2008 Annual Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
APS News November 2019, Vol. 28, No. 10
Professional The Optics of Topical Group on Back Page: Physics Education 02│ Skills Seminar 03│ Augmented Reality 05│ Data Science 08│ in Texas November 2019 • Vol. 28, No. 10 aps.org/apsnews A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY HONORS OUTREACH 2019 Nobel Prize in Physics Evaluating a Decade of BY LEAH POFFENBERGER PhysicsQuest BY LEAH POFFENBERGER he Royal Swedish Academy of Sciences has announced the or the past 10 years, middle winners of the 2019 Nobel T school classrooms all Prize in Physics, recognizing both theoretical and experimental F across the country have contributions to understanding had a chance to learn physics the universe. This year, the prize with hands-on demos thanks to is awarded to APS Fellow James the APS PhysicsQuest program. Peebles (Princeton University), PhysicsQuest distributes kits Michel Mayor (University of packed with experiment demos, Geneva), and Didier Queloz comic books, and a teacher’s guide (University of Geneva; University in hopes of inspiring students to of Cambridge). be more interested in physics. In New physics laureates (L-R): Didier Queloz, Michel Mayor, James Peebles Half of the prize is awarded the 2018-2019 school year alone, IMAGE: NOBEL FOUNDATION PhysicsQuest reached nearly to Peebles for his theoretical This year’s PhysicsQuest kits focus insights into physical cosmology Nobel Laureate David Gross. “Jim and measure the properties of the 184,000 students taught by more on the achievements of physicist that have impacted the trajec- is among the fathers of physical universe.” than 5,000 teachers. Chien-Shiung Wu. tory of cosmology research for cosmology that laid the foundation Peebles receives the Nobel Prize This year, APS commissioned good timing,” says James Roche, the past 50 years and form the for the now remarkably successful for his decoding of the cosmic an evaluation report of the Outreach Programs Manager basis of the current ideas about standard theory of the structure microwave background, left behind PhysicsQuest program to assess its at APS. -
INTERNATIONAL INSTITUTE of BENGAL and HIMALAYAN BASINS 10 Evans Hall, University of California at Berkeley Berkeley, California
INTERNATIONAL INSTITUTE OF BENGAL AND HIMALAYAN BASINS 10 Evans Hall, University of California at Berkeley BERKELEY, CALIFORNIA The International Institute of the Bengal and Himalayan Basins PEACE July 20, 2013 TOWNES AND TAGORE FOURTH ANNUAL SEMINAR ON THE GLOBAL WATER CRISIS 1:30 – 2:00 PM RECEPTION/MIXER 2:00 – 2:15 PM POETRY / SONG Mamade Kadreebux Sushmita Ghosh 2:15-4:00 PM SEMINAR INTRODUCTION Rosalie Say Welcome Founder’s Introduction: Mamade Kadreebux Welcome and Prefatory Remarks, Rash B. Ghosh, PhD, Founder, IIBHB SPECIAL WORDS FROM FRIENDS & WELL-WISHERS OF PROFESSOR CHARLES TOWNES 2:45 – 4:00 PM SESSION ONE The Convergence of Science and Spirituality David Presti, PhD, Professor, Molecular Cell Biology, UC Berkeley Water Budget Estimation and Water Management in the Mekong River Basin Jeanny Wang, President/Sr. Environmental Engineer, EcoWang Ltd. Sand from Newton’s Seashore: Introduction of Dr. Charles H. Townes John Paulin, PhD, Technical Writer and Editor, IIBHB Chief Guest Address: Vivekananda and a Vision for the South Asia, the US, and our Planet Charles H. Townes, PhD, 1964 Nobel Laureate in Physics, 1999 Rabindranath Tagore Award Recipient, and 2005 Templeton Prize Awardee Q & A 4:30 - 6:30 SESSION TWO INTRODUCTION OF KEYNOTE SPEAKER Derek Whitworth, PhD, President, IIBHB Keynote Address Steven Chu, 1997 Nobel Laureate in Physics and former U.S. Secretary of Energy Reducing the Impact of Toxics in Drinking Water Resources Rash B. Ghosh, PhD, Founder, IIBHB Special Presentation: How Advances in Science are Made. Douglas Osheroff, PhD, 1996 Nobel Laureate in Physics Q & A SUMMARY AND CONCLUDING REMARKS Sterling Bunnel, MD, IIBHB Former President and Advisor ACKNOWLEDGEMENT Master of Ceremonies Rosalie Say Professor Charles Hard Townes was born in 1915 and invented the microwave laser, or maser, in 1953 while at Columbia University. -
How USAF's Missile Program Helped the Nation Off the Pad
Iii ANNIVERSARY There was no lack of rocketry art when Sputnik jolted the US and the free world. The Army, Navy, and Air Force had all been working with missiles for some years, and many rocket spe- cialists had foreseen the future significance of space. But the national capabilities were splintered. As NASA came into being, with a strong need for large-scale program know-how, it was the Air Force, fresh from its missile management experience, that could offer the most useful aid in getting the space program under way . How USAF's Missile Program Helped the Nation off the Pad BY WILLIAM LEA VITT ASSOCIATE EDITOR, AIR FORCE/SPACE DIGEST "From this effort has emerged not only the major portion of our national missile force but also the prime base of technology and management skill underpinning the total national space effort. Many of our space accomplishments to date—both military and civilian—simply could not have been undertaken successfully with- out the prior experience gained in the Air Force missile development program." —SECRETARY OF THE AIR FORCE EUGENE M. ZUCKERT T IS a fact, documented in the public prints, Just one aspect of this sizable Air Force role has in congressional reports, and above all, on been the large number of Air Force officers who have launch pads and tracking sites around the served the National Aeronautics and Space Adminis- world, that the US Air Force has made mas- tration on direct loan or in supportive Air Force efforts, sive contributions of men, hardware, and since the civilian space agency's establishment in 1958. -
Chapter 6.Qxd
CHAPTER 6: The NASA Family The melding of all of the NASA centers, contractors, universities, and often strong personalities associated with each of them into the productive and efficient organization necessary to complete NASA’s space missions became both more critical and more difficult as NASA turned its attention from Gemini to Apollo. The approach and style and, indeed, the personality of each NASA center differed sharply. The Manned Spacecraft Center was distinctive among all the rest. Fortune magazine suggested in 1967 that the scale of NASA’s operation required a whole new approach and style of management: “To master such massively complex and expensive problems, the agency has mobilized some 20,000 individual firms, more than 400,000 workers, and 200 colleges and universities in a combine of the most advanced resources of American civilization.” The author referred to some of the eight NASA centers and assorted field installations as “pockets of sovereignty” which exercised an enormous degree of independence and autonomy.1 An enduring part of the management problem throughout the Mercury and Gemini programs that became compounded under Apollo, because of its greater technical challenges, was the diversity and distinctiveness of each of the NASA centers. The diverse cultures and capabilities represented by each of the centers were at once the space program’s greatest resource and its Achilles’ heel. NASA was a hybrid organization. At its heart was Langley Memorial Aeronautical Laboratory established by Congress in 1917 near Hampton, Virginia, and formally dedicated in 1920. It became the Langley Research Center. Langley created the Ames Aeronautical Laboratory at Moffett Field, California, in 1939. -
Top 100 Global Innovators 2021 10-Year Anniversary
Top 100 Global Innovators 2021 10-year anniversary edition Celebrating 10 years of Top 100 Global Innovators Contents 06 Foreword 09 A habit for the new 10 Creating the list 12 Top 100 Global Innovators 2021 18 One year on 24 The hidden value of innovation culture 26 An ideation keel 3 Break– out 4 29 that have led the way. These 29 companies have appeared in the Top 100 Global Innovators list every single year since its inception a decade ago. With an average age of a century, the foundational stories of these firms and the themes they teach, endure and resonate today. Company history information was sourced from publicly available web records, including company websites, and best efforts were made to share with organizations for veracity. Break– 1665 — Saint-Gobain In October 1665, King Louis 14th of France granted a charter to minister Jean-Baptiste Colbert for a new glass and mirror making company, the Royal Mirror Glass Factory. With glassmaking expertise in the 17th century monopolized by Venice, the new company brought valuable Venetian glass makers, and their rare knowledge, across the Alps. After 365 years of prosperity and expansion with orders from the royal household (including the Hall of Mirrors at Versailles), today Saint-Gobain is a out global supplier and innovator of high- performance and sustainable materials (including glass) across a broad range of industries including construction, mobility, health and manufacturing. 1875 — Toshiba In 1875 Hisashige Tanaka opened Tanaka Engineering Works in Tokyo, manufacturing telegraphic equipment. Five years later, Ichisuke Fujioka established Hakunetsu-sha & Company, with a focus on developing the first Japanese-designed electric lamps. -
Messenger Extreme Exploration
MESSENGERMESSENGER EEXTREMEXTREME EEXPLORATIONXPLORATION — Deborah Domingue, MESSENGER Deputy Project Scientist, Johns Hopkins University Applied Physics Laboratory The first half of 2004 has been an exciting time for planetary exploration with the successful encounter and sampling of Comet Wild 2 by Stardust, the landing of two Mars rovers, orbital operations at Mars by three spacecraft, and the arrival of Cassini at Saturn. This month we wished “Bon Voyage” to the MESSENGER spacecraft, which successfully launched from Cape Canaveral on August 3, 2004, and began its journey to the innermost planet of our solar system, Mercury. MESSENGER is a MEcury Surface, Space ENvironment, GEochemistry, and Ranging mission that will orbit Mercury for one Earth year (beginning in March 2011) following three flybys (in January and Septem- ber 2008 and October 2009) of the planet. It will be our first return to Mercury in over 30 years! The Mariner 10 spacecraft flew past Mer- cury three times in 1974 and 1975 and collected information on less than half the planet. MESSENGER will provide the first global map of Mercury, in addition to detailed information on the composition and structure of Mercury’s crust, its geologic history, the nature of Mercury’s thin exosphere and dynamic magnetosphere, and the makeup of its core and polar materials. MERCURY:A PLACE OF EXTREMES Mercury, the planet closest to the Sun, has a highly elliptical orbit such that its distance from the Sun ranges from 46 million kilometers (29 million miles) to 70 million kilometers (43 million miles). Because of its slow rotation, Mercury’s day (sunrise to sunrise) actually lasts two Mercury years (88 Earth days of dark and 88 Earth days of daylight). -
See the Scientific Petition
May 20, 2016 Implement the Endangered Species Act Using the Best Available Science To: Secretary Sally Jewell and Secretary Penny Prtizker We, the under-signed scientists, recommend the U.S. government place species conservation policy on firmer scientific footing by following the procedure described below for using the best available science. A recent survey finds that substantial numbers of scientists at the U.S. Fish and Wildlife Service (FWS) and the National Oceanic and Atmospheric Administration believe that political influence at their agency is too high.i Further, recent species listing and delisting decisions appear misaligned with scientific understanding.ii,iii,iv,v,vi For example, in its nationwide delisting decision for gray wolves in 2013, the FWS internal review failed the best science test when reviewed by an independent peer-review panel.vii Just last year, a FWS decision not to list the wolverine ran counter to the opinions of agency and external scientists.viii We ask that the Departments of the Interior and Commerce make determinations under the Endangered Species Actix only after they make public the independent recommendations from the scientific community, based on the best available science. The best available science comes from independent scientists with relevant expertise who are able to evaluate and synthesize the available science, and adhere to standards of peer-review and full conflict-of-interest disclosure. We ask that agency scientific recommendations be developed with external review by independent scientific experts. There are several mechanisms by which this can happen; however, of greatest importance is that an independent, external, and transparent science-based process is applied consistently to both listing and delisting decisions. -
The Role of MIT
Entrepreneurial Impact: The Role of MIT Edward B. Roberts and Charles Eesley MIT Sloan School of Management February 2009 © 2009 by Edward B. Roberts. All rights reserved. ENTREPRENEURIAL IMPACT: THE ROLE OF MIT Entrepreneurial Impact: The Role of MIT Edward B. Roberts and Charles Eesley Edward B. Roberts is the David Sarnoff Professor of Management of Technology, MIT Sloan School of Management, and founder/chair of the MIT Entrepreneurship Center, which is sponsored in part by the Ewing Marion Kauffman Foundation. Charles Eesley is a doctoral candidate in the Technological Innovation & Entrepreneurship Group at the MIT Sloan School of Management and the recipient of a Kauffman Dissertation Fellowship. We thank MIT, the MIT Entrepreneurship Center, the Kauffman Foundation, and Gideon Gartner for their generous support of our research. The views expressed herein are those of the authors and do not necessarily reflect the views of the Ewing Marion Kauffman Foundation or MIT. Any mistakes are the authors’. ENTREPRENEURIAL IMPACT: THE ROLE OF MIT 1 TABLE OF CONTENTS Executive Summary................................................................................................................................4 Economic Impact of MIT Alumni Entrepreneurs......................................................................................4 The Types of Companies MIT Graduates Create......................................................................................5 The MIT Entrepreneurial Ecosystem ........................................................................................................6 -
2005 Annual Report American Physical Society
1 2005 Annual Report American Physical Society APS 20052 APS OFFICERS 2006 APS OFFICERS PRESIDENT: PRESIDENT: Marvin L. Cohen John J. Hopfield University of California, Berkeley Princeton University PRESIDENT ELECT: PRESIDENT ELECT: John N. Bahcall Leo P. Kadanoff Institue for Advanced Study, Princeton University of Chicago VICE PRESIDENT: VICE PRESIDENT: John J. Hopfield Arthur Bienenstock Princeton University Stanford University PAST PRESIDENT: PAST PRESIDENT: Helen R. Quinn Marvin L. Cohen Stanford University, (SLAC) University of California, Berkeley EXECUTIVE OFFICER: EXECUTIVE OFFICER: Judy R. Franz Judy R. Franz University of Alabama, Huntsville University of Alabama, Huntsville TREASURER: TREASURER: Thomas McIlrath Thomas McIlrath University of Maryland (Emeritus) University of Maryland (Emeritus) EDITOR-IN-CHIEF: EDITOR-IN-CHIEF: Martin Blume Martin Blume Brookhaven National Laboratory (Emeritus) Brookhaven National Laboratory (Emeritus) PHOTO CREDITS: Cover (l-r): 1Diffraction patterns of a GaN quantum dot particle—UCLA; Spring-8/Riken, Japan; Stanford Synchrotron Radiation Lab, SLAC & UC Davis, Phys. Rev. Lett. 95 085503 (2005) 2TESLA 9-cell 1.3 GHz SRF cavities from ACCEL Corp. in Germany for ILC. (Courtesy Fermilab Visual Media Service 3G0 detector studying strange quarks in the proton—Jefferson Lab 4Sections of a resistive magnet (Florida-Bitter magnet) from NHMFL at Talahassee LETTER FROM THE PRESIDENT APS IN 2005 3 2005 was a very special year for the physics community and the American Physical Society. Declared the World Year of Physics by the United Nations, the year provided a unique opportunity for the international physics community to reach out to the general public while celebrating the centennial of Einstein’s “miraculous year.” The year started with an international Launching Conference in Paris, France that brought together more than 500 students from around the world to interact with leading physicists. -
THE BI-WEEKLY NEWS LETTER College Placement Association, Inc
SPEAKING OF PEOPLE Dr. F. Thomas Sheeder, director. Student Financial and Career Plan ning, has been named to the Organ ization Committee of the Southern THE BI-WEEKLY NEWS LETTER College Placement Association, Inc. He is past chairman of the SCPA Professional Development Committee... Dr. Marshall R. Jones, chair man, psychology, and member of the American Psychological As sociation's Council of Represent Volume 10, No. 3 October 20, 1969 atives, attended the Public Policy Conference for Psychologists at MOON SAMPLES University of Miami scientists are currently Williamsburg, Va. October 5-10... STUDIED HERE studying 51.8 grams of lunar material brought An article, "Voltaire and Hum back to earth by the Apollo 11 crew in July. Dr. phry Clinker," by Dr. Evelyn Sidney W. Fox, director of the Institute of Molecular Evolution and Helmick, English, was published bioscience consultant to the National Aeronautics and Space Adminis in Vol. 68, 1969 issue of Studies tration since 1960, is working with co-investigators Dr. Kaoru Harada on Voltaire and the 18th Century, and Dr. George Mueller. Dr. Fox told a special press conference Oct. Voltaire Institute, Geneva, Switz 6 that in simple layman's terms the object of their experiments is to erland... determine if there is evidence of molecular evolution on the moon. Dr. Grover A. J. Noetzel, econ The UM will receive chips of moon rock at a later date, he said. omics, spoke on "Economic Foun dations of Real Estate" to the Mi ami Board of Realtors Oct. 15, on UM SPONSORS TWO The University of Miami sponsored two "Economic Opportunities in the COMMUNITY MEETINGS major meetings of community interest Seventies," to the National As recently. -
Division of Research and Economic Development
University of Rhode Island DigitalCommons@URI Reports (Research and Economic Development) Division of Research and Economic Development 2012 Division of Research and Economic Development Annual Report for FY2012 URI Division of Research and Economic Development Follow this and additional works at: http://digitalcommons.uri.edu/researchecondev_reports Recommended Citation URI Division of Research and Economic Development, "Division of Research and Economic Development Annual Report for FY2012" (2012). Reports (Research and Economic Development). Paper 7. http://digitalcommons.uri.edu/researchecondev_reports/7http://digitalcommons.uri.edu/researchecondev_reports/7 This Annual Report is brought to you for free and open access by the Division of Research and Economic Development at DigitalCommons@URI. It has been accepted for inclusion in Reports (Research and Economic Development) by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Annual Report FY2012 PROPOSALS SUBMITTED through the Division of Research and Economic Development FY2012 Number of Proposals Dollar Amount 654 $299,726,030 AWARDS RECEIVED through the Division of Research and Economic Development FY2012 Type of Awards Dollar Amount Awards received through the Division of Research and Economic Development $95,004,749 Research-related awards through the URI Foundation $2,297,509 Research-related activity through the URI Research Foundation $343,245 Vice President for Research and Economic Development Support $506,998 -
A Brief History of Magnetospheric Physics Before the Spaceflight Era
A BRIEF HISTORY OF MAGNETOSPHERIC PHYSICS BEFORE THE SPACEFLIGHT ERA David P. Stern Laboratoryfor ExtraterrestrialPhysics NASAGoddard Space Flight Center Greenbelt,Maryland Abstract.This review traces early resea/ch on the Earth's aurora, plasma cloud particles required some way of magneticenvironment, covering the period when only penetratingthe "Chapman-Ferrarocavity": Alfv•n (1939) ground:based0bservationswerepossible. Observations of invoked an eleCtric field, but his ideas met resistance. The magneticstorms (1724) and of perturbationsassociated picture grew more complicated with observationsof with the aurora (1741) suggestedthat those phenomena comets(1943, 1951) which suggesteda fast "solarwind" originatedoutside the Earth; correlationof the solarcycle emanatingfrom the Sun's coronaat all times. This flow (1851)with magnetic activity (1852) pointed to theSun's was explainedby Parker's theory (1958), and the perma- involvement.The discovei-yof •solarflares (1859) and nent cavity which it producedaround the Earth was later growingevidence for their associationwith large storms named the "magnetosphere"(1959). As early as 1905, led Birkeland (1900) to proposesolar electronstreams as Birkeland had proposedthat the large magneticperturba- thecause. Though laboratory experiments provided some tions of the polar aurora refleCteda "polar" type of support;the idea ran into theoreticaldifficulties and was magneticstorm whose electric currents descended into the replacedby Chapmanand Ferraro's notion of solarplasma upper atmosphere;that idea, however, was resisted for clouds (1930). Magnetic storms were first attributed more than 50 years. By the time of the International (1911)to a "ringcurrent" of high-energyparticles circling GeophysicalYear (1957-1958), when the first artificial the Earth, but later work (1957) reCOgnizedthat low- satelliteswere launched, most of the importantfeatures of energy particlesundergoing guiding center drifts could the magnetospherehad been glimpsed, but detailed have the same effect.