Math Exploration Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
5-8 Satellites and “Weightlessness” Objects in Orbit Are Said to Experience Weightlessness
5-8 Satellites and “Weightlessness” Objects in orbit are said to experience weightlessness. They do have a gravitational force acting on them, though! The satellite and all its contents are in free fall, so there is no normal force. This is what leads to the experience of weightlessness. 5-8 Satellites and “Weightlessness” More properly, this effect is called apparent weightlessness, because the gravitational force still exists. It can be experienced on Earth as well, but only briefly: Calculating the Local Force of Gravity So the local gravitational acceleration depends upon your distance from the center of mass. Usually this is your distance from the center of the Earth ConcepTest 5.9 Fly Me Away You weigh yourself on a scale inside an airplane that is flying with constant 1) greater than speed at an altitude of 20,000 feet. 2) less than How does your measured weight in the 3) same airplane compare with your weight as measured on the surface of the Earth? ConcepTest 5.9 Fly Me Away You weigh yourself on a scale inside an airplane that is flying with constant 1) greater than speed at an altitude of 20,000 feet. 2) less than How does your measured weight in the 3) same airplane compare with your weight as measured on the surface of the Earth? At a high altitude, you are farther away from the center of Earth. Therefore, the gravitational force in the airplane will be less than the force that you would experience on the surface of the Earth. ConcepTest 5.10 Two Satellites Two satellites A and B of the same mass 1) 1/8 are going around Earth in concentric 2) 1/4 orbits. -
Information Summaries
TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical -
Various Study Papers Download
33 rd Canadian Medical and Biological Engineering Society Conference œ Vancouver œ June 15-18 2010 Topic Area - Physiological systems and models. Plantar Biophotonic Stimulation improves Ocular-motor and Postural Control in Motor Vehicle Accident Patients. Amanmeet Garg a, Michelle Bruner a, Philippe A. Souvestre b, Andrew P. Blaber a a) Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada. b) NeuroKinetics Health Services B.C. Inc., Suite 60 Hycroft Centre, 3195 Granville Street, Vancouver, BC, Canada. Introduction: Worldwide road accident related statistics reflect a consistent increase of motor vehicle accidents (MVA). Survivors of motor vehicle accidents experience a range of head injuries from whiplash, concussion, and mild to severe traumatic brain injuries, of which the most severe may result in incapacitation or death. Central sensory-motor controls (SMC), including ocular-visual, ocular-motor, vestibular, and cerebellar systems are primarily affected. Methods: Visual-ocular convergence (VOC) and postural balance (PB) tests are used among others to measure the degree of central sensory-motor controls dysfunction. This retrospective study (n=19) investigates the effect of passive biophotonic stimulation applied to plantar postural sensory afferents on VOC and PB tests conducted during a neurophysiological evaluation. Stabilogram diffusion analysis (SDA) of the centre of pressure trajectory from the PB test was used to determine the amount of stochastic activity and dynamic behavior of postural control (Collins and De Luca, Exp Brain Res 95:308-318, 1993). Results: Visual-ocular convergence was significantly closer (p<0.001) with stimulation (5.3±1.0 cm) than without (11±1.0 cm). -
Enceladus, Moon of Saturn
National Aeronautics and and Space Space Administration Administration Enceladus, Moon of Saturn www.nasa.gov Enceladus (pronounced en-SELL-ah-dus) is an icy moon of Saturn with remarkable activity near its south pole. Covered in water ice that reflects sunlight like freshly fallen snow, Enceladus reflects almost 100 percent of the sunlight that strikes it. Because the moon reflects so much sunlight, the surface temperature is extremely cold, about –330 degrees F (–201 degrees C). The surface of Enceladus displays fissures, plains, corrugated terrain and a variety of other features. Enceladus may be heated by a tidal mechanism similar to that which provides the heat for volca- An artist’s concept of Saturn’s rings and some of the icy moons. The ring particles are composed primarily of water ice and range in size from microns to tens of meters. In 2004, the Cassini spacecraft passed through the gap between the F and G rings to begin orbiting Saturn. noes on Jupiter’s moon Io. A dramatic plume of jets sprays water ice and gas out from the interior at ring material, coating itself continually in a mantle Space Agency. The Jet Propulsion Laboratory, a many locations along the famed “tiger stripes” at of fresh, white ice. division of the California Institute of Technology, the south pole. Cassini mission data have provided manages the mission for NASA. evidence for at least 100 distinct geysers erupting Saturn’s Rings For images and information about the Cassini on Enceladus. All of this activity, plus clues hidden Saturn’s rings form an enormous, complex struc- mission, visit — http://saturn.jpl.nasa.gov/ in the moon’s gravity, indicates that the moon’s ture. -
Thought Experiments in Teaching Free-Fall Weightlessness: a Critical Review and an Exploration of Mercury’S Behavior in “Falling Elevator”
OPEN ACCESS EURASIA Journal of Mathematics Science and Technology Education ISSN: 1305-8223 (online) 1305-8215 (print) 2017 13(5):1283-1311 DOI 10.12973/eurasia.2017.00671a Thought Experiments in Teaching Free-Fall Weightlessness: A Critical Review and an Exploration of Mercury’s Behavior in “Falling Elevator” Jasmina Balukovic Druga Gimnazija, Sarajevo, BOSNIA and HERZEGOVINA Josip Slisko Benemérita Universidad Autónoma de Puebla, MEXICO Adrián Corona Cruz Benemérita Universidad Autónoma de Puebla, MEXICO Received 9 May2016 ▪ Revised 7 June 2016 ▪ Accepted 7 June 2016 ABSTRACT Different “thought experiments” dominate teaching approaches to weightlessness, reducing students’ opportunities for active physics learning, which should include observations, descriptions, explanations and predictions of real phenomena. Besides the controversy related to conceptual definitions of weight and weightlessness, we report another controversy regarding the position of the person that weighs herself or himself in a freely-falling elevator, a “thought experiment” commonly used for introducing the concept of weightlessness. Two XIX-century “thought experiments”, one from America and one from Russia, show that they have a long tradition in physics teaching. We explored experimentally a “thought experiment” that deals with the behavior of a mercury drop in a freely-falling elevator. Our experimental results show that the mercury drop neither took the expected spherical shape nor performed oscillatory motions predicted by theory. Teachers should encourage -
Army Ballistic Missile Programs at Cape Canaveral 1953 – 1988
ARMY BALLISTIC MISSILE PROGRAMS AT CAPE CANAVERAL 1953 – 1988 by Mark C. Cleary 45th SPACE WING History Office TABLE OF CONTENTS Preface…………………………………………………… iii INTRODUCTION……………………………………… 1 REDSTONE……………………………………………… 15 JUPITER…………………………………………………. 44 PERSHING………………………………………………. 68 CONCLUSION………………………………………….. 90 ii Preface The United States Army has sponsored far fewer launches on the Eastern Range than either the Air Force or the Navy. Only about a tenth of the range’s missile and space flights can be attributed to Army programs, versus more than a third sponsored by each of the other services. Nevertheless, numbers seldom tell the whole story, and we would be guilty of a grave disservice if we overlooked the Army’s impressive achievements in the development of rocket- powered vehicles, missile guidance systems, and reentry vehicle technologies from the late 1940s onward. Several years of experimental flights were conducted at the White Sands Proving Ground before the Army sponsored the first two ballistic missile launches from Cape Canaveral, Florida, in July 1950. In June 1950, the Army moved some of its most important guided missile projects from Fort Bliss, Texas, to Redstone Arsenal near Huntsville, Alabama. Work began in earnest on the REDSTONE ballistic missile program shortly thereafter. In many ways, the early Army missile programs set the tone for the development of other ballistic missiles and range instrumentation by other military branches in the 1950s. PERSHING missile launches continued at the Cape in the 1960s, and they were followed by PERSHING 1A and PERSHING II launches in the 1970s and 1980s. This study begins with a summary of the major events leading up to the REDSTONE missile program at Cape Canaveral. -
Human Adaptation and Safety in Space
SICSA SPACE ARCHITECTURE SEMINAR LECTURE SERIES PART II : HUMAN ADAPTATION AND SAFETY IN SPACE www.sicsa.uh.edu LARRY BELL, SASAKAWA INTERNATIONAL CENTER FOR SPACE ARCHITECTURE (SICSA) GERALD D.HINES COLLEGE OF ARCHITECTURE, UNIVERSITY OF HOUSTON, HOUSTON, TX The Sasakawa International Center for SICSA routinely presents its publications, Space Architecture (SICSA), an research and design results and other organization attached to the University of information materials on its website Houston’s Gerald D. Hines College of (www.sicsa.uh.edu). This is done as a free Architecture, offers advanced courses service to other interested institutions and that address a broad range of space individuals throughout the world who share our systems research and design topics. In interests. 2003 SICSA and the college initiated Earth’s first MS-Space Architecture This report is offered in a PowerPoint format with degree program, an interdisciplinary 30 the dedicated intent to be useful for academic, credit hour curriculum that is open to corporate and professional organizations who participants from many fields. Some wish to present it in group forums. The document students attend part-time while holding is the second in a series of seminar lectures that professional employment positions at SICSA has prepared as information material for NASA, affiliated aerospace corporations its own academic applications. We hope that and other companies, while others these materials will also be valuable for others complete their coursework more rapidly who share our -
Final Report of the Opgt/Mjs Plasma Wave Science Team
1 September 1972 FINAL REPORT OF THE OPGT/MJS PLASMA WAVE SCIENCE TEAM Prepared by F. L. Scarf, Team Leader for National Aeronautical and Space Administration Washington, D.C. 205*t6 Contract NASW 2228 Space Sciences Department TRW Systems Group One Space Park Redondo Beach, California 902?8 4 Page 1 1. TEAM ORGANIZATION AND MEMBERSHIP The Plasma Wave Team Leader is Dr. F. L. Scarf of TRW Systems, and the official team members are Dr. D. A. Gurnett (University of Iowa), Dr. R. A. Helliwell (Stanford University), Dr. R. E. Holzer (UCLA), Dr. P. J. Kellogg (University of Minnesota), Dr. E. J. Smith (JPL), and Dr. E. Ungstrup (Danish Space Research Institute). Mr. A. M. A. Frandsen of JPL serves as Team Member and Experiment Representative. In addition, the Plasma Wave Team solicited the continuing support and assistance of several other outstanding scientists, and we have designated these participants as Team Associates; the Associates are Dr. N. M. Brice (Cornell University), Dr. D. Cartwright (University of Minnesota), Dr. R. W. Fredricks (TRW), Dr. H. B. Liemohn (Boeing), Dr. C. F. Kennel (UCLA), and Dr. R. Thome (UCLA) . 2. GENERAL TEAM ACTIVITIES FEBRUARY 1972-AUGUST 31, 1972 (See the mid-year report for a summary of the earlier work) During this period Dr. Scarf attended all SSG Meetings except the last one, where Dr. E. J. Smith represented the Plasma Wave Team. There were a number of Team Meetings and several additional .conferences at JPL concerning EMI and other potential spacecraft problems. The major development during this interval involved the decision not to go ahead with the Grand Tour. -
Jacques Tiziou Space Collection
Jacques Tiziou Space Collection Isaac Middleton and Melissa A. N. Keiser 2019 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 1 Scope and Contents........................................................................................................ 2 Arrangement..................................................................................................................... 2 Names and Subjects ...................................................................................................... 2 Container Listing ............................................................................................................. 4 Series : Files, (bulk 1960-2011)............................................................................... 4 Series : Photography, (bulk 1960-2011)................................................................. 25 Jacques Tiziou Space Collection NASM.2018.0078 Collection Overview Repository: National Air and Space Museum Archives Title: Jacques Tiziou Space Collection Identifier: NASM.2018.0078 Date: (bulk 1960s through -
A Pictorial History of Rockets
he mighty space rockets of today are the result A Pictorial Tof more than 2,000 years of invention, experi- mentation, and discovery. First by observation and inspiration and then by methodical research, the History of foundations for modern rocketry were laid. Rockets Building upon the experience of two millennia, new rockets will expand human presence in space back to the Moon and Mars. These new rockets will be versatile. They will support Earth orbital missions, such as the International Space Station, and off- world missions millions of kilometers from home. Already, travel to the stars is possible. Robotic spacecraft are on their way into interstellar space as you read this. Someday, they will be followed by human explorers. Often lost in the shadows of time, early rocket pioneers “pushed the envelope” by creating rocket- propelled devices for land, sea, air, and space. When the scientific principles governing motion were discovered, rockets graduated from toys and novelties to serious devices for commerce, war, travel, and research. This work led to many of the most amazing discoveries of our time. The vignettes that follow provide a small sampling of stories from the history of rockets. They form a rocket time line that includes critical developments and interesting sidelines. In some cases, one story leads to another, and in others, the stories are inter- esting diversions from the path. They portray the inspirations that ultimately led to us taking our first steps into outer space. NASA’s new Space Launch System (SLS), commercial launch systems, and the rockets that follow owe much of their success to the accomplishments presented here. -
America's Greatest Projects and Their Engineers - VII
America's Greatest Projects and Their Engineers - VII Course No: B05-005 Credit: 5 PDH Dominic Perrotta, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 076 77 P: (877) 322-5800 [email protected] America’s Greatest Projects & Their Engineers-Vol. VII The Apollo Project-Part 1 Preparing for Space Travel to the Moon Table of Contents I. Tragedy and Death Before the First Apollo Flight A. The Three Lives that Were Lost B. Investigation, Findings & Recommendations II. Beginning of the Man on the Moon Concept A. Plans to Land on the Moon B. Design Considerations and Decisions 1. Rockets – Launch Vehicles 2. Command/Service Module 3. Lunar Module III. NASA’s Objectives A. Unmanned Missions B. Manned Missions IV. Early Missions V. Apollo 7 Ready – First Manned Apollo Mission VI. Apollo 8 - Orbiting the Moon 1 I. Tragedy and Death Before the First Apollo Flight Everything seemed to be going well for the Apollo Project, the third in a series of space projects by the United States intended to place an American astronaut on the Moon before the end of the 1960’s decade. Apollo 1, known at that time as AS (Apollo Saturn)-204 would be the first manned spaceflight of the Apollo program, and would launch a few months after the flight of Gemini 12, which had occurred on 11 November 1966. Although Gemini 12 was a short duration flight, Pilot Buzz Aldrin had performed three extensive EVA’s (Extra Vehicular Activities), proving that Astronauts could work for long periods of time outside the spacecraft. -
Spaceport News John F
Aug. 9, 2013 Vol. 53, No. 16 Spaceport News John F. Kennedy Space Center - America’s gateway to the universe MAVEN arrives, Mars next stop Astronauts By Steven Siceloff Spaceport News gather for AVEN’s approach to Mars studies will be Skylab’s Mquite different from that taken by recent probes dispatched to the Red Planet. 40th gala Instead of rolling about on the By Bob Granath surface looking for clues to Spaceport News the planet’s hidden heritage, MAVEN will orbit high above n July 27, the Astronaut the surface so it can sample the Scholarship Foundation upper atmosphere for signs of Ohosted a dinner at the what changed over the eons and Kennedy Space Center’s Apollo/ why. Saturn V Facility celebrating the The mission will be the first 40th anniversary of Skylab. The of its kind and calls for instru- gala featured many of the astro- ments that can pinpoint trace nauts who flew the missions to amounts of chemicals high America’s first space station. above Mars. The results are Six Skylab astronauts partici- expected to let scientists test pated in a panel discussion dur- theories that the sun’s energy ing the event, and spoke about slowly eroded nitrogen, carbon living and conducting ground- dioxide and water from the Mar- breaking scientific experiments tian atmosphere to leave it the aboard the orbiting outpost. dry, desolate world seen today. Launched unpiloted on May “Scientists believe the planet 14, 1973, Skylab was a complex CLICK ON PHOTO NASA/Tim Jacobs orbiting scientific laboratory. has evolved significantly over NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft rests on a processing the past 4.5 billion years,” said stand inside Kennedy’s Payload Hazardous Servicing Facility Aug.