
Steps for Success with Milkweed and Monarchs for the Inland Southern California Valleys
Steps for Success with Milkweed and Monarchs for the Inland Southern California Valleys The Western Monarch population is believed to have declined more than 99% since monitoring began in the 1980’s. Why are Monarchs in Decline? 1. Plants of the Asclepias genus (milkweeds) are the only food source for the Monarch caterpillar. Areas with native milkweed populations have declined due to land use changes to agriculture and urbanization. 2. Broad use of pesticides. 3. Monarch health is impacted by “OE”, Ophryocystis elektroscirrha, TRUTHERS S a microscopic parasite that is spread among milkweed and AVE D AND nectar-source plants by infected butterflies. RY F TAN S Other factors include: loss and degradation of over-wintering sites, OF loss of plants that provide nectar, and climate change. COURTESY HOTO P IXABAY , P JLKRAMER : HOTO P © 2019 Arlee Montalvo © 2019 Narrow Leaf Milkweed, Asclepias fascicularis Monarch butterfly on a Narrow Leaf Milkweed. Narrow leaf milkweed is the Monarch’s native host plant in inland southern California. Its flowers also provide nectar for adult butterflies. It is a perennial (long-lived) plant that grows 3-4 ft. high and forms colonies. It grows best in full to part sun and is a low to moderate water user. It’s dormant during winter resprouts in spring. Milkweed is also an excellent resource for many pollinators and other beneficial insects, including native bees and syrphid flies. TOXIC: Wear gloves while handling milkweed. After handling, immediately wash hands. Do not rub your eyes. If milkweed sap does get into your eye, seek immediate treatment. Milkweed can be toxic when ingested by people, pets and other animals. -
Floral Glands in Asclepiads: Structure, Diversity and Evolution
Acta Botanica Brasilica - 31(3): 477-502. July-September 2017. doi: 10.1590/0102-33062016abb0432 Review Floral glands in asclepiads: structure, diversity and evolution Diego Demarco1 Received: December 7, 2016 Accepted: February 24, 2017 . ABSTRACT Species of Apocynaceae stand out among angiosperms in having very complex fl owers, especially those of asclepiads, which belong to the most derived subfamily (Asclepiadoideae). Th ese fl owers are known to represent the highest degree of fl oral synorganization of the eudicots, and are comparable only to orchids. Th is morphological complexity may also be understood by observing their glands. Asclepiads have several protective and nuptial secretory structures. Th eir highly specifi c and specialized pollination systems are associated with the great diversity of glands found in their fl owers. Th is review gathers data regarding all types of fl oral glands described for asclepiads and adds three new types (glandular trichome, secretory idioblast and obturator), for a total of 13 types of glands. Some of the species reported here may have dozens of glands of up to 11 types on a single fl ower, corresponding to the largest diversity of glands recorded to date for a single structure. Keywords: anatomy, Apocynaceae, Asclepiadoideae, diversity, evolution, fl ower, secretory structures considering its most derived subfamily Asclepiadoideae. Introduction Th e close relationship between the former families Apocynaceae and Asclepiadaceae has always been recognized Apocynaceae is an extremely diverse family in since its establishment as “Apocineae” by Jussieu (1789). morphological terms, represented by trees, shrubs, herbs and climbers, with single leaves usually opposite, rarely Although Brown (1810) divided it into two families and alternate or whorled, with stipules modifi ed in colleters in this separation had been maintained in the subsequent several species (Endress & Bruyns 2000; Capelli et al.