Allopatric Differentiation in the Marcusenius Macrolepidotus Species Complex in Southern and Eastern Africa: the Resurrection of M

Total Page:16

File Type:pdf, Size:1020Kb

Allopatric Differentiation in the Marcusenius Macrolepidotus Species Complex in Southern and Eastern Africa: the Resurrection of M Journal of Natural History, 2007; 41(9–12): 647–708 Allopatric differentiation in the Marcusenius macrolepidotus species complex in southern and eastern Africa: the resurrection of M. pongolensis and M. angolensis, and the description of two new species (Mormyridae, Teleostei) BERND KRAMER1, PAUL SKELTON2, HERMAN VAN DER BANK3 & MICHAEL WINK4 1University of Regensburg, Zoological Institute, Universita¨tsstrabe 31, D-93040 Regensburg, Germany, 2South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown 6140, South Africa, 3University of Johannesburg, Department of Zoology, Kingsway Campus, PO Box 524, Auckland Park, 2006, South Africa, and 4Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany (Accepted 18 January 2007) Abstract We critically compared local populations of the bulldog fish, Marcusenius macrolepidotus (Peters 1852), from different watersheds, from the furthest south (28u South, South Africa) to the Equator in Kenya. We ascertained allopatric differentiation from topotypical M. macrolepidotus from the Lower Zambezi River (Mozambique) in morphology, electric organ discharges, and molecular genetics for: (1) samples from the Okavango and Upper Zambezi Systems (Botswana and Namibia), (2) samples from South Africa’s rivers draining into the Indian Ocean, and (3) samples from the East African Tana River (Kenya). Significant genetic distances in the mitochondrial cytochrome b gene and differing ISSR-PCR profiles corroborate differentiation between the four taxa. We resurrect M. pongolensis (Fowler, 1934) for South Africa (sample 2), and M. angolensis (Boulenger, 1905) for the Quanza River/Angola. We recognize M. altisambesi sp. n. for the Upper Zambezi/Okavango specimens (sample 1), and M. devosi sp. n. for those from Kenya (sample 3). Keywords: Teleostei, Mormyridae, Marcusenius, systematics, morphometrics, electric organ discharges, molecular genetics, southern Africa Introduction Marcusenius Gill, 1862 is the largest genus of the Mormyridae, comprising 33 species in the catalogue of fishes (Eschmeyer 2006), distributed throughout tropical central, western, eastern, and north-eastern Africa (Nile System). In southern Africa only a single species, M. macrolepidotus (Peters, 1852), has been recognized, known commonly as the bulldog Correspondence: Bernd Kramer, Zoological Institute, University of Regensburg, Universita¨tsstrabe 31, D-93040 Regensburg, Germany. Fax: +49 (0) 941-943 2905. Email: [email protected] ISSN 0022-2933 print/ISSN 1464-5262 online # 2007 Taylor & Francis DOI: 10.1080/00222930701250987 648 B. Kramer et al. fish, a name which refers to this fish’s well-developed mental lobe on the lower jaw that is also present in other Marcusenius species (Figure 1). Marcusenius macrolepidotus ranges widely in southern and East Africa, occurring in most rivers of East Africa from the equatorial Tana River in Kenya southwards (Seegers 1996, p. 76) to the Mhlatuze River in South Africa’s KwaZulu-Natal province (almost 29u S; Skelton 1993, 2001). It also occurs in the Upper Zaire (Congo River), and is widespread and common in the western Cunene, Okavango and Upper Zambezi Systems. Figure 1. All species and forms of the Marcusenius macrolepidotus species complex, as studied in the present paper. (A) M. macrolepidotus (Peters, 1852), ZMB 3678 (lectotype L. Seegers; photo: L. Seegers). (B) Gnathonemus angolensis Boulenger 1905, BMNH 1905.5.29.64 (holotype). (C) Gnathonemus moeruensis Boulenger 1915, MRAC 14137 (holotype). (D) Gnathonemus pongolensis Fowler 1934, ANSP 54950 (holotype). (E) M. macrolepidotus (Peters 1852), SAIAB 060847, coll. R. Bills 1 Aug.1999, Lower Zambezi. (F) M. macrolepidotus (Peters 1852), SAIAB 060947, coll. R. Bills 15 Aug.1999, lower Pungwe River System. (G) M. devosi sp. n., coll. L. de Vos and B. Kramer 3/6 Sept. 2001, Lower Tana River/Kenya. (H) M. macrolepidotus (Peters, 1852), SAIAB 73790 (largest specimen), coll. R. Bills 14 Aug. 2003, Rovuma System. (I) M. macrolepidotus (Peters 1852), SAIAB 055874, coll. R. Bills 20 July 1997, Mulela River/Mozambique. (J) M. altisambesi sp. n., coll. F.H. van der Bank and B. Kramer, 11/12 August 2004, Okavango River, live fish of SL 13 cm photographed 20 April 2006. (K) M. altisambesi sp. nov, coll. F. H. van der Bank and B. Kramer, 21 August 1999, Upper Zambezi, Kalimbeza, live specimen of 16.5 cm SL photographed 3 July 2003. (L) M. macrolepidotus (Peters 1852), sampled together with SAIAB 67369, coll. R. Bills 29 Sept. 2002, Buzi River System, specimen of 13 cm SL photographed alive 22 February 2005. (M) M. pongolensis (Fowler, 1934), resurrected species, specimen of 11 cm SL reared in captivity from parents caught in Crocodile River, Incomati System, in February 1997, photographed alive 15 March 2005. Marcusenius species complex in southern Africa 649 As in many other fish of wide southern and even east African distribution, a critical comparison of allopatric populations has not been made, with the notable exceptions of the large-scaled Marcusenius species of west-central and central Africa by Boden et al. (1998), none of which occur in the area we were able to visit, and Malawi Marcusenius species (Tweddle and Willoughby 1982). While conducting an analysis of electric organ discharges (EODs) on mormyrids from southern Africa, usually regarded as Marcusenius macro- lepidotus, specimens from the Incomati System (South Africa) emitted distinctly different EODs compared to bulldogs from the Upper Zambezi in Namibia (for Upper Zambezi bulldogs, see Kramer 1997a, 1997b). Bulldogs from other southern African and East African origins revealed still more differentiation on which we report here. DNA markers, such as sequences of mitochondrial DNA (especially cytochrome b) have been widely employed to reconstruct the molecular phylogeny of some members of the Mormyridae in comparison to their corresponding morphology and electrophysiology (Alves-Gomes and Hopkins 1997; Sullivan et al. 2000, 2002; Lavoue´ et al. 2000; Lavoue´ and Sullivan 2004, Kramer et al. 2003, 2004). We have chosen the cyt b gene to reconstruct the phylogeny of the M. macrolepidotus complex. Since mtDNA is inherited maternally, hybridizations can distort the mtDNA phylogeny. In order to corroborate the findings from cyt b analysis we therefore used genomic fingerprinting with ISSR-PCR to analyse variation in the nuclear genome. The ISSR (Inter-simple-sequence-repeat) method has recently been added to the growing list of molecular tools. ISSR analysis is useful for testing genomic instability (Leroy et al. 2000), genetic diversity (Kantety et al. 1995), cultivar identification (Charters et al. 1996), molecular mapping (Ratnaparkhe et al. 1998), in forensic DNA profiling (Kumar et al. 2001) in plants, as well as for sexing in birds (Wink et al. 1998), or detecting hybrids in birds and reptiles (Wink et al. 2000). This PCR-based method uses primers annealing to microsatellite repeats to amplify the regions between adjacent, inversely orientated SSRs, provided they are close enough to allow exponential multiplication. The method targets inversions, insertions, deletions, and mutational events of microsatellites at multiple loci in the genome. Individuals of the same species usually show few to no differences between their ISSR patterns, whereas closely related taxa, such as subspecies and species, give a specific banding profile that can be used to study phylogenetic questions. EODs are a communication signal in mormyrid fishes that are also used for active location of objects (for reviews, see Kramer 1990, 1996; Bastian 1994; Moller 1995; Hopkins 1999). EODs play a key role in pair formation, mating, and social attraction in the bulldog fish (Werneyer and Kramer 2002, 2005; Hanika and Kramer 2005). EODs of sympatric mormyrids of the Upper Zambezi are species-specific (Kramer 1996) and have been used for phylogenetic analysis (Van der Bank and Kramer 1996; Kramer and Van der Bank 2000; Kramer et al. 2003, 2004). In addition to anatomical and genetic data, we utilize EOD as a taxonomic tool for analysing some of the populations forming a complex of allopatric species for M. macrolepidotus in southern and East Africa. Material and methods Electrical and morphological studies A total of 414 specimens was examined and at least 15 measurements (see Figure 2) and at least three meristic characters taken. The following abbreviations were used: PDL, predorsal length: distance tip of snout (excluding mental lobe or chin) to dorsal fin origin. PAL, distance 650 B. Kramer et al. Figure 2. Morphological measures used in the present study. For explanation of abbreviations, see Material and methods. tip of snout to anal fin origin. LD, dorsal fin length. LA, anal fin length. pD, distance dorsal fin origin to end of caudal peduncle. CPL, length of caudal peduncle (end of anal fin base to midbase caudal fin). CPD, depth of caudal peduncle: the least vertical distance across the Marcusenius species complex in southern Africa 651 caudal peduncle. LS, length of snout: distance tip of snout to posterior orbital rim of eye (LSo), centre of eye (LSc). HL, head length: distance tip of the snout to furthest bony edge of the operculum. Na, distance between the pair of nares of one side (from centre to centre). ED, eye diameter: defined by orbital rims. LPF, length of pectoral fins. SL, standard length: distance tip of snout to midbase caudal fin. BD, body depth: the greatest vertical distance across
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Taxonomy and Biochemical Genetics of Some African Freshwater Fish Species
    _________________________________________________________________________Swansea University E-Theses Taxonomy and biochemical genetics of some African freshwater fish species. Abban, Edward Kofi How to cite: _________________________________________________________________________ Abban, Edward Kofi (1988) Taxonomy and biochemical genetics of some African freshwater fish species.. thesis, Swansea University. http://cronfa.swan.ac.uk/Record/cronfa43062 Use policy: _________________________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference above.) http://www.swansea.ac.uk/library/researchsupport/ris-support/ TAXONOMY AND BIOCHEMICAL GENETICS OF SOME AFRICAN FRESHWATER FISH SPECIES. BY EDWARD KOFI ABBAN A Thesis submitted for the degree of Ph.D. UNIVERSITY OF WALES. 1988 ProQuest Number: 10821454 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • The Branchial Basket in Teleost Feeding
    INVITED REVIEW THE BRANCHIAL BASKET IN TELEOST FEEDING by Pierre VANDEWALLE (1), Éric PARMENTIER (1) & Michel CHARDON (1) ABSTRACT. - In teleosts, feeding is effected principally by suction and food is handled by the branchial basket. Preys are carried to the oesophagus by the pharyngeal jaws (PJs). The pharyngobranchial bones constitute the upper pharyngeal jaws (UPJs) and the 5th ceratobranchial bones, the lower pharyngeal jaws (LPJs). In lower teleosts, these jaws have well-separated spindly parts attached to the neurocranium, pectoral girdle, and hyoid bar; they only transport food and LPJ activity predominates. In acanthopteryg- ians, the PJs become stronger, the left and right ceratobranchials fuse into one LPJ, and the pharyngobran- chials join together to form two big UPJs articulating with the neurocranium. In labrids and scarids, the LPJ is also joined to the pectoral girdle. In acanthopterygians, a new retractor dorsalis muscle gives the UPJs the major role in food chewing and transport. Cypriniforms have developed original PJs with strong 5th ceratobranchials opposed to a postero-ventral neurocranial plate. Small-sized preys and food particles are seized by the gill rakers, small skeletal pieces supported by the branchial arches. RÉSUMÉ. - Le rôle de la corbeille branchiale dans l’alimentation des téléostéens. La prise de nourriture des téléostéens est surtout réalisée par aspiration et le traitement des ali- ments est assuré par la corbeille branchiale. Les grosses proies sont amenées à l’œsophage par les mâchoi- res pharyngiennes. Les pharyngobranchiaux constituent les mâchoires supérieures et les cinquièmes cératobranchiaux les inférieures. Chez les téléostéens primitifs, ces mâchoires sont grêles et formées d’éléments osseux bien séparés, suspendus entre le neurocrâne, la ceinture scapulaire et la barre hyoïdien- ne; elles n’assurent que le transport de la nourriture et le rôle des mâchoires inférieures est prédominant.
    [Show full text]
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • České Názvy Živočichů V
    ČESKÉ NÁZVY ŽIVOČICHŮ V. RYBY A RYBOVITÍ OBRATLOVCI (PISCES) 2. NOZDRATÍ (SARCOPTERYGII) PAPRSKOPLOUTVÍ (ACTINOPTERYGII) CHRUPAVČITÍ (CHONDROSTEI) KOSTNATÍ (NEOPTERYGII) KOSTLÍNI (SEMIONOTIFORMES) – BEZOSTNÍ (CLUPEIFORMES) LUBOMÍR HANEL, JINDŘICH NOVÁK Národní muzeum Praha 2001 Hanel L., Novák J., 2001: České názvy živočichů V. Ryby a rybovití obratlovci (Pisces) 2., nozdratí (Sarcopterygii), paprskoploutví (Actinopterygii) [chrupavčití (Chondrostei), kostnatí (Neopterygii): kostlíni (Semionotiformes) – bezostní (Clupeiformes)]. – Národní muzeum (zoologické oddělení), Praha. Lektor: Ing. Petr Ráb, DrSc. Editor řady: Miloš Anděra Počítačová úprava textu: Lubomír Hanel (TK net) a DTP KORŠACH Tisk: PBtisk Příbram Náklad: 800 výtisků © 2001 Národní muzeum, Praha ISBN 80-7036-130-1 Kresba na obálce: Lubomír Hanel OBSAH ÚVOD . .5 TAXONOMICKÉ POZNÁMKY . 6 ERRATA K 1. DÍLU . 7 ADDENDA K 1. DÍLU . 8 STRUNATCI (CHORDATA) . 9 OBRATLOVCI (VERTEBRATA) . 9 ČELISTNATCI (GNATHOSTOMATA) . 9 NOZDRATÍ (SARCOPTERYGII) . 9 LALOKOPLOUTVÍ (COELACANTHIMORPHA) . 9 LATIMÉRIE (COELACANTHIFORMES) . 9 DVOJDYŠNÍ (DIPNOI) . 9 JEDNOPLICNÍ (CERATODIFORMES) . 9 DVOUPLICNÍ (LEPIDOSIRENIFORMES) . 9 PAPRSKOPLOUTVÍ (ACTINOPTERYGII) . 10 CHRUPAVČITÍ (CHONDROSTEI) . 10 MNOHOPLOUTVÍ (POLYPTERIFORMES) . 10 JESETEŘI (ACIPENSERIFORMES) . 10 KOSTNATÍ (NEOPTERYGII) . 11 KOSTLÍNI (SEMIONOTIFORMES) . 11 KAPROUNI (AMIIFORMES) . 11 OSTNOJAZYČNÍ (OSTEOGLOSSIFORMES) . 12 3 TARPONI (ELOPIFORMES) . 16 ALBULOTVAŘÍ (ALBULIFORMES) . 16 HOLOBŘIŠÍ (ANGUILLIFORMES) . 17 VELKOTLAMKY (SACCOPHARYNGIFORMES)
    [Show full text]
  • Jlb Smith Institute of Ichthyology
    ISSN 0075-2088 J.L.B. SMITH INSTITUTE OF ICHTHYOLOGY GRAHAMSTOWN, SOUTH AFRICA SPECIAL PUBLICATION No. 56 SCIENTIFIC AND COMMON NAMES OF SOUTHERN AFRICAN FRESHWATER FISHES by Paul H. Skelton November 1993 SERIAL PUBLICATIONS o f THE J.L.B. SMITH INSTITUTE OF ICHTHYOLOGY The Institute publishes original research on the systematics, zoogeography, ecology, biology and conservation of fishes. Manuscripts on ancillary subjects (aquaculture, fishery biology, historical ichthyology and archaeology pertaining to fishes) will be considered subject to the availability of publication funds. Two series are produced at irregular intervals: the Special Publication series and the Ichthyological Bulletin series. Acceptance of manuscripts for publication is subject to the approval of reviewers from outside the Institute. Priority is given to papers by staff of the Institute, but manuscripts from outside the Institute will be considered if they are pertinent to the work of the Institute. Colour illustrations can be printed at the expense of the author. Publications of the Institute are available by subscription or in exchange for publi­ cations of other institutions. Lists of the Institute’s publications are available from the Publications Secretary at the address below. INSTRUCTIONS TO AUTHORS Manuscripts shorter than 30 pages will generally be published in the Special Publications series; longer papers will be considered for the Ichthyological Bulletin series. Please follow the layout and format of a recent Bulletin or Special Publication. Manuscripts must be submitted in duplicate to the Editor, J.L.B. Smith Institute of Ichthyology, Private Bag 1015, Grahamstown 6140, South Africa. The typescript must be double-spaced throughout with 25 mm margins all round.
    [Show full text]
  • A Review of the Systematic Biology of Fossil and Living Bony-Tongue Fishes, Osteoglossomorpha (Actinopterygii: Teleostei)
    Neotropical Ichthyology, 16(3): e180031, 2018 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20180031 Published online: 11 October 2018 (ISSN 1982-0224) Copyright © 2018 Sociedade Brasileira de Ictiologia Printed: 30 September 2018 (ISSN 1679-6225) Review article A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Eric J. Hilton1 and Sébastien Lavoué2,3 The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutio- nary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits. The phylogenetic relationships among most extant osteoglossomorph families are widely agreed upon. However, there is still much to discover about the systematic biology of these fishes, particularly with regard to the phylogenetic affinities of several fossil taxa, within Mormyridae, and the position of Pantodon. In this paper we review the state of knowledge for osteoglossomorph fishes. We first provide an overview of the diversity of Osteoglossomorpha, and then discuss studies of the phylogeny of Osteoglossomorpha from both morphological and molecular perspectives, as well as biogeographic analyses of the group. Finally, we offer our perspectives on future needs for research on the systematic biology of Osteoglossomorpha. Keywords: Biogeography, Osteoglossidae, Paleontology, Phylogeny, Taxonomy. Os peixes da Superordem Osteoglossomorpha têm sido foco de inúmeros estudos sobre a morfologia, sistemática e evo- lução, particularmente devido à sua posição basal dentre os peixes teleósteos.
    [Show full text]
  • Thezambiazimbabwesadc Fisheriesprojectonlakekariba: Reportfroma Studytnp
    279 TheZambiaZimbabweSADC FisheriesProjectonLakeKariba: Reportfroma studytnp •TrygveHesthagen OddTerjeSandlund Tor.FredrikNæsje TheZambia-ZimbabweSADC FisheriesProjectonLakeKariba: Reportfrom a studytrip Trygve Hesthagen Odd Terje Sandlund Tor FredrikNæsje NORSKINSTITI= FORNATURFORSKNNG O Norwegian institute for nature research (NINA) 2010 http://www.nina.no Please contact NINA, NO-7485 TRONDHEIM, NORWAY for reproduction of tables, figures and other illustrations in this report. nina oppdragsmelding279 Hesthagen,T., Sandlund, O.T. & Næsje, T.F. 1994. NINAs publikasjoner The Zambia-Zimbabwe SADC fisheries project on Lake Kariba: Report from a study trip. NINA NINA utgirfem ulikefaste publikasjoner: Oppdragsmelding279:1 17. NINA Forskningsrapport Her publiseresresultater av NINAs eget forskning- sarbeid, i den hensiktå spre forskningsresultaterfra institusjonen til et større publikum. Forsknings- rapporter utgis som et alternativ til internasjonal Trondheimapril 1994 publisering, der tidsaspekt, materialets art, målgruppem.m. gjør dette nødvendig. ISSN 0802-4103 ISBN 82-426-0471-1 NINA Utredning Serien omfatter problemoversikter,kartlegging av kunnskapsnivået innen et emne, litteraturstudier, sammenstillingav andres materiale og annet som ikke primært er et resultat av NINAs egen Rettighetshaver0: forskningsaktivitet. NINA Norskinstituttfornaturforskning NINA Oppdragsmelding Publikasjonenkansiteresfritt med kildeangivelse Dette er det minimum av rapporteringsomNINA gir til oppdragsgiver etter fullført forsknings- eller utredningsprosjekt.Opplageter
    [Show full text]
  • Teleostei, Osteoglossomorpha)
    A peer-reviewed open-access journal ZooKeys 561: 117–150Cryptomyrus (2016) : a new genus of Mormyridae (Teleostei, Osteoglossomorpha)... 117 doi: 10.3897/zookeys.561.7137 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Cryptomyrus: a new genus of Mormyridae (Teleostei, Osteoglossomorpha) with two new species from Gabon, West-Central Africa John P. Sullivan1, Sébastien Lavoué2, Carl D. Hopkins1,3 1 Cornell University Museum of Vertebrates, 159 Sapsucker Woods Road, Ithaca, New York 14850 USA 2 Institute of Oceanography, National Taiwan University, Roosevelt Road, Taipei 10617, Taiwan 3 Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853 USA Corresponding author: John P. Sullivan ([email protected]) Academic editor: N. Bogutskaya | Received 9 November 2015 | Accepted 20 December 2015 | Published 8 February 2016 http://zoobank.org/BBDC72CD-2633-45F2-881B-49B2ECCC9FE2 Citation: Sullivan JP, Lavoué S, Hopkins CD (2016) Cryptomyrus: a new genus of Mormyridae (Teleostei, Osteoglossomorpha) with two new species from Gabon, West-Central Africa. ZooKeys 561: 117–150. doi: 10.3897/ zookeys.561.7137 Abstract We use mitochondrial and nuclear sequence data to show that three weakly electric mormyrid fish speci- mens collected at three widely separated localities in Gabon, Africa over a 13-year period represent an un- recognized lineage within the subfamily Mormyrinae and determine its phylogenetic position with respect to other taxa. We describe these three specimens as a new genus containing two new species. Cryptomyrus, new genus, is readily distinguished from all other mormyrid genera by a combination of features of squa- mation, morphometrics, and dental attributes. Cryptomyrus ogoouensis, new species, is differentiated from its single congener, Cryptomyrus ona, new species, by the possession of an anal-fin origin located well in advance of the dorsal fin, a narrow caudal peduncle and caudal-fin lobes nearly as long as the peduncle.
    [Show full text]
  • Teleost Radiation Teleost Monophyly
    Teleost Radiation Teleostean radiation - BIG ~ 20,000 species. Others put higher 30,000 (Stark 1987 Comparative Anatomy of Vertebrates) About 1/2 living vertebrates = teleosts Tetrapods dominant land vertebrates, teleosts dominate water. First = Triassic 240 my; Originally thought non-monophyletic = many independent lineages derived from "pholidophorid" ancestry. More-or-less established teleostean radiation is true monophyletic group Teleost Monophyly • Lauder and Liem support this notion: • 1. Mobile premaxilla - not mobile like maxilla halecostomes = hinged premaxilla modification enhancing suction generation. Provides basic structural development of truly mobile premaxilla, enabling jaw protrusion. Jaw protrusion evolved independently 3 times in teleostean radiation 1) Ostariophysi – Cypriniformes; 2) Atherinomorpha and 2) Percomorpha – especially certain derived percomorphs - cichlids and labroid allies PREMAXILLA 1 Teleost Monophyly • Lauder & Liem support notion: • 2. Unpaired basibranchial tooth plates (trend - consolidation dermal tooth patches in pharynx). • Primitive = whole bucco- pharynx w/ irregular tooth patches – consolidate into functional units - modified w/in teleostei esp. functional pharyngeal jaws. Teleost Monophyly • Lauder and Liem support this notion: • 3. Internal carotid foramen enclosed in parasphenoid (are all characters functional, maybe don't have one - why should they?) 2 Teleost Tails • Most interesting structure in teleosts is caudal fin. • Teleosts possess caudal skeleton differs from other neopterygian fishes - Possible major functional significance in Actinopterygian locomotor patterns. • Halecomorphs-ginglymodes = caudal fin rays articulate with posterior edge of haemal spines and hypurals (modified haemal spines). Fin is heterocercal (inside and out). Ginglymod - Gars Halecomorph - Amia 3 Tails • “Chondrostean hinge” at base of upper lobe - weakness btw body and tail lobe. Asymmetrical tail = asymmetrical thrust with respect to body axis.
    [Show full text]
  • Ráb P.: Ostnojazyčné Ryby Řádu Osteglossiformes 5. Aba a Rypouni (Živa 2018, 6: 326–331)
    Ráb P.: Ostnojazyčné ryby řádu Osteglossiformes 5. Aba a rypouni (Živa 2018, 6: 326–331) Použitá a výběr z doporučené literatury: Arnegard, M. E., et al., 2010: Sexual signalevolution outpaces ecological divergence during electric fish species radiation. American Naturalist, 176(3): 335–356. Agnèse, J. F., Bigorne, R., 1992: Premières données sur les relations génétiques entre onze espèces ouest-africaines de Mormyridae (Teleostei, Osteichthyes). Rev Hydrobiol Trop. 25(3): 253–261. Alves-Gomes, J. A., 1999: Systematic biology of gymnotiform and mormyriform electric fishes: phylogenetic relationships, molecular clocks and rates of evolution in the mitochondrial rRNA genes. J Exp Biol. 202(10): 1167–1183. Alves-Gomes, J. A., Hopkins, C. D., 1997: Molecular insights into the phylogeny of mormyriform fishes and the evolution of their electric organ. Brain Behav Evol. 49(6): 324–351. Arnegard, M. E., Carlson, B. A., 2005: Electric organ discharge patterns during group hunting by a mormyrids fish. Proceedings of the Royal Society B, 272: 1305–1314. Arnegard, M. E., et al., 2010: Sexual signal evolution outpaces ecological divergence during electric fish species radiation. American Naturalist; 176(3): 335–356. Azeroual, A., et al., 2010: Gymnarchus niloticus. The IUCN Red List of Threatened Species [Internet]; cited 2018 Feb 12]: e.T181688A7706153. Available from: Available from: http://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T181688A7706153.en Baker, Ch. A., et al., 2013: Multiplexed temporal coding of electric communication signals in mormyrids fishes. The Journal of Experimental Biology, 216: 2365–2379. Benveniste, L., 1994: Phylogenetic systematic of Gymnarchus (Notopteroidei) with notes on Petrocephalus (Mormyridae) of the Osteoglossomorpha.
    [Show full text]
  • Spatio - Temporal Distribution and Diversity of Macro - Invertebrates in Lake Chivero
    Int. J. Adv. Res. Biol. Sci. (2020). 7(12): 82-95 International Journal of Advanced Research in Biological Sciences ISSN: 2348-8069 www.ijarbs.com DOI: 10.22192/ijarbs Coden: IJARQG (USA) Volume 7, Issue 12 -2020 Research Article DOI: http://dx.doi.org/10.22192/ijarbs.2020.07.12.011 Spatio - temporal distribution and diversity of macro - invertebrates in Lake Chivero. Blessing M Mugaviri Zimbabwe Parks and Wildlife Authority P.O Box Cy 140, Causeway Harare, Zimbabwe. Abstract The study was carried out in Lake Chivero Zimbabwe. The aim of the study was to determine Spatio -temporal distribution and diversity of macro-invertebrates in Lake Chivero .The variables that were being observed were species abundance, species diversity and species distribution. Macroinvertebrates play a key role in the transfer of energy to higher trophic levels, and can constitute the highest proportion in aquatic system. The results indicated differences in species abundances and diversity between sites sampled. Taken together, the results indicated differences in species abundances and diversity between sites sampled in November 2017 to March 2018 once a month on six different sites. The distribution and abundances of macroinvertebrates in lake Chivero showed high abundances of tolerant species, based on the observed results, it is possible to conclude that the Lake is polluted since there is high abundances of tolerant species on sites sampled with the exception of Psephenidae, Moreover Gomidae abundances did not differ at any of the sites (ANOVA: F3,16 = 2.545, p = 0.105). All the other species differed significantly at the different sites. Abundances of Choronomidae differed significantly at the different site (ANOVA: F3,16 = 26.241, p < 0.001) with abundances different at almost every site (Post-hoc Tukey: p < 0.05 for all comparisons) with the exception of Site A and Site C (Post hoc Tukey: p = 0.984).
    [Show full text]