CMRR Report Number 34

Total Page:16

File Type:pdf, Size:1020Kb

CMRR Report Number 34 University of California, San Diego ISSN: 0888-7381 Report Research Highlight Number 34 Summer 2010 FastMag: Fast MicroMagnetic Solver Talke and de Callafon Awards for Large-Scale Simulations rank Talke, an Endowed Chaired Professor at CMRR has been F selected to receive the 2010 Mayo D. Hersey Award from the Contents: American Society of Mechanical Engineers (ASME). This award, as described on the ASME website, was “established in 1965, and is Shannon 2 given in recognition of distinguished and continued contribution Lecture & over a substantial period of time to the advancement of lubrication Fellowship science and engineering. Distinguished contributions may result From the 3 from significant original research in one or more of the many Director scientific disciplines related to lubrication.” Professor Talke was cited “for distinguished and continued fundamental contributions in research on the tribological and mechanical limits of magnetic recording storage technology.” Research 4-9 Highlight INSIC’s 2010 Technical Achievement Award, which recognizes Gifts & Grants the contributor(s) of a specific technical achievement in an INSIC & Awards 8 Research Program, for contributions judged to provide a significant Flash Memory 9 advancement toward the Program’s goals, was presented to Summit Professor Raymond de Callafon of the University of California, Graduating 10 San Diego, who was recognized for his pioneering research in the Students design and application of adaptive servo technology for the Schultz Prize optimization of tape drive performance in the INSIC TAPE CMRR Research Program. Research 10 Review Summer 11 The 21st Magnetic Recording Conference Internships Selected Papers 12-13 On August 16 - 18th 2010, CMRR & Talks hosted the 21st TMR Conference. Degrees 13 Over 100 people attended the talks Awarded and poster sessions. This year the New Graduate 14 Students focus was magnetic recording media Visiting 15 and tribology. Over 30 papers were Scholars & presented and will be published in the Students IEEE Transaction on Magnetics. Staff Service 16 Awards Page 2 CMRR Report Shannon Memorial Lecture Professor Emeritus Andrew Viterbi, the 2010 IEEE Medal of Honor Recipient, presented the 8th Annual Shannon Memorial Lecture. His talk was entitled “Markov, Wiener and Shannon: a Progression.” Dr. Andrew Viterbi is a co-founder and retired Vice Chairman and Chief Technical Officer of Qualcomm Incorporated. He spent equal portions of his career in industry, having previously co-founded Linkabit Corporation, and in academia as Professor in the Schools of Engineering and Applied Science, first at UCLA and then at UCSD, at which he is now Professor Emeritus. He is currently president of the Viterbi Group, a technical advisory and investment company. He also serves as a Presidential Chair Visiting Professor at the University of Southern California and a distinguished Visiting Professor at the Technion-Israel Institute of Technology. His principal research contribution, the Viterbi Algorithm, is used in most digital cellular phones and digital satellite receivers, as well as in such diverse fields as magnetic recording, voice recognition and DNA sequence analysis. More recently, he concentrated his efforts on establishing CDMA as the multiple access technology of choice for cellular telephony and wireless data communication. Dr. Viterbi has received numerous honors both in the USA and internationally. Among these are eight honorary doctorates, from universities in Canada, Israel, Italy and the USA. He has received several awards from the Institute of Electrical and Electronic Engineers including the IEEE Medal of Honor, the Alexander Graham Bell Medal, the Claude E. Shannon and the James Clerk Maxwell Awards. Additionally he has received awards from the Marconi Society, the NEC C&C Foundation and the Eduard Rhein Foundation, as well as the Christopher Columbus Medal, the Franklin Medal, the Robert Noyce Semiconductor Industry Award and the Millennium Laureate Award. He is a member of the National Academy of Engineering and the National Academy of Sciences and is a Fellow of the American Academy of Arts and Sciences. He has received an honorary title from the President of Italy and the National Medal of Science from the President of the United States. 2nd Annual Non-volatile Memories Workshop March 6-8, 2011 For Information : http://nvmw.ucsd.edu/2011/ Shannon Memorial Fellowship Ehsan Ardestanizadeh, a Ph.D. student in the Electrical and Computer Engineering (ECE) Department at the University of California, San Diego (UCSD) is the 2010-2011 recipient of the Shannon Memorial Fellowship. This endowed fellowship was created to honor an outstanding graduate student at UCSD whose research is in the field of information theory. Mr. Ardestanizadeh completed his undergraduate studies in Electrical Engineering at Sharif University of Technology in 2004, and received a Master’s degree from the ECE Department at UCSD in 2007. Currently, he is working towards his Ph.D. Professor Jack K. Wolf & degree in ECE under the supervision of professors Massimo Franceschetti, Tara Javidi, Ehsan Ardestanizadeh and Young-Han Kim at UCSD. Ehsan’s research area lies in the intersection of information theory, estimation, and control. More specifically, he is interested in analyzing the role of feedback in communication systems, and studying the interconnection between feedback communication and control problems. Number 34 Page 3 From the Director Frank Talke, and Prof. Jack Wolf – have continued to make fundamental technical contributions while garnering This is the 16th issue of CMRR Report to appear the full panoply of professional since the revival of our semi-annual newsletter in recognition and awards. And 2002. Looking back at previous issues brings to mind the Center has maintained a the oft-quoted adage: “The more things change, the steady flow of exceptionally more they stay the same.” talented graduates and postdocs to industry, academia, and government labs. The most evident change is in the storage industry itself. The corporate landscape of the hard drive The other constant during this period of time has been business has dramatically changed. Of the 12 the dedication of our administrative and technical corporate sponsors listed in that inaugural issue, 7 of staff members. Our incomparable business officers – the 10 companies working on hard drive technology Cheryl Hacker and Iris Villanueva – along with our no longer exist as separate entities, having abandoned permanent support personnel – Ray Descoteaux, or sold their disk drive businesses. New players have Howard Harper, Jan Neumann James, Marcia Levitt, arisen (though some no longer survive). Betty Manoulian, Jack Philhower, and Dawn Talbot – Technologically, the concerted thrust toward the have provided invaluable service to the Center and its successful development of perpendicular recording sponsors, helping to define its uniquely welcoming has been replaced by uncertainty as to what should be character and its reputation for meticulous the next major technology transition. At the same organization. Remarkably, Iris, Ray, Betty, and Jan time, rapidly evolving solid-state, nonvolatile- have collectively contributed 100 years of service to memory technology has opened the door to new CMRR and UCSD. Our debt to these staff members is storage system architectures and applications. enormous. Against this backdrop of change, what has stayed the There is another significant change on the horizon, same is CMRR’s commitment to excellence, namely, a transition in the Center’s leadership. My innovation, and relevance in its research and term as CMRR Director has come to an end, and a educational programs We have worked hard to stay search is underway for my successor. So this will be at the forefront technically, for example, through my final “From the Director” column, and I want to focused interdisciplinary initiatives such as our close by expressing my sincere gratitude to all Patterned Media and Non-Volatile Memories projects. members of the CMRR family for their dedication to We added distinguished Prof. Sungho Jin (MAE/NE) the Center and for the tremendous support they pro- and CMRR Endowed Chaired Prof. Eric Fullerton vided to me during my decade as Director. I greatly (ECE/NE) to our faculty roster. We recruited several look forward to working with them and our affiliated faculty members whose unique talents have colleagues in the storage industry as a “regular” broadened and deepened the scope of the Center’s CMRR professor, continuing to push the limits of the research – Prof. Raymond de Callafon (MAE), Prof. “continuing miracle of information storage Vitaliy Lomakin (ECE), and Prof. Steve Swanson technology.” (CSE). These and other CMRR faculty members and researchers – Prof. Ami Berkowitz, Prof. Neal Now, please enjoy the rest of this issue of CMRR Bertram, Dr. Gordon Hughes, Dr. Fred Spada, Prof. Report. Page 4 CMRR Report Research Highlight FastMag: Fast Micromagnetic Solver for Large-Scale Simulations R. Chang, S. Li, M.V. Lubarda, B. Livshitz, and V. Lomakin University of California, San Diego 1 Introduction Micromagnetic solvers have a high predictive power and are important for our ability to analyze and design magnetic components. Simulating a complex structure may be very time-consuming and the development of fast computational methods for micromagnetics is of high importance. Modern and future computational tools should rely on parallelization to allow for continuing scaling
Recommended publications
  • APS News November 2019, Vol. 28, No. 10
    Professional The Optics of Topical Group on Back Page: Physics Education 02│ Skills Seminar 03│ Augmented Reality 05│ Data Science 08│ in Texas November 2019 • Vol. 28, No. 10 aps.org/apsnews A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY HONORS OUTREACH 2019 Nobel Prize in Physics Evaluating a Decade of BY LEAH POFFENBERGER PhysicsQuest BY LEAH POFFENBERGER he Royal Swedish Academy of Sciences has announced the or the past 10 years, middle winners of the 2019 Nobel T school classrooms all Prize in Physics, recognizing both theoretical and experimental F across the country have contributions to understanding had a chance to learn physics the universe. This year, the prize with hands-on demos thanks to is awarded to APS Fellow James the APS PhysicsQuest program. Peebles (Princeton University), PhysicsQuest distributes kits Michel Mayor (University of packed with experiment demos, Geneva), and Didier Queloz comic books, and a teacher’s guide (University of Geneva; University in hopes of inspiring students to of Cambridge). be more interested in physics. In New physics laureates (L-R): Didier Queloz, Michel Mayor, James Peebles Half of the prize is awarded the 2018-2019 school year alone, IMAGE: NOBEL FOUNDATION PhysicsQuest reached nearly to Peebles for his theoretical This year’s PhysicsQuest kits focus insights into physical cosmology Nobel Laureate David Gross. “Jim and measure the properties of the 184,000 students taught by more on the achievements of physicist that have impacted the trajec- is among the fathers of physical universe.” than 5,000 teachers. Chien-Shiung Wu. tory of cosmology research for cosmology that laid the foundation Peebles receives the Nobel Prize This year, APS commissioned good timing,” says James Roche, the past 50 years and form the for the now remarkably successful for his decoding of the cosmic an evaluation report of the Outreach Programs Manager basis of the current ideas about standard theory of the structure microwave background, left behind PhysicsQuest program to assess its at APS.
    [Show full text]
  • Top 100 Global Innovators 2021 10-Year Anniversary
    Top 100 Global Innovators 2021 10-year anniversary edition Celebrating 10 years of Top 100 Global Innovators Contents 06 Foreword 09 A habit for the new 10 Creating the list 12 Top 100 Global Innovators 2021 18 One year on 24 The hidden value of innovation culture 26 An ideation keel 3 Break– out 4 29 that have led the way. These 29 companies have appeared in the Top 100 Global Innovators list every single year since its inception a decade ago. With an average age of a century, the foundational stories of these firms and the themes they teach, endure and resonate today. Company history information was sourced from publicly available web records, including company websites, and best efforts were made to share with organizations for veracity. Break– 1665 — Saint-Gobain In October 1665, King Louis 14th of France granted a charter to minister Jean-Baptiste Colbert for a new glass and mirror making company, the Royal Mirror Glass Factory. With glassmaking expertise in the 17th century monopolized by Venice, the new company brought valuable Venetian glass makers, and their rare knowledge, across the Alps. After 365 years of prosperity and expansion with orders from the royal household (including the Hall of Mirrors at Versailles), today Saint-Gobain is a out global supplier and innovator of high- performance and sustainable materials (including glass) across a broad range of industries including construction, mobility, health and manufacturing. 1875 — Toshiba In 1875 Hisashige Tanaka opened Tanaka Engineering Works in Tokyo, manufacturing telegraphic equipment. Five years later, Ichisuke Fujioka established Hakunetsu-sha & Company, with a focus on developing the first Japanese-designed electric lamps.
    [Show full text]
  • The Role of MIT
    Entrepreneurial Impact: The Role of MIT Edward B. Roberts and Charles Eesley MIT Sloan School of Management February 2009 © 2009 by Edward B. Roberts. All rights reserved. ENTREPRENEURIAL IMPACT: THE ROLE OF MIT Entrepreneurial Impact: The Role of MIT Edward B. Roberts and Charles Eesley Edward B. Roberts is the David Sarnoff Professor of Management of Technology, MIT Sloan School of Management, and founder/chair of the MIT Entrepreneurship Center, which is sponsored in part by the Ewing Marion Kauffman Foundation. Charles Eesley is a doctoral candidate in the Technological Innovation & Entrepreneurship Group at the MIT Sloan School of Management and the recipient of a Kauffman Dissertation Fellowship. We thank MIT, the MIT Entrepreneurship Center, the Kauffman Foundation, and Gideon Gartner for their generous support of our research. The views expressed herein are those of the authors and do not necessarily reflect the views of the Ewing Marion Kauffman Foundation or MIT. Any mistakes are the authors’. ENTREPRENEURIAL IMPACT: THE ROLE OF MIT 1 TABLE OF CONTENTS Executive Summary................................................................................................................................4 Economic Impact of MIT Alumni Entrepreneurs......................................................................................4 The Types of Companies MIT Graduates Create......................................................................................5 The MIT Entrepreneurial Ecosystem ........................................................................................................6
    [Show full text]
  • Claude Elwood Shannon (1916–2001) Solomon W
    Claude Elwood Shannon (1916–2001) Solomon W. Golomb, Elwyn Berlekamp, Thomas M. Cover, Robert G. Gallager, James L. Massey, and Andrew J. Viterbi Solomon W. Golomb Done in complete isolation from the community of population geneticists, this work went unpublished While his incredibly inventive mind enriched until it appeared in 1993 in Shannon’s Collected many fields, Claude Shannon’s enduring fame will Papers [5], by which time its results were known surely rest on his 1948 work “A mathematical independently and genetics had become a very theory of communication” [7] and the ongoing rev- different subject. After his Ph.D. thesis Shannon olution in information technology it engendered. wrote nothing further about genetics, and he Shannon, born April 30, 1916, in Petoskey, Michi- expressed skepticism about attempts to expand gan, obtained bachelor’s degrees in both mathe- the domain of information theory beyond the matics and electrical engineering at the University communications area for which he created it. of Michigan in 1936. He then went to M.I.T., and Starting in 1938 Shannon worked at M.I.T. with after spending the summer of 1937 at Bell Tele- Vannevar Bush’s “differential analyzer”, the an- phone Laboratories, he wrote one of the greatest cestral analog computer. After another summer master’s theses ever, published in 1938 as “A sym- (1940) at Bell Labs, he spent the academic year bolic analysis of relay and switching circuits” [8], 1940–41 working under the famous mathemati- in which he showed that the symbolic logic of cian Hermann Weyl at the Institute for Advanced George Boole’s nineteenth century Laws of Thought Study in Princeton, where he also began thinking provided the perfect mathematical model for about recasting communications on a proper switching theory (and indeed for the subsequent mathematical foundation.
    [Show full text]
  • Marconi Society - Wikipedia
    9/23/2019 Marconi Society - Wikipedia Marconi Society The Guglielmo Marconi International Fellowship Foundation, briefly called Marconi Foundation and currently known as The Marconi Society, was established by Gioia Marconi Braga in 1974[1] to commemorate the centennial of the birth (April 24, 1874) of her father Guglielmo Marconi. The Marconi International Fellowship Council was established to honor significant contributions in science and technology, awarding the Marconi Prize and an annual $100,000 grant to a living scientist who has made advances in communication technology that benefits mankind. The Marconi Fellows are Sir Eric A. Ash (1984), Paul Baran (1991), Sir Tim Berners-Lee (2002), Claude Berrou (2005), Sergey Brin (2004), Francesco Carassa (1983), Vinton G. Cerf (1998), Andrew Chraplyvy (2009), Colin Cherry (1978), John Cioffi (2006), Arthur C. Clarke (1982), Martin Cooper (2013), Whitfield Diffie (2000), Federico Faggin (1988), James Flanagan (1992), David Forney, Jr. (1997), Robert G. Gallager (2003), Robert N. Hall (1989), Izuo Hayashi (1993), Martin Hellman (2000), Hiroshi Inose (1976), Irwin M. Jacobs (2011), Robert E. Kahn (1994) Sir Charles Kao (1985), James R. Killian (1975), Leonard Kleinrock (1986), Herwig Kogelnik (2001), Robert W. Lucky (1987), James L. Massey (1999), Robert Metcalfe (2003), Lawrence Page (2004), Yash Pal (1980), Seymour Papert (1981), Arogyaswami Paulraj (2014), David N. Payne (2008), John R. Pierce (1979), Ronald L. Rivest (2007), Arthur L. Schawlow (1977), Allan Snyder (2001), Robert Tkach (2009), Gottfried Ungerboeck (1996), Andrew Viterbi (1990), Jack Keil Wolf (2011), Jacob Ziv (1995). In 2015, the prize went to Peter T. Kirstein for bringing the internet to Europe. Since 2008, Marconi has also issued the Paul Baran Marconi Society Young Scholar Awards.
    [Show full text]
  • Division of Research and Economic Development
    University of Rhode Island DigitalCommons@URI Reports (Research and Economic Development) Division of Research and Economic Development 2012 Division of Research and Economic Development Annual Report for FY2012 URI Division of Research and Economic Development Follow this and additional works at: http://digitalcommons.uri.edu/researchecondev_reports Recommended Citation URI Division of Research and Economic Development, "Division of Research and Economic Development Annual Report for FY2012" (2012). Reports (Research and Economic Development). Paper 7. http://digitalcommons.uri.edu/researchecondev_reports/7http://digitalcommons.uri.edu/researchecondev_reports/7 This Annual Report is brought to you for free and open access by the Division of Research and Economic Development at DigitalCommons@URI. It has been accepted for inclusion in Reports (Research and Economic Development) by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Annual Report FY2012 PROPOSALS SUBMITTED through the Division of Research and Economic Development FY2012 Number of Proposals Dollar Amount 654 $299,726,030 AWARDS RECEIVED through the Division of Research and Economic Development FY2012 Type of Awards Dollar Amount Awards received through the Division of Research and Economic Development $95,004,749 Research-related awards through the URI Foundation $2,297,509 Research-related activity through the URI Research Foundation $343,245 Vice President for Research and Economic Development Support $506,998
    [Show full text]
  • Channel Coding
    1 Channel Coding: The Road to Channel Capacity Daniel J. Costello, Jr., Fellow, IEEE, and G. David Forney, Jr., Fellow, IEEE Submitted to the Proceedings of the IEEE First revision, November 2006 Abstract Starting from Shannon’s celebrated 1948 channel coding theorem, we trace the evolution of channel coding from Hamming codes to capacity-approaching codes. We focus on the contributions that have led to the most significant improvements in performance vs. complexity for practical applications, particularly on the additive white Gaussian noise (AWGN) channel. We discuss algebraic block codes, and why they did not prove to be the way to get to the Shannon limit. We trace the antecedents of today’s capacity-approaching codes: convolutional codes, concatenated codes, and other probabilistic coding schemes. Finally, we sketch some of the practical applications of these codes. Index Terms Channel coding, algebraic block codes, convolutional codes, concatenated codes, turbo codes, low-density parity- check codes, codes on graphs. I. INTRODUCTION The field of channel coding started with Claude Shannon’s 1948 landmark paper [1]. For the next half century, its central objective was to find practical coding schemes that could approach channel capacity (hereafter called “the Shannon limit”) on well-understood channels such as the additive white Gaussian noise (AWGN) channel. This goal proved to be challenging, but not impossible. In the past decade, with the advent of turbo codes and the rebirth of low-density parity-check codes, it has finally been achieved, at least in many cases of practical interest. As Bob McEliece observed in his 2004 Shannon Lecture [2], the extraordinary efforts that were required to achieve this objective may not be fully appreciated by future historians.
    [Show full text]
  • Robert Noyce Papers
    http://oac.cdlib.org/findaid/ark:/13030/kt3m3nc61v No online items Guide to the Robert Noyce Papers Colyn Wohlmut Department of Special Collections Green Library Stanford University Libraries Stanford, CA 94305-6004 Phone: (650) 725-1022 Email: [email protected] URL: http://library.stanford.edu/spc/ © 2006 The Board of Trustees of Stanford University. All rights reserved. Guide to the Robert Noyce Papers M1490 1 Guide to the Robert Noyce Papers Collection number: M1490 Department of Special Collections and University Archives Stanford University Libraries Stanford, California Processed by: Colyn Wohlmut Date Completed: December 2005 Encoded by: Bill O'Hanlon © 2006 The Board of Trustees of Stanford University. All rights reserved. Descriptive Summary Title: Robert Noyce papers Dates: ca. 1948-1990 Collection number: M1490 Creator: Noyce, Robert N., 1927- Collection Size: 11 linear ft. (19 manuscript boxes and 3 oversize boxes) Repository: Stanford University. Libraries. Dept. of Special Collections and University Archives. Abstract: Collection contains documents, photographs, videotape, and audio tape (reel to reel). Languages: Languages represented in the collection: English Access Collection is open for research; materials must be requested at least 24 hours in advance of intended use. Requests for electronic media (audio and video tape, disks, etc.) will require a review before patron use; please refer to http://www-sul.stanford.edu/depts/spc/emedia/access.html for complete policy statement. Publication Rights Property rights reside with the repository. Literary rights reside with the creators of the documents or their heirs. To obtain permission to publish or reproduce, please contact the Public Services Librarian of the Dept. of Special Collections.
    [Show full text]
  • Andrew Viterbi
    Andrew Viterbi Interview conducted by Joel West, PhD December 15, 2006 Interview conducted by Joel West, PhD on December 15, 2006 Andrew Viterbi Dr. Andrew J. Viterbi, Ph.D. serves as President of the Viterbi Group LLC and Co- founded it in 2000. Dr. Viterbi co-founded Continuous Computing Corp. and served as its Chief Technology Officer from July 1985 to July 1996. From July 1983 to April 1985, he served as the Senior Vice President and Chief Scientist of M/A-COM Inc. In July 1985, he co-founded QUALCOMM Inc., where Dr. Viterbi served as the Vice Chairman until 2000 and as the Chief Technical Officer until 1996. Under his leadership, QUALCOMM received international recognition for innovative technology in the areas of digital wireless communication systems and products based on Code Division Multiple Access (CDMA) technologies. From October 1968 to April 1985, he held various Executive positions at LINKABIT (M/A-COM LINKABIT after August 1980) and served as the President of the M/A-COM LINKABIT. In 1968, Dr. Viterbi Co-founded LINKABIT Corp., where he served as an Executive Vice President and later as the President in the early 1980's. Dr. Viterbi served as an Advisor at Avalon Ventures. He served as the Vice-Chairman of Continuous Computing Corp. since July 1985. During most of his period of service with LINKABIT, Dr. Viterbi served as the Vice-Chairman and a Director. He has been a Director of Link_A_Media Devices Corporation since August 2010. He serves as a Director of Continuous Computing Corp., Motorola Mobility Holdings, Inc., QUALCOMM Flarion Technologies, Inc., The International Engineering Consortium and Samsung Semiconductor Israel R&D Center Ltd.
    [Show full text]
  • HOW DID SILICON VALLEY BECOME SILICON VALLEY? Three Surprising Lessons for Other Cities and Regions
    HOW DID SILICON VALLEY BECOME SILICON VALLEY? Three Surprising Lessons for Other Cities and Regions a report from: supported by: 2 / How Silicon Valley Became "Silicon Valley" This report was created by Rhett Morris and Mariana Penido. They wish to thank Jona Afezolli, Fernando Fabre, Mike Goodwin, Matt Lerner, and Han Sun who provided critical assistance and input. For additional information on this research, please contact Rhett Morris at [email protected]. How Silicon Valley Became "Silicon Valley" / 3 INTRODUCTION THE JOURNALIST Don Hoefler coined the York in the chip industry.4 No one expected the term “Silicon Valley” in a 1971 article about region to become a hub for these technology computer chip companies in the San Francisco companies. Bay Area.1 At that time, the region was home to Silicon Valley’s rapid development offers many prominent chip businesses, such as Intel good news to other cities and regions. This and AMD. All of these companies used silicon report will share the story of its creation and to manufacture their chips and were located in analyze the steps that enabled it to grow. While a farming valley south of the city. Hoefler com- it is impossible to replicate the exact events that bined these two facts to create a new name for established this region 50 years ago, the devel- the area that highlighted the success of these opment of Silicon Valley can provide insights chip businesses. to leaders in communities across the world. Its Silicon Valley is now the most famous story illustrates three important lessons for cul- technology hub in the world, but it was a very tivating high-growth companies and industries: different place before these businesses devel- oped.
    [Show full text]
  • March 2, 2020 to Whom It May Concern
    Cato T. Laurencin, M.D., Ph.D. University Professor Albert and Wilda Van Dusen Distinguished Professor of March 2, 2020 Orthopaedic Surgery To whom it may concern: Professor of Chemical, Materials and Biomedical Engineering Director, The Raymond and I was recently nominated to be President of the University of Central Florida. Beverly Sackler Center for After much thought, I wish to be considered for the position. I’m enclosing my brief Biomedical, Biological, Physical and Engineering Sciences biography, my full CV, and a descriptor of my scholarly background gleaned from my Chief Executive Officer, CV. Connecticut Convergence Institute for Translation in Regenerative In this letter, I would like to focus on my administrative background. Engineering I am currently the Chief Executive Officer of the Connecticut Convergence Institute for Translation in Regenerative Engineering. In this capacity I’ve had the ability to build new and broad programs across the university with the goal of fostering innovation and delivering action: in research, education, entrepreneurship, mentoring, in the promotion of diversity, and in community outreach. I was previously Vice President for Health Affairs and Dean of the School of Medicine at the University of Connecticut where I oversaw a 1 Billion dollar medical center that included the research enterprise, medical school, dental school, hospital and practice plan. In that role I brought the medical center to profitability, revamped the academic mission, brought a hospital out of probation to full accreditation, achieved record growth in research funding, and gained the support of the legislature for an 850MM building initiative. Previous to that I served as Chair of Orthopaedic Surgery and a Professor of Chemical Engineering at the University of Virginia where I was a leader in UVA’s strategic planning efforts.
    [Show full text]
  • Seeds of Discovery: Chapters in the Economic History of Innovation Within NASA
    Seeds of Discovery: Chapters in the Economic History of Innovation within NASA Edited by Roger D. Launius and Howard E. McCurdy 2015 MASTER FILE AS OF Friday, January 15, 2016 Draft Rev. 20151122sj Seeds of Discovery (Launius & McCurdy eds.) – ToC Link p. 1 of 306 Table of Contents Seeds of Discovery: Chapters in the Economic History of Innovation within NASA .............................. 1 Introduction: Partnerships for Innovation ................................................................................................ 7 A Characterization of Innovation ........................................................................................................... 7 The Innovation Process .......................................................................................................................... 9 The Conventional Model ....................................................................................................................... 10 Exploration without Innovation ........................................................................................................... 12 NASA Attempts to Innovate .................................................................................................................. 16 Pockets of Innovation............................................................................................................................ 20 Things to Come ...................................................................................................................................... 23
    [Show full text]